XEBHRA: A Virtualized Platform for Cross Domain
Information Sharing

Extended Abstract

Charles Payne, Jr., and Jason Sonnek and Steven A. Harp
Adventium Enterprises, LLC
Minneapolis, MN USA
{charles.payne, jason.sonnek, steven.harp}@adventiumlabs.com

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Information Flow Con-
trols; J.7 [Computers in Other Systems]: Military

General Terms

Security, Design, Measurement

Keywords

information sharing, cross domain solution, virtualization

1. INTRODUCTION

The Unified Cross Domain Management Office (UCDMO)
states that its mission is to provide coordination and over-
sight for the cross domain community’s vision of “secur[ing]
cross domain access to and sharing of timely and trusted
information, creating a seamless Enterprise that enables de-
cision advantage.” [14] The UCDMO defines three types of
cross domain solution (CDS) — transfer, access and multi-
level — to satisfy this vision [15].

The transfer CDS, or guard, moves information securely
between software applications running in different informa-
tion security domains. Since the guard must approve all in-
formation flows between domains, it is traditionally deployed
on a standalone computer host that provides the only phys-
ical link between the domains’ networks. This deployment
strategy ensures that the guard cannot be bypassed. Unfor-
tunately, as the demand for sharing increases, this strategy
can prove costly. Data centers, for example, may charge
more for custom guard hardware that cannot be reallocated
easily for other uses.

To address rising deployment costs, the UCDMO has pro-
posed to implement the guard as a software service that can
be installed and managed from a central location [13]. The
guard would be available via the network to any cross do-
main application that requires it. It may even be deployed
on a virtual machine (VM) in a data center. Unfortunately,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CSIIRW’12 October 30 — November 2, Oak Ridge, Tennesee, USA
Copyright 2012 ACM 978-1-4503-1687-3 ...$15.00.

this deployment strategy also has shortcomings. For exam-
ple, in tactical environments, access to the network — and
thus to a remotely hosted guard service — can be unreliable.
The tactical user needs to operate through network loss, so
this user would benefit from a local guard deployed on a
small hardware footprint for a resource-constrained environ-
ment. In other situations, a local guard may be required.
A network management application, for example, may use a
guard to control many networks at different security levels.
In this case, network availability depends on the availability
of the guard rather than the reverse. In summary, these use
cases encourage deploying the guard as close as possible to
its cross domain applications.

In this paper, we introduce XEBHRA (Xen-Based, Host-
Resident, Assurance), a layered assurance architecture for
virtualized cross domain information sharing. XEBHRA
hosts the guard and its domain applications as separate
VMs on a trustworthy virtual machine monitor (VMM).
XEBHRA joins the domain application VMs to the guard
VM using virtual networks, and XEBHRA configures those
virtual networks so that the guard VM cannot be bypassed.

The XEBHRA architecture enables the user to not only
interact with each domain like an access CDS but also to
initiate approved transfers between domains using the local
guard. XEBHRA achieves a size, weight and power (SWAP)
reduction of (n 4 1)-to-1 for n domains and a single guard.
XEBHRA eliminates physical network disruption as an im-
pediment to local information sharing and, since the guard
is accessed only from the domain application VMs, it also
reduces the exposure of the guard VM to attacks from the
physical network.

The next section describes challenges that the XEBHRA
architecture must address.

2. CHALLENGES

Figure 1 illustrates a conceptual view of XEBHRA. The
notional domains HI and LO and the guard G are VMs.
XEBHRA can host more than two domains if needed. HI
and LO send data over virtual networks Nur and Npro, re-
spectively, that are linked by G. The Trustworthy VMM con-
trols all access by the VMs to the Hardware, and it assigns
the network interfaces for the physical domain networks,
HlInet and LOnet, to HI and LO, respectively. Hardware em-
ulation, where needed, is provided by Privileged VM, also
known as dom0 in Xen. The XEBHRA architecture must
provide this functional behavior while addressing two key
challenges.

N N
H 5 ¢ 3 10

\ Privileged VM \

‘ Trustworthy VMM ‘

‘ Hardware ‘

HInet LOnet
Figure 1: An abstract view of XEBHRA

The first challenge is for XEBHRA to reuse certified com-
ponents. The guard software running in G undergoes an
expensive certification (which can approach six figures) to
assure its trustworthiness. Cross domain applications run-
ning in HI and LO may undergo their own certifications. If
any of those components require modification to install and
operate on XEBHRA, then the cost savings from SWAP
reductions may be lost in certification costs. A practical so-
lution, then, is for XEBHRA’s VMM to export the standard
device interfaces expected by — and already supported by —
those components.

