Tech Talk: Writing Linux Kernel Modules with Haskell

The October 20th Galois Tech Talk will be delivered by Thomas DuBuisson, titled “Writing Linux Kernel Modules with Haskell.”

  • Date: Tuesday, October 20th, 2009
  • Time: 10:30am – 11:30am
  • Location: Galois, Inc.421 SW 6th Ave. Suite 300(3rd floor of the Commonwealth Building)Portland, OR 97204

Slides for this talk are now available.Abstract: Current operating systems are developed and extended primarily with imperative languages that lack in expressiveness and safety.  Pure and functional languages fill these gaps nicely but existing tools are not ideal fits and the language abstracts away important environmental information.This talk will focus on modifications of the Glasgow Haskell Compiler to generate suitable code and nuances of binding to the Linux API. Short-comings of the language and tools will be identified along with known workarounds and potential engineering efforts.Bio: Thomas DuBuisson is a PhD student in Computer Science at Portland State University, working with advisor Andrew Tolmach.  Current research efforts revolve around the use of functional languages for systems programming and improving runtime system security.


Galois has been holding weekly technical seminars for several years on topics from functional programming, formal methods, compiler and language design, to cryptography, and operating system construction, with talks by many figures from the programming language and formal methods communities. The talks are open and free. An RSVP is not required, but feel free to contact the organizer with questions and comments.

Read More

Tech Talk: Constructing A Universal Domain for Reasoning About Haskell Datatypes

The October 13th Galois Tech Talk will be delivered by Brian Huffman, titled “Constructing a Universal Domain for Reasoning About Haskell Datatypes.”

  • Date: Tuesday, October 13th, 2009
  • Time: 10:30am – 11:30am
  • Location: Galois, Inc.421 SW 6th Ave. Suite 300(3rd floor of the Commonwealth Building)Portland, OR 97204

Abstract: Existing theorem prover tools do not adequately support reasoning about general recursive datatypes. Better support for such datatypes would facilitate reasoning about a wide variety of real-world programs, including those written in continuation-passing style, that are beyond the scope of current tools.This paper introduces a new formalization of a universal domain that is suitable for modeling general recursive datatypes. The construction is purely definitional, introducing no new axioms. Defining recursive types in terms of this universal domain will allow a theorem prover to derive strong reasoning principles, with soundness ensured by construction.Bio: Brian Huffman is a PhD student in Computer Science at Portland State University, working with advisor John Matthews. He studies formal reasoning with the Isabelle theorem prover, specializing in formalized mathematics and semantics of functional languages. He is currently the maintainer of Isabelle/HOLCF, a logic for domain theory.


Galois has been holding weekly technical seminars for several years on topics from functional programming, formal methods, compiler and language design, to cryptography, and operating system construction, with talks by many figures from the programming language and formal methods communities. The talks are open and free. An RSVP is not required, but feel free to contact the organizer with questions and comments.

Read More

Tech Talk: Roll Your Own Test Bed for Embedded Real-Time Protocols: A Haskell Experience

The October 6th Galois Tech Talk will be delivered by Lee Pike, titled Roll Your Own Test Bed for Embedded Real-Time Protocols: A Haskell Experience[Note: Lee has recently presented this talk at the Haskell Symposium’09 in Edinburgh. Further info and downloadable artifacts are available at his personal web-site.]

  • Date: Tuesday, October 6th, 2009
  • Time: 10:30am – 11:30am
  • Location: Galois, Inc.421 SW 6th Ave. Suite 300(3rd floor of the Commonwealth Building)Portland, OR 97204

Abstract: We present by example a new application domain for functional languages: emulators for embedded real-time protocols. As a case-study, we implement a simple emulator for the Biphase Mark Protocol, a physical-layer network protocol in Haskell. The surprising result is that a pure functional language with no built-in notion of time is extremely well-suited for constructing such emulators. Furthermore, we use Haskell’s property-checker QuickCheck to automatically generate real-time parameters for simulation. We also describe a novel use of QuickCheck as a probability calculator for reliability analysis. Bio: Lee Pike is a member of the technical staff at Galois. Previously, he was a research scientist with the NASA Langley Formal Methods Group, primarily involved in the SPIDER project. His research interests include applying formal methods to safety-critical and security-critical applications, with a focus on industrial-scale endeavors.


Galois has been holding weekly technical seminars for several years on topics from functional programming, formal methods, compiler and language design, to cryptography, and operating system construction, with talks by many figures from the programming language and formal methods communities. The talks are open and free. An RSVP is not required, but feel free to contact the organizer with questions and comments.

