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Abstract—Today’s most powerful machine learning approaches
are typically designed to train stateless architectures with pre-
defined layers and differentiable activation functions. While
these approaches have led to unprecedented successes in areas
such as natural language processing and image recognition, the
trained models are also susceptible to making mistakes that a
human would not. In this paper, we take the view that true
intelligence may require the ability of a machine learning model
to manage internal state, but that we have not yet discovered the
most effective algorithms for training such models. We further
postulate that such algorithms might not necessarily be based
on gradient descent over a deep architecture, but rather, might
work best with an architecture that has discrete activations and
few initial topological constraints (such as multiple predefined
layers). We present one attempt in our ongoing efforts to design
such a training algorithm, applied to an architecture with binary
activations and only a single matrix of weights, and show that it is
able to form useful representations of natural language text, but is
also limited in its ability to leverage large quantities of training
data. We then provide ideas for improving the algorithm and
for designing other training algorithms for similar architectures.
Finally, we discuss potential benefits that could be gained if an
effective training algorithm is found, and suggest experiments for
evaluating whether these benefits exist in practice.

I. INTRODUCTION

Artificial intelligence has been witnessing major break-
throughs, with the release of very powerful large language
models (LLMs), such as ChatGPT and GPT-4. While these
models can perform a wide range of highly complex tasks,
ranging from question answering to software development, it
is noteworthy that their underlying transformer-based architec-
ture [1] is stateless, in that its output (e.g., prediction of the
next token in a sentence) depends solely on the current input
(previously-observed tokens, over some fixed-sized context
window), without any memory of past inputs. While this
limitation can be mitigated by using a very large context
window, this results in high computational overhead. Perhaps
more significantly, given that the biological brain maintains
internal state/memory, a question arises: are there limitations
on what a stateless model can achieve in practice, in terms
of intelligence, when compared with a stateful model? For
example, is it possible that the limitations of current LLMs
(e.g., “hallucination”, i.e., the generation of false information
[2], or the susceptibility to adversarial input perturbations [3])
can be, at least in part, attributed to a lack of state?

Unfortunately, it is presently very difficult to answer such
questions, since the vast majority of existing stateful ap-
proaches, including recurrent neural networks (RNNs) such as
the long short-term memory (LSTM) network [4], have lagged
far behind transformer-based architectures, in terms of perfor-
mance. However, this does not indicate that stateful approaches
are less powerful than stateless ones; rather, it is possible that
existing stateful models and their training methods (such as
backpropagation through time [5], which converts an RNN
into a deep stateless network, with different layers representing
activations at different time steps, and applies gradient descent)
are not entirely appropriate for learning how to manage state,
but that more effective techniques remain to be discovered.
Very recently, a study demonstrated a stateful model that
outperformed transformers on multiple tasks [6], and it will
be interesting to observe whether this study may provide a
turning point toward the use of state in machine learning. The
approach was based on an extension of state-space models, and
used gradient-based training. We have instead been exploring
a different direction: training algorithms that do not rely on
gradient descent, and can be applied to non-differentiable
activation functions.

In this paper, we describe one attempt to find such a training
algorithm for a stateful model, which consists of just two
layers of neurons: the input layer, containing the current input
xt and current state ht, and the hidden layer, representing
the state ht+1 at the next time step; both inputs and states
are represented as binary vectors. A matrix W of weights,
along with the Heaviside step function, is used to map xt

and ht to ht+1, while the transpose WT of this matrix, also
with the Heaviside step function, is used to reconstruct xt and
ht from ht+1; the reconstruction error is used as a training
signal for adjusting the weights. We train this model on a
dataset of variable-length text samples obtained from news
articles, and then use the model to convert each text sample
into fixed-sized feature vector, where each element in the
feature vector corresponds to the average activation of some
hidden layer neuron over the duration of the sentence. We
find that the resulting feature vectors can then be used to
classify samples (into topics) with an average accuracy of
82.2%, using linear regression. The result suggests that it may
potentially be feasible to develop effective training algorithms
for architectures that are (a) stateful, (b) have very few initial
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constraints (we define just a single layer/matrix of weights
W ; it is up to the learning algorithm to potentially decompose
it into sublayers/submatrices, if it so chooses), and (c) have
discrete (specifically, binary) activations, which prohibit the
use of gradient-based training techniques.

