
Available online at www.sciencedirect.com

ScienceDirect

AKCE International Journal of Graphs and Combinatorics 12 (2015) 204–215
www.elsevier.com/locate/akcej

Even harmonious labelings of disjoint graphs with a small
component

Joseph A. Gallian∗, Danielle Stewart

Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN 55812, United States

Received 28 May 2015; accepted 7 October 2015
Available online 4 December 2015

Abstract

A graph G with q edges is said to be harmonious if there is an injection f from the vertices of G to the group of integers modulo
q such that when each edge xy is assigned the label f (x) + f (y) (mod q), the resulting edge labels are distinct. If G is a tree,
exactly one label may be used on two vertices. Over the years, many variations of harmonious labelings have been introduced.

We study a variant of harmonious labeling. A function f is said to be a properly even harmonious labeling of a graph G with
q edges if f is an injection from the vertices of G to the integers from 0 to 2(q − 1) and the induced function f ∗ from the edges
of G to 0, 2, . . . , 2(q − 1) defined by f ∗(xy) = f (x) + f (y) (mod 2q) is bijective. We investigate the existence of properly even
harmonious labelings of families of disconnected graphs with one of C3, C4, K4 or W4 as a component.
c⃝ 2015 Kalasalingam University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A vertex labeling of a graph G is a mapping f from the vertices of G to a set of elements, often integers. Each
edge xy has a label that depends on the vertices x and y and their labels f (x) and f (y). Graph labeling methods
began with Rosa [1] in 1967. In 1980, Graham and Sloane [2] introduced harmonious labelings in connection with
error-correcting codes and channel assignment problems. There have been three published papers on even harmonious
graph labelings by Sarasija and Binthiya [3,4] and Gallian and Schoenhard [5]. In [6] we focus on the existence of
properly even harmonious labelings for the disjoint union of cycles and stars, unions of cycles with paths, unions of
squares of paths, and unions of paths. In this paper we investigate the existence of properly even harmonious labelings
of families of disconnected graphs with one of C3, C4, K4 or W4 as a component.

An extensive survey of graph labeling methods is available online [7]. We follow the notation in [7].
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2. Preliminaries

Definition 2.1. A graph G with q edges is said to be harmonious if there exists an injection f from the vertices of
G to the group of integers modulo q such that when each edge xy is assigned the label f (x) + f (y) (mod q), the
resulting edge labels are distinct. When G is a tree, exactly one edge label may be used on two vertices.

Definition 2.2. A function f is said to be an even harmonious labeling of a graph G with q edges if f is an
injection from the vertices of G to the integers from 0 to 2q and the induced function f ∗ from the edges of G to
0, 2, . . . , 2(q − 1) defined by f ∗(xy) = f (x) + f (y) (mod 2q) is bijective.

Because 0 and 2q are equal modulo 2q , Gallian and Schoenhard [5] introduced the following more desirable form
of even harmonious labelings.

Definition 2.3. An even harmonious labeling of a graph G with q edges is said to be a properly even harmonious
labeling if the vertex labels belong to {0, 2, . . . , 2q − 2}.

Definition 2.4. A graph that has a (properly) even harmonious labeling is called (properly) even harmonious graph.

Bass [8] has observed that for connected graphs, a harmonious labeling of a graph with q edges yields an even
harmonious labeling by multiplying each vertex label by 2 and adding the vertex labels modulo 2q. Gallian and
Schoenhard [5] showed that for any connected even harmonious labeling, we may assume the vertex labels are even.
Therefore, for a connected graph we can obtain a harmonious labeling from a properly even harmonious labeling
by dividing each vertex label by 2 and adding the vertex labels modulo q. Consequently, we focus our attention on
disconnected graphs.

3. Disconnected graphs

Definition 3.1. We define an odd hairy cycle as an odd cycle with one or more pendant edges attached.

Definition 3.2. We call a graph G pseudo-bipartite if G is not bipartite but the removal of one edge results in a
bipartite graph.

We will use Cm
+n to denote an m-cycle with n pendant edges attached.

To describe our labeling of Cm
+n for m odd, we draw the m-cycle in a zigzag fashion as shown in Fig. 1. The

pendant edges incident to the cycle vertices are drawn so that the endpoints are on the side opposite the cycle vertices.
Ignoring the edge that joins the first and last vertices of the odd cycle, we have a bipartite graph with one partite set on
the left (L) and the other on the right (R). We call this a pseudo-bipartite graph (Definition 3.2). Denote the number
of edges in L as l and the number of edges in R as r .