Read More

Tech Talk: Building Systems That Enforce Measurable Security Goals

The September 18th Galois Tech Talk will be delivered by Trent Jaeger, titled “Building Systems That Enforce Measurable Security Goals.”[Note the non-standard Friday date; instead of the usual Tuesday slot!]

  • Date: Friday, September 18th, 2009
  • Time: 10:30am – 11:30am
  • Location: Galois, Inc.421 SW 6th Ave. Suite 300(3rd floor of the Commonwealth Building)Portland, OR 97204

The slides for this talk are now available.Abstract: In this talk, I will argue for an approach for building and deploying systems that enforce measurable security goals. Historically, the security community has developed “ideal” goals for security, but conventional systems are not built to satisfy such goals, leading to vulnerabilities. However, we find that building conventional systems to ideal security goals is not a practical option. Ideal security requires heavyweight tasks, such as complete formal assurance, and conventional systems depend on security enforcement in too many programs to make assurance cost-effective. As an alternative, we propose an approach where we use ideal goals as a means to gain a comprehensive understanding of which programs we depend upon for security enforcement and the risks that result from such enforcement. The result is a model that enables comprehensive evaluation of security goals and treatment of risks, once identified. In this talk, I will discuss the motivation for our approach in the development of a practical integrity model, called CW-Lite integrity. Then, I will describe two further experiments. The first examines whether user-level processes can be automatically deployed in a manner in which correct enforcement of system policy can be verified. The second examines whether virtual machine systems can be deployed in a manner in which integrity goals can be determined and verified. In these experiments, we leverage the mandatory access control enforcement of the Linux and Xen, although the talk will focus on the conceptual problems in obtaining a comprehensive view of security in conventional systems. The result of these experiments is that by making security goals measurable in conventional systems a comprehensive view of security can be obtained that enables the solution of key problems in building and deploying secure systems.Bio:Trent Jaeger received his M.S.E. and Ph.D degrees in computer science and engineering from the University of Michigan, Ann Arbor in 1993 and 1997, respectively. Trent joined the Computer Science and Engineering department at Penn State in 2005. He is co-director of the Systems and Internet Infrastructure Security (SIIS) Lab at Penn State. Prior to joining Penn State, he was a research staff member at IBM Thomas J. Watson Research Center for nine years.His research/teaching interests are in the areas of computer security, operating systems, security policies, and source code analysis for security. Trent has been active in the Linux community for several years, particularly in contributing code and tools for the Linux Security Modules (LSM) framework (in Linux 2.6) and for integrating the SELinux/LSM with IPsec (called Labeled IPsec, available in Linux 2.6.18 and above). Trent also has active interests in virtual machine systems (mostly Xen) and trusted computing hardware (Linux Integrity Measurement Architecture and its successor PRIMA).He is also active in the security research community at large, having served on the program committees of many of the major security conferences, including the IEEE Symposium on Security and Privacy, USENIX Security Symposium, ACM Conference on Computer and Communications Security, European Symposium on Research in Computer Security, Annual Computer Security Applications Conference, ISOC Network and Distributed Systems Symposium. Trent has been Program Chair of the ACM Symposium on Access Control Models and Technologies and the ACM Conference on Computer and Communications Security (Industry Track). He is the current Program Chair for the 2007 USENIX Workshop on Hot Topics in Security. He has over 60 refereed publications, and is the holder of several U.S. patents.


Galois has been holding weekly technical seminars for several years on topics from functional programming, formal methods, compiler and language design, to cryptography, and operating system construction, with talks by many figures from the programming language and formal methods communities. The talks are open and free. An RSVP is not required, but feel free to contact the organizer with questions and comments.

Read More

Tech talk: Programming the fleet

The August 25th Galois Tech Talk will be delivered by Adam Megacz, titled “Programming the Fleet”

  • Date: Tuesday, August 25th, 2009
  • Time: 10:30am – 11:30am
  • Location: Galois, Inc.421 SW 6th Ave. Suite 300(3rd floor of the Commonwealth Building)Portland, OR 97204

[This is a continuation to the earlier tech seminar on the Fleet Architecture.]Slides for this talk are now available.Abstract: Computing has become far too complicated, as evidenced by recent high-profile chip design failures.  The Fleet project seeks to simplify processor design by replacing large irregular “cores” with simple functional units connected by a uniform switch fabric.  This simplification frees up hardware design resources, which can be reallocated to the use of ultra-high-performance circuit styles such as GasP.These benefits do not come for free: simplifying the hardware in this manner shifts complexity out of the silicon and into the compiler and programming language.  This talk will present current progress on and future plans for the challenging task of programming Fleet.Bio: Adam Megacz is a PhD candidate in Computer Science at UC Berkeley, a consultant to the VLSI Research Group at Sun Labs, and an NSF Graduate Fellow.