At the same time, we note that our accuracy is below those
achieved by a number of other models, with some transformer-
based approaches achieving an accuracy of over 95% [7];
furthermore, we observe that our training algorithm is rather
quick to converge, and does not benefit from large quantities
of training data. Later in this paper, we discuss possible ideas
for further improving our training approach, as well as for
uncovering other simple learning methods. We also consider
benefits that could potentially be achieved with an effective
method for training stateful, unconstrained architectures with
binary activations, and propose additional future work for
evaluating whether (and to what extent) such benefits are
realized.

II. RELATED WORK

How can a model learn to effectively manage its state
and represent temporal sequences of inputs? In developing
our approach, we attempt to strike an appropriate balance
between stability (i.e., old information is not forgotten, if
it is relevant) and adaptivity (new information is effectively
accommodated), while avoiding the storage of information
that is unlikely to be needed in the future. These conflicting
objectives have been considered in past models; for example,
in the aforementioned LSTM network [4], specialized neurons
called input gates and forget gates respectively determine the
influence of a given input upon internal state (adaptivity), and
the internal state’s persistence (stability); learning takes place
through gradient descent. These objectives are optimized in
a very different way in the linear autoencoder network [8],
where the current input xt and state ht are linearly mapped to
the next state ht+1, such that xt and ht can be reconstructed
as accurately as possible (also in a linear way) from ht+1;
stability is required to reconstruct ht, while adaptability is
required to reconstruct xt. Because the approach is linear,
optimal parameters (weights) can be found via a closed-form
expression; however, linearity also places significant limits on
the functionality of the model. Our approach is related to [8],
but introduces a nonlinearity (via the Heaviside step function)
during both the generation of ht+1 and the reconstruction of
xt and ht, and optimizes parameters in an approximate way.
Finally, we note that the two-layer architecture of our model
is similar to that of a restricted Boltzmann machine (RBM)
[9], and the reconstruction of xt and ht resembles RBM’s
reconstruction of visible activations from hidden activations;
however, our model’s activation dynamics are deterministic,
and its learning procedure is different from that of an RBM
[10].

III. MODEL

Our model is illustrated in Fig. 1. Formally, it consists of
a matrix W ∈ Rn×(m+n) of real-valued weights, a vector
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Fig. 1. An illustration of our model, with equations for computing the
activations within the hidden layer (with information flowing from the input
layer on the left to the hidden layer on the right), and for reconstruction (with
information flowing from right to left). The thin black arrow denotes that the
next state ht+1, computed at time t, is provided to the input layer at time
t+ 1, and can be viewed as a set of pairwise recurrent connections.

a ∈ Rm+n of input biases, and vector b ∈ Rn of hidden
biases. At time 0, the state h0 of the model is initialized to the
zero vector of dimension n. Given some binary input vector
xt ∈ {0, 1}m at time t ≥ 0, the next state ht+1 ∈ {0, 1}n is
computed as as follows:

ht+1 = H(W [xt, ht] + b) (1)

Here H is the Heaviside step function (returning 1 for any
input greater than 0, and 0 for any other input), and [xt, ht] is
the concatenation of xt and ht (which is multiplied by W ).

