Tech talk: Internet of Things: From Small- to Large-Scale Orchestration

  • Date Tuesday, August 30, 2016  Time 11:00 AM
  • Speaker Charles Consel
  • Location Galois Inc, 421 SW 6th Ave. Suite 300, Portland, OR, USA, (3rd floor of the Commonwealth building)
  • Galois is pleased to host the following tech talk.
    These talks are open to the interested public--please join us!
    (There is no need to pre-register for the talk.)

abstract:
The domain of Internet of Things (IoT) is rapidly expanding beyond research and becoming a major industrial market with such stakeholders as major manufacturers of chips and connected objects, and fast-growing operators of low-power wide-area networks. Importantly, this emerging domain is driven by applications that leverage the infrastructure to provide users with innovative, high-value services. Because of this application-centric approach, software development plays a key role to realize the full potential of IoT.

In this talk, we argue that there is a continuum between orchestrating connected objects in the small and in the large, fostering a unified approach to application development. We examine the requirements for orchestrating connected objects and address them with domain-specific design concepts. We then show how to map these design concepts into dedicated programming patterns and runtime mechanisms.

Our work revolves around domain-specific notations integrated into a tool-based design methodology, dedicated to develop IoT applications. We have applied our work across a spectrum of infrastructure sizes; we present examples, ranging from an automated pilot in avionics, to an assisted living platform for the home of seniors, to a parking management system in a smart city.

bio:
Charles Consel is a professor of Computer Science at Bordeaux Institute of Technology. He served on the faculty of Yale University, Oregon Graduate Institute and the University of Rennes.

His research contributions cover programming languages, software engineering, operating systems, pervasive computing, and assistive computing.

He leads the Phoenix group at Inria that conducts multi-disciplinary research to design, develop, deploy and assess assistive computing support. This research combines (1) Cognitive Science to study user needs and make a rigorous assessment of assistive services; (2) Sensing and actuating expertise to support the user, based on accurate and rich interactions with the environment; (3) Computer Science to support and guide the development process of the assistive services.