Galois has been holding weekly technical seminars for several years on topics from functional programming, formal methods, compiler and language design, to cryptography, and operating system construction, with talks by many figures from the programming language and formal methods communities. The talks are open and free. An RSVP is not required, but feel free to contact the organizer with questions and comments.

Read More

Tech Talk: Mathematics of Cryptography: A Guided Tour

Tuesday, July 28, 2009

The July 28th Galois Tech Talk will be delivered by Joe Hurd, titled “Mathematics of Cryptography: A Guided Tour.”

  • Date: Tuesday, July 28th, 2009
  • Time: 10:30am – 11:30am
  • Location: Galois, Inc., 421 SW 6th Ave. Suite 300 (3rd floor of the Commonwealth Building), Portland, OR 97204

Slides are now available.

Abstract:

In this informal talk I’ll give a guided tour of the mathematics underlying cryptography. No prior knowledge will be assumed: the goal of the talk is to demonstrate how simple mathematical concepts from algebra and number theory are used to build a wide range of cryptographic algorithms, from the familiar (encryption) to the exotic (zero knowledge proofs).

Bio:

Joe Hurd is a Formal Methods Engineer at Galois, Inc. He completed a Ph.D. at the University of Cambridge on the formal verification of probabilistic programs, and his work since has included: developing a package management system for higher order logic theories; applying automatic proof techniques for first order logic; and creating the world’s first formally verified chess endgame database.

Read More

Tech Talk: The Fleet Architecture

The July 7th Galois Tech Talk will be delivered by Ivan Sutherland, titled “The Fleet Architecture”

  • Date: Tuesday, July 7th, 2009
  • Time: 10:30am – 11:30am
  • Location: Galois, Inc.421 SW 6th Ave. Suite 300(3rd floor of the Commonwealth Building)Portland, OR 97204

Slides are now available.Abstract: This talk describes a radically different architecture for computing called Fleet. Fleet accepts the limitations to computing imposed by physics: moving data around inside a computer costs more energy, more delay, and more chip area than the arithmetic and logical operations ordinarily called “computing.” Fleet puts the programmer firmly in charge of the most costly resource, communication, instead of in charge of the arithmetic and logical resources that are now almost free. Fleet treats arithmetic and logical operations as side effects of where the programmer sends data.Fleet achieves high performance through fine grain concurrency. Everything Fleet does is concurrent at the lowest level; programmers who wish sequentiality must program it explicitly. Fleet presents a stark contrast to today’s multi-core machines in which programmers seek concurrency in an inherently sequential environment.The Fleet architecture uses a uniform switch fabric to simplify chip design. A few thousand identical copies of a programmable interface connect a thousand or so repetitions of basic arithmetic, logical, input-output, and storage units to the switch fabric. The uniform switch fabric and its identical programmable interfaces replace many of the hard parts of designing the computing elements themselves.Both software and FPGA simulators of a Fleet system are available at UC Berkeley. Berkeley students have written a variety of Fleet programs; their work helped to define what the programmable interface between computing and communication must do. A simple compiler now produces the programs required at source and destination to provide flow-controlled communication. We expect work on a higher-level language to appear soon as a PhD dissertation.A recent 90 nanometer TSMC test chip, called Infinity, demonstrated switch fabric performance at about 4 GHz. A new test chip, called Marina, has just gone out for fabrication. Marina will test the programmable interface, and if successful, will give us confidence to build a complete Fleet. We seek participation from sponsors, programmers, and designers of basic computation elements.Bio: Ivan Sutherland is a Visiting Scientist at Portland State University where he and Marly Roncken have recently established the “Asynchronous Research Center” (ARC). The ARC occupies both physical and intellectual space half way between the Computer Science (CS) and Electrical and Computer Engineering (ECE) departments at the university. The ARC seeks to free designers from the tyranny of the clock by developing better tools and teaching methods for design of self-timed systems. Prior to moving to Portland, Ivan spent 25 years as a Fellow and Vice President at Sun Microsystems. A graduate of Carnegie Tech, Ivan got his PhD at MIT in 1963 and has taught at Harvard, University of Utah, and Caltech.Dr. Sutherland received the 1988 Turing Award, for his pioneering work in the field of computer graphics.