Conversely, given a state ht+1, we may attempt to recon-
struct the previous input xt and the previous state ht as
follows:

[x′
t, h

′
t] = H(WTht+1 + a) (2)

Here, T is the transpose operator. The reconstruction error
is the difference [xt, ht] − [x′

t, h
′
t] between the true and the

reconstructed input and state. The model learns by attempting
to reduce the reconstruction error, by adjusting the weights as
follows:

W ←W + ht ⊗ ([r(x), r(h)]⊙ ([xt, ht]− [x′
t, h

′
t])) (3)

Here, ⊗ denotes the outer (tensor) product; ⊙ denotes the
Hadamard (element-wise) product; r(x) is the input learning
rate, provided as a vector of dimension m (where each of m
elements has the same value), and r(h) is the state learning
rate, provided similarily as a vector of dimension n. We
analogously adjust the input biases as follows:

a← a+ [r(x), r(h)]⊙ ([xt, ht]− [x′
t, h

′
t]) (4)

Finally, we adjust the hidden biases as follows:

b← b+ r(h) ⊙ (d− ht+1) (5)

Here, d is the density parameter, provided as a vector of
dimension n. Whenever some some hidden neuron is inactive
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(i.e., the corresponding element of ht+1 is 0), the above rule
increases the neuron’s bias by r(h)d; if it is active, then it
decreases the bias by r(h)(1− d); this attempts to achieve an
average activation rate of d for a given neuron (encouraging
sparse representations if d is low).

IV. EXPERIMENTS

We train and evaluate our model on subsets of the AG’s
News Topic Classification Dataset1. The preprocessed dataset
consists of short samples from news articles; each sample
belongs to one of four topics: World, Sports, Business and
Sci/Tech. For any sample, we encode each character as a one-
hot vector of 96 elements, with each element corresponding
to some letter, digit, or punctuation mark; for example, if the
character is ’a’, then the element corresponding to ’a’ is set
to 1, with the rest of the elements set to 0. We train our
model on 5000 samples, selected at random from the AG’s
News training set, using the approach given in Section III.
Each sample is provided to the model one character at a
time; state ht is not reset when one sample ends and another
begins; the 5000 samples are provided only once. We used the
following parameters: m = 96 (given 96 possible characters),
n = 4000, r(x) = 0.01, r(h) = 0.000001, and d = 0.1. Prior to
training, each weight and bias was initialized by independently
setting it to a random value drawn from a uniform distribution
ranging between − 1

m+n and 1
m+n . We note that learning is

unsupervised; i.e., topic labels are not used during the training
process.

Once the model has been thus trained, we use it to convert
an additional 5000 samples (from the training set) into fixed-
sized feature vectors. For a given sample, with the first
character occurring at time step t(s) and the last character
occurring at time step t(f), the feature vector is computed as
an average 1

t(f)−t(s)+1

∑t(f)

t=t(s) ht+1 of states ht+1 obtained
after each character has been presented; each element of the
feature vector can be viewed as the proportion of times that
some hidden neuron is active, i.e., has a value of 1. Again, state
is not reset between samples; also, weights and biases are not
modified during this process. For each of the 5000 samples,
we thus obtain a feature vector of n = 4000 elements, and we
then use ridge regression to train a classifier on these feature
vectors, with topic labels provided as ground truth. Finally, we
generate feature vectors from the 7600 samples in the AG’s
News test set (using the same procedure as described above),
apply the trained classifier to them, and measure classification
accuracy. This process is repeated over 5 trials, each time using
a different set of random initial values for weights and biases,
and a different, randomly-chosen subset of 10, 000 samples
from AG’s News training set (5000 for unsupervised model
training and 5000 for supervised classifier training); training
subsets are disjoint across the 5 trials, but the same test set
is used in each trial. The classification accuracy for each trial

1The preprocessed dataset, which we use, was obtained from
https://github.com/frederick0329/Text-Classification-Benchmark/tree/master/
data/preprocessed; it was derived from http://groups.di.unipi.it/~gulli/AG_
corpus_of_news_articles.html.

TABLE I
EXPERIMENTAL RESULTS

Trial 1 2 3 4 5
Model 82.3% 82.6% 81.9% 82.1% 82.2%

Baseline 49.9% 49.2% 48.9% 48.4% 49.4%

Fig. 2. State reconstruction error during unsupervised training, for Trial 1.

is reported in Table I, in the “Model” row; we note that the
choice of initial parameter values and training subset has only
a minor effect on accuracy.