The second challenge is for XEBHRA to achieve reuse
with an appropriate level of assurance. There are many
ways to engineer the system in Figure 1 to enable the reuse
of certified components; however, many of those solutions
may not provide the level of assurance needed to accredit
XEBHRA for operational use. XEBHRA’s assurance re-
quirements are driven by the assurance requirements for the
guard software. That software was certified under the as-
sumptions that its own processing and hardware resources
are completely separate from either HI or LO and that Nur
and Npo are physically separate networks. Clearly a virtu-
alized platform like XEBHRA, where VMs share the pro-
cessing and hardware resources exported by the Trustwor-
thy VMM, will challenge these assumptions. In order to
satisfy the conditions of the guard software’s certification,
XEBHRA must not only demonstrably isolate VMs G, HI
and LO but also the virtual networks Nugr and Npo that
connect those VMs.

In the next section, we present an architecture for XEBHRA
to address these challenges.

3. ARCHITECTURE

Figure 2 illustrates the XEBHRA'’s architecture using lay-
ered assurance. Our assurance strategy for XEBHRA is to
certify and compose the lower layers so we can satisfy the
certification assumptions of the higher layers. We describe
each layer briefly below.

e The bottom layer is a certified, Xen-based, Type 1
VMM that controls the hardware and isolates each
VM'’s use of that hardware. The VMM and its Priv-
ileged VM must be certified to provide VM isolation
sufficient for an access CDS [15].

e At the middle layer, we introduce bridge VMs to cre-
ate communication channels between High and Guard
and between Low and Guard. Each bridge VM (labelled

VM]
v VM Approved
High Guard Low Transfer
(o)) ® O _
|_ r _VM_ SR _v_ - _| Controlled
® igh Low @ X Information
I Bridge Bridge Flow
| |E
| | B b
Privileged VM H
| |
R
| |A
Guest
I
: Trustworthy VMM | eolation
l |
Hardware
' |
-1 # Layered
High Low Assurance
Net Net

O——O0 Physical network connections
@——@ XEBHRA virtual network

Figure 2: Layered Assurance in XEBHRA

High Bridge and Low Bridge in Figure 2) implements
a complete virtual network. Because each virtual net-
work is implemented entirely within its bridge VM,
and because the VMM guarantees that each VM is
isolated from all other VMs (except for interactions
authorized by the VMM), then each virtual network is
isolated from other virtual networks. This layer com-
poses with the bottom layer to assure that Guard is
nonbypassable.

e At the top layer, we deploy certified guard software in
Guard. This layer composes with the lower layers to
assure that all information flows between High and Low
are approved by the guard software.

In the following sections, we describe each layer in more
detail.

3.1 Layer 1: Trustworthy VMM to isolate VMs

The guard’s certification requires that High and Low be
isolated, both in their processing and in their connections to
physical networks. While the open source Xen VMM pro-
vides some VM isolation, the complexity and structure of
its code base inhibits convincing analysis for medium-to-high
assurance applications. In addition, documented attacks ex-
pose the limits of that protection [17, 10]. The VMM and
its Privileged VM may need to be hardened for higher as-
surance, e.g., using technologies such as XSM [3], sHype
(now ACM) [11] or SELinux. In addition, a VMM trusted
to operate across multiple levels of security should provide
certain features, such as a secure shared file store [5]. There-
fore, a more trustworthy VMM is required for XEBHRA’s
foundation.

McDermott[7] defines a separation hypervisor as a Type
1 VMM that offers assurances similar to a separation kernel
but that also includes hardware emulation for its VMs. The
separation hypervisor includes a privileged VM to perform
hardware emulation for all other (non-privileged) VMs. The

privileged VM, which is included in the certification of the
separation hypervisor, must be hardened to prevent unau-
thorized information flows within it.

It is not our intent to construct a separation hypervi-
sor for XEBHRA but to build on existing work. Candi-
dates include the NRL Xenon hypervisor [9, 6, 8], which
is still in development, and the commercially available Cit-
rix XenClient XT [2]. Announced in May 2011, XenClient
XT leverages NSA’s Xen Security Modules (XSM) [3] and
SELinux, Intel’s Virtualization Technology for Directed I/0O
(VT-d), Extended Page Tables and Trust Platform Module
(TPM)/Trusted Execution Technologies (TXT) to improve
VM isolation and to provide a root of trust. The AFRL
SecureView workstation, which is based on XenClient XT,
has been certified for multi-level operation [4] and deployed
by the Intelligence Community.