Galois has been holding weekly technical seminars for several years on topics from functional programming, formal methods, compiler and language design, to cryptography, and operating system construction, with talks by many figures from the programming language and formal methods communities. The talks are open and free. An RSVP is not required, but feel free to contact the organizer with questions and comments.

Read More

Tech Talk: Verifying Stream Fusion with Isabelle/HOLCF

The June 30th Galois Tech Talk will be delivered by Brian Huffman, titled “Verifying Stream Fusion with Isabelle/HOLCF”

  • Date: Tuesday, June 30th, 2009
  • Time: 10:30am – 11:30am
  • Location: Galois, Inc.421 SW 6th Ave. Suite 300(3rd floor of the Commonwealth Building)Portland, OR 97204

Slides from the talk.Abstract: Stream fusion is a system for removing intermediate data structures from Haskell programs that manipulate lists.  Formal verification of such libraries requires very precise modeling in a theorem prover, to avoid strictness-related bugs.In this talk I will present a formalization of the stream fusion library in Isabelle/HOLCF, a theorem proving environment designed especially for reasoning about functional programs.  I will show how to prove the correctness of various stream functions using “fixed-point induction”, a powerful reasoning principle for general recursive functions.Bio: Brian Huffman is a PhD student in Computer Science at Portland State  University, working with advisor John Matthews. He studies formal reasoning with  the Isabelle theorem prover, specializing in formalized mathematics and semantics of functional languages. He is currently the maintainer of Isabelle/HOLCF, a logic for domain theory.


Galois has been holding weekly technical seminars for several years on topics from functional programming, formal methods, compiler and language design, to cryptography, and operating system construction, with talks by many figures from the programming language and formal methods communities. The talks are open and free. An RSVP is not required, but feel free to contact the organizer with questions and comments.

Read More

Tech Talk: A Newbie’s Exploration of Separation Logic

The June 23rd Galois Tech Talk will be delivered by John Launchbury, titled “A Newbie’s Exploration of Separation Logic.”

  • Date: Tuesday, June 23rd, 2009
  • Time: 10:30am – 11:30am
  • Location: Galois, Inc.421 SW 6th Ave. Suite 300(3rd floor of the Commonwealth Building)Portland, OR 97204

Abstract: I was just privileged to be in a Separation Logic Tutorial, given by its inventor, John Reynolds. Separation logic allows descriptions of storage and other resources concisely, providing a novel system for reasoning about imperative programs with shared mutable data structures. Recent years have seen a flurry of activity in Separation Logic, extending it to apply from shared-variable concurrency to permission based access control mechanisms. In this informal chalk-talk I will introduce the basics of Separation Logic, providing an overview of the fundamental notions of proof techniques.Bio: John Launchbury is the CTO of Galois, Inc. Prior to founding Galois in 1999, John conducted research and instructed in Computer Science and Engineering at the Oregon Graduate Institute School of Science and Engineering at OHSU. John received First Class Honors in Mathematics from Oxford University in 1985. He holds a Ph.D. in Computing Science from University of Glasgow and won the British Computer Society’s distinguished dissertation prize.


Galois has been holding weekly technical seminars for several years on topics from functional programming, formal methods, compiler and language design, to cryptography, and operating system construction, with talks by many figures from the programming language and formal methods communities. The talks are open and free. An RSVP is not required, but feel free to contact the organizer with questions and comments.

Read More

Tech Talk: Orc in Haskell

The June 16th Galois Tech Talk will be delivered by Trevor Elliott, titled “Orc in Haskell.”

  • Date: Tuesday, June 16th, 2009
  • Time: 10:30am – 11:30am
  • Location: Galois, Inc.421 SW 6th Ave. Suite 300(3rd floor of the Commonwealth Building)Portland, OR 97204

Abstract: Concurrency is difficult to realize successfully. The Orc language tackles this problem by introducing explicit concurrency as part of its core. It presents a clean, and somewhat monadic, style of programming that should look familiar to Haskell users. I will give a quick introduction to the Orc language, using several examples to motivate its use. Following this introduction, a monadic Haskell embedding of the major features will be presented, bringing a type system to Orc.Bio: Trevor Elliott is a member of the technical staff at Galois, Inc.  His interests center around functional programming, and the effective use of type systems.Slides are available for download.Update: the source is now available on Hackage (though changed from the version presented at this talk).


Galois has been holding weekly technical seminars for several years on topics from functional programming, formal methods, compiler and language design, to cryptography, and operating system construction, with talks by many figures from the programming language and formal methods communities. The talks are open and free. An RSVP is not required, but feel free to contact the organizer with questions and comments.

Read More