As a baseline for comparison, we reran the experiment
without our model, but rather, with feature vectors obtained
as averages 1

t(f)−t(s)+1

∑t(f)

t=t(s) xt of inputs, i.e., as vectors of
96 elements, where each element’s value is the frequency of
occurrence of a given character in the sample. Interestingly,
even with this very basic strategy, classification performance
is well above the 25% that one would expect with random
guessing (given each of four topics occurs in the test set the
same number of times), as we indicate in the “Baseline” row
of Table I. Still, its performance is significantly below that
of our model, which suggests that the model does not merely
store individual characters as part of its state, but computes
more complex (and useful) features.

It is noteworthy that our result is achieved while using only
a small subset of the available training set (which consists of
120, 000 samples) for training. While the ability to learn from
limited data can be viewed as a positive feature, there is also a
significant limitation, in that the model does not appear to ben-
efit significantly from larger training datasets. As we show in
Fig. 2, the reconstruction error, here defined as the Hamming
distance between ht and h′

t, initially decreases rapidly, but
soon becomes relatively flat. (The input reconstruction error,
which we do not display, is typically 0, with occasional small
spikes, except at the very beginning of the training process.)
Thus, simply using a larger training set is unlikely to fill
the accuracy gap between our approach and state of the art
approaches such as [7], and further modifications are needed.
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V. DISCUSSION AND FUTURE WORK

Given the above limitation, a short-term goal is to determine
whether there are effective ways to slow down the convergence
of our learning procedure, such that it makes use of more
training examples to find a more optimal set of weights and
biases. At the same time, it is important to note that lower
reconstruction error alone does not imply a better representa-
tion; for example, if the model simply learns to compute ht+1

as the zero vector, and to reconstruct both xt and ht as zero
vectors, then input reconstruction error will be 1 (given that
the input is a one-hot vector), while memory reconstruction
error will be 0, with the overall reconstruction error being
much lower than what we observed in our experiments, but
with an ultimately useless representation. Both the procedure
for learning hidden biases (Eq. (5)) and the large difference
between the input and state learning rates (Section IV) prevent
this from happening. One possible approach for improving
the training algorithm is to not only use a distinct learning
rate for the input, but to also associate different learning rates
with different elements of the reconstructed state vector h′

t,
and to adapt these learning rates automatically in some way.
Other possibilities include introducing a controlled degree of
randomness into the activations and/or the weights/biases, in
order to slow down convergence, or changing the weight and
bias initialization scheme, e.g., with most weights and biases
being initially assigned a value of 0.

It is also of interest to explore alternative learning rules
for similar stateful, unconstrained architectures with discrete
activations. One possible direction is to explore the space of
purely local rules, where the weight change ∆wji on the
connection between neurons i and j depends only upon the
(binary) activations of i and j at times t and t + 1 (or,
alternatively, t+1 and t+2 in the case of j), without requiring
any additional computation (such as the reconstruction of the
previous state and input in our current approach). Such a rule
can be represented as a table of 24 = 16 rows (given that two
neurons at two time steps give four activation values, where
each activation value can be either 0 or 1); for each row, we
can specify whether the weight should increase, decrease, or
stay the same. If we further enforce that whenever a weight
is increased or decreased, it is always by the same magnitude,
then the number of possible rules is 316 = 43, 046, 721. While
this rule space is large, it is not intractable to explore; some
rules can be filtered out after rapidly failing on very simple
learning problems with very small neural network sizes, with
successful rules then being applied to more complex problems
with larger networks. This exploration is somewhat analogous
to (and inspired by) the characterization of the much smaller
space of 256 rules for elementary cellular automata [11]; the
exploration led to the discovery of a very simple rule that is
capable of supporting universal computation.