3.2 Layer 2: Bridge VMs to control informa-
tion flow

As we consider implementation alternatives for XEBHRA’s
virtual networks, we must assess the level of effort that will
be required to certify that the high and low virtual networks
are isolated and that Guard cannot be bypassed. For exam-
ple, emulating both virtual networks within the Privileged
VM will require demonstrating that the Privileged VM ad-
equately separates the processing associated with each net-
work. Since the Privileged VM is typically a full operating
system, a convincing demonstration may be intractable.

To minimize trust in the Privileged VM, we introduce the
bridge VM. A bridge VM implements a dedicated commu-
nication channel between a domain VM and the guard VM.
It removes all virtual network emulation from the Privileged
VM while providing the standard networking interface that
the domain VMs and the guard VM support.

The bridge VM is based on the concept of a Xen device
driver VM. Like a device driver VM, the bridge VM supports
Xen’s split driver model. The network driver’s frontend is
implemented in the domain (or guard) VM and the network
driver’s backend is implemented in the bridge VM. Unlike a
device driver VM, a bridge VM does not join the backend
to a physical network device. Instead, the bridge VM joins
the backend to a virtual bridge that is implemented entirely
within that bridge VM.

To use bridge VMs, High and Low must connect to their
virtual networks using paravirtualized network drivers (il-
lustrated as closed circles in Figure 2). Fortunately, even
commercial operating systems that must run as fully virtu-
alized VMs, or hardware virtual machines (HVMs), often
include support for paravirtualized network drivers [18, 12,
16].

Figure 3 illustrates the use of a bridge VM to create a
communication channel between High and Guard:

e The virtual frontend interface in High is connected to a
corresponding backend interface in High Bridge via a
ring buffer implemented on top of shared memory [1].

e High places data destined for Guard in the buffer, where
it is picked up by High Bridge.

e High Bridge copies the data to its private memory,
and the backend interface forwards the data on the
virtual bridge hosted in High Bridge, where it is seen
by the backend interface for Guard.

Guard

Ring
Buffer

Net
’EDI‘ Front

L R R

System Memory

‘ Visible to

" : Visibl
Visible to High High Bridge isible to Guard

Figure 3: Communication using a XEBHRA Bridge
VM

e A similar process transfers the data from Guard’s back-
end interface to Guard’s frontend interface.

Using bridge VMs, XEBHRA achieves virtual network iso-
lation because the data is always either in a VM'’s private
memory or in memory that has been explicitly shared be-
tween a domain (or guard) VM and its associated bridge
VM.

Figure 4 illustrates the use of bridge VMs to enable ap-
proved information flow from High through Guard to Low.
Each domain VM, High and Low, requires access to both
a physical network interface (labelled “Net” in Figure 4) for
accessing its domain network, and a paravirtualized network
interface (labelled “Net Front”) for accessing Guard. Guard
requires only two paravirtualized network interfaces. Rather
than relying on the Privileged VM to emulate the physical
network (“Net”) interfaces, XEBHRA leverages the chipset’s
Input/Output Memory Management Unit (IOMMU) sup-
port (illustrated as open circles in Figure 2) to safely pass
control of those physical interfaces directly to the domain
VMs.

High High Bridge Guard Low Bridge Low
Net || Net Net I Net
Net Front Front Front Front Net
— X
Privileged VM
Trustworthy VMM

Hardware (r

A O——Q [|OMMU supported Net passthrough v
High Low
Net @——@ PV Net Front/Back Net

Figure 4: Bridged information flow in XEBHRA

3.3 Layer 3: Certified Guard to approve in-
formation transfer

The final layer of our assurance architecture introduces
the certified guard software to Guard and suitable cross do-
main applications to High and Low. Through the lower
layers of its security architecture, XEBHRA validates the
guard’s certification assumption of physically separate net-
works. XEBHRA can be viewed as a new hardware platform
on which to deploy certified guards and their cross domain
applications. Like any new platform for the guard software,
some certification may still be required, but the effort hope-
fully will be much less than starting from scratch.

4. STATUS AND NEXT STEPS

We developed a prototype of XEBHRA on Xen 4.0 and
evaluated its performance. Our results show Xen’s intra-
machine virtual network performance to equivalent to a 1
Gbps Ethernet link. While an inter-VM shared-memory
transport, such XenLoop or XenSocket [19], could improve
on that performance, those solutions could also require mod-
ifications to the guard software, which could require recertifi-
cation. We also installed a certified guard on this prototype,
and it installed easily and without alteration.