If a training approach (whether an extension of the one
presented in Section III or a different one) is sufficiently
successful at learning useful hidden representations from large
temporal datasets, then it would be of interest to investigate

whether the representations provide benefits other than just im-
proved classification accuracy. Such benefits might potentially
include the following:

• The ability to remember information from the distant
past: A theoretical benefit of a stateful model is that it
can retain even old information, if it is relevant, though
experiments are needed to determine whether this is
the case in practice. If so, then in principle, a stateful
model could be used as a preprocessor to predictive
models, such as LLMs: rather than providing information
(e.g., text tokens) over a fixed-sized context window
as input to an LLM, we could provide the state(s) of
the stateful model2. However, further research is needed
to determine how many states to provide, and in what
form. In our experiments, we found that if we simply
use the state ht(f)+1 after the end of the sentence as
a feature vector, classification accuracy is much lower
than if we use the average state over the entire sentence

1
t(f)−t(s)+1

∑t(f)

t=t(s) ht+1; it is not clear whether such an
average would serve as an appropriate input, whether
some other postprocessing should be applied to states,
or whether some set of recent states should be provided
as input to an LLM in their raw form. Another possibility
is to modify the existing architecture such that it not only
computes the next state ht+1, but also predicts the next
input xt+1; i.e., to include prediction as an additional task
to be performed by the model.

• Robustness to adversarial perturbations: It is well-known
that current machine learning models can be suscepti-
ble to adversarial attacks, where small changes in the
input, considered insignificant (or even imperceptible)
by a human, can result in large (and incorrect) output
changes [3], [12]. As a dynamical system, a stateful
model could potentially learn to stabilize the trajectory,
and make it more robust to perturbations in the input;
further robustness might perhaps be afforded by the use of
binary, rather than real-valued activations. To determine
whether this is the case, experiments can be performed
with gradient-free attacks (e.g. [13]), gauging their effect
on classification accuracy.

• Improved explainability/interpretability: It is of interest to
determine whether the approach allows for more insight
into how the model makes its decisions, compared with
conventional approaches. For the model presented in
Section III, we can apply Eq. (2) multiple times to attempt
to reconstruct not only the previous input xt and state
ht, respectively, but inputs and states at earlier time
steps as well. By determining which past inputs and
state elements (features) are reconstructed more or less
accurately, it may be possible to gauge the extent to which
they are used in decision-making; the process might be
simplified by the binary (rather than real-valued) nature
of the inputs and states. An interesting research question

2Here, it is of interest to note that while an LLM learns to predict the next
input, our stateful model learns to recall the previous input and previous state.
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is whether reconstruction errors provide more insight than
gate values within an LSTM network.

• Improved verifiability: Another relevant question is
whether the binary inputs and states can make the model
more amenable to the application of formal methods, in
order to prove certain properties about the model. For
example, there are techniques for converting a recurrent
neural network into a finite state machine, but they require
the discretization of the real-valued inputs and states [14],
which can be non-trivial; this discretization would not be
necessary for the model given here.

• Low power consumption: The use of binary activations,
along with the gradient-free training approach, may po-
tentially allow the model to be implemented on low-
power hardware. However, experiments are necessary to
determine the extent to which the precision of weights
and biases can be reduced, without significantly affecting
the effectiveness of training or the operation of a trained
model.

• Ease of design and customization: Rather than designing
a modular architecture with prespecified layers, our ap-
proach has just a single layer of weights, which reduces
the number of tunable hyperparameters (such as the size
of each layer and the number of layers). If the training
of such an architecture is effective for a wide range of
problems, then less customization is required, given a
new problem, but to determine whether this is the case,
experiments must be performed with a diverse range of
problems. It is also of interest to analyze the trained
models, and determine whether modularity emerges as
a result of training, where the weight matrix W is
decomposed into sublayers/submatrices, with near-zero
weights assigned to connections between sublayers.

It is, of course, not guaranteed that these benefits will be
realized; nonetheless, it is the author’s belief that it is worth
continuing to explore alternative approaches to training stateful
neural networks, as a promising direction in the quest for
artificial general intelligence.
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