Our next step will be to pursue implementation of XEBHRA

on a trustworthy VMM, because the protections claimed by
XEBHRA can only be realized by building on a VMM that
provides the necessary isolation guarantees. Our initial anal-
ysis of Citrix XenClient XT confirms that it will easily sup-
port XEBHRA'’s bridge VM concept.

Although XEBHRA was designed to address cross domain
information sharing requirements, the XEBHRA architec-
ture can also be applied in a straightforward manner to
other environments with similar information flow require-
ments. For example, the Guard could be replaced with fil-
tering software to detect malware moving from less sensitive
to more sensitive VMs. In this case, XEBHRA would guar-
antee that the filters cannot be bypassed.

5. ACKNOWLEDGMENTS

The authors wish to thank the Office of Naval Research
and the Naval Research Laboratory for their support of this
work.

6. REFERENCES

[1] D. Chisnall. The Definitive Guide to the Xen
Hypervisor. Prentice Hall, 2007.

[2] Citrix. Citrix announces XenClient2 and XenClient
XT. http://wuw.citrix.com/English/NE/news/
news.asp?newsID=2311981.

[3] G. Coker. Xen Security Modules, July 2009. Available
at xen.xensource.com/files/summit_3/
coker-xsm-summit-090706.pdf.

[4] R. Durante. Secureview and XenClient XT security.
Presentation at NSA Trusted Computing Conference
and Exposition, September 2011.

[5] P. A. Karger. Multi-level security requirements for
hypervisors. In Annual Computer Security
Applications Conference (ACSAC). IEEE Computer
Society Press, December 2005.

[6] J. McDermott. Xenon: High-assurance Xen, 2007.
http://www.xen.org/files/xensummit_4/
XenSummitSpring07_McDermott.pdf.

[7] J. McDermott and L. Freitas. A formal security policy
for Xenon. In Workshop on Formal Methods in
Software Engineering (FMSE). Association for
Computing Machinery, October 2008. Held in
conjunction with the ACM Conference on Computer
and Communications Security.

[8] J. McDermott, B. Montrose, and M. Kang. Separation
virtual machine monitors. In Annual Computer
Security Applications Conference (ACSAC), Orlando,
FL, December 2012. ACM Press. To Appear.

[9] J. P. McDermott and M. Kang. An open source high
robustness VMM. In 22nd Annual Computer Security
Applications Conference (ACSAC ’06). IEEE,
December 2006.

[10] J. Rutkowska. Owning xen in vegas! blog entry, July
2008. http://theinvisiblethings.blogspot.com/
2008/07/0wning-xen-in-vegas.html Slides available
at http://invisiblethingslab.com/bh08/.

[11] R. Sailer, T. Jaeger, E. Valdez, R. Céaceres, R. Perez,
S. Berger, J. L. Griffin, and L. van Doorn. Building a
MAC-based security architecture for the Xen
opensource hypervisor. In Annual Computer Security
Applications Conference (ACSAC). IEEE Computer
Society Press, December 2005.

[12] H. Su. Installing Solaris 10 virtual machine with
Oracle VM manager. Available at
http://blogs.oracle.com/virtualization/2010/
02/installing_solaris_10_virtual.html.

[13] Unified Cross Domain Management Office. Cross
domain community roadmap, June 2008. Available at
http://www.ucdmo.gov/
CDCommunityRoadmapExecOverviewv7.pdf.

[14] Unified Cross Domain Management Office. About the
UCDMO, June 2011. Available at
http://www.ucdmo.gov/about.html.

[15] Unified Cross Domain Management Office. Baseline
version 3.9.0, July 2011. Available at
http://www.ucdmo.gov/Baseline.v.3.9.0.pdf.

[16] J. Williams. Xen Windows GPLPV drivers. Available
at http://wherethebitsroam.com/content/gplpv.

[17] R. Wojtczuk and J. Rutkowska. Following the white
rabbit: Software attacks against Intel VT-d, May
2011. http:
//www.invisiblethingslab.com/resources/2011/
Software\%20Attacks\%200n\%20Intel\%20VT-d.pdf.

[18] Xen.org. Xen PV-on-HVM drivers for Linux HVM
guests. Available at http://wiki.xensource.com/
xenwiki/XenLinuxPVonHVMdrivers.

[19] X. Zhang, S. McIntosh, P. Rohatgi, and J. Griffin.
XenSocket: a high-throughput interdomain transport
for virtual machines. In Proc. of the
ACM/IFIP/USENIX 2007 International Conference
on Middleware, pages 184-203, 2007.