It is convenient to denote an odd hairy cycle by specifying the sizes l and r of pseudo-bipartite sets L and R as
Cm

+n(l, r).

Theorem 3.1. C4 ∪ Cm
+n(l, r) is properly even harmonious.

Proof. The modulus is 2m + 2n + 8.
Arrange the pseudo-bipartite sets as described above and shown in Fig. 1. Label L of Cm

+n(l, r) as 0, 2, . . . , 2l−2.
Label R continuing with 2l, 2l + 2, . . . , 2l + 2r − 2. The corresponding edge labels are 2l − 2, 2l, . . . , 4l + 2r − 4.

Label the vertices of C4 consecutively as 2m + 2n + 7, 4l + 2r − 1, 3, 4l + 2r + 1. The corresponding edge labels
are 4l + 2r − 2, 4l + 2r + 2, 4l + 2r + 4, 4l + 2r . See Fig. 1.

To verify there are no duplicate vertex labels in the C4 component, notice that 2m + 2n + 7 < 2m + 2n + 11 and
4l + 2r − 1 < 4l + 2r + 1. Since 4l + 2r = 4 implies that l = 1 and r = 0, and likewise 4l + 2r = 2 implies that
l = 0 and r = 1, we know there is no duplication of labels on the C4 component. For the Cm

+n(l, r) component,
notice that the vertex labels are all increasing with common difference of 2. The largest gap between vertex labels is
less than the modulus so there is no wrap around. �
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Fig. 1. C4 ∪ C+8
9 (8, 9), (mod 42), Theorem 3.1.

Fig. 2. K4 ∪ C+6
9 (8, 7), (mod 42), l ≡ 0 (mod 4), Theorem 3.2.

Using the same pseudo-bipartite arrangement for the odd hairy cycle as described previously (Definition 3.2), we can
find a properly even harmonious labeling for the union of K4 or W4 = C4 + K1 with an odd hairy cycle.

Theorem 3.2. K4 ∪ C+n
m (l, r) is properly even harmonious if l ≡ 0, 2 (mod 4).

Proof. The modulus is 2m + 2n + 12.
Arrange C+n

m (l, r) into a pseudo-bipartite set as described for Theorem 3.1.

Step 1: Label the vertices of K4 with 2m + 2n + 4, 2m + 2n + 8, 0, 2m + 2n + 10 in this order as shown in Fig. 2.
The edge labels are 2m + 2n, 2m + 2n + 2, . . . , 2m + 2n + 10.

Step 2: Label the vertices of L with −l +1, −l +3, . . . , l −1. Label the vertices of R with l +1, l +3, . . . , l +2r −1.
The corresponding edge labels are 0, 2, . . . , 2l + 2r − 2 = 2m + 2n − 2.
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Fig. 3. W4 ∪ C+6
9 (8, 7), (mod 46), l ≡ 0 (mod 4), Theorem 3.3.

To verify that there is no duplication of vertex labels in the K4 component, notice that 2m+2n+4 < 2m+2n+8 <

2m + 2n + 10 < 2m + 2n + 12. For the C+n
m component, the labels are increasing with common difference 2. The

largest gap between vertex labels is less than the modulus so there is no wrap around. �

Theorem 3.3. W4 ∪ C+n
m (l, r) is properly even harmonious for m > 2 odd if l ≡ 0 (mod 2).

Proof. The modulus is 2m + 2n + 16. Arrange C+n
m (l, r) into a pseudo-bipartite set.

Step 1: Label the interior vertex of W4 with 2m + 2n + 10 and the perimeter vertices with 2m + 2n + 6, 2m + 2n +

12, 0, 2m + 2n + 14 in this order. The corresponding edge labels are 2m + 2n, 2m + 2n + 2, . . . , 2m + 2n + 14.

Step 2: Label the vertices of L with −l + 1, −l + 3, . . . , l − 1. Label the vertices of R with l + 1, l + 3, . . . , l + 2r − 1
as shown in Fig. 3. The corresponding edge labels are 0, 2, . . . , 2l + 2r − 2 = 2m + 2n − 2.

To show there is no duplication of vertex labels in the W4 component, notice that 2m + 2n + 6 < 2m + 2n + 10 <

2m + 2n + 12 < 2m + 2n + 14 < 2m + 2n + 16. For the C+n
m component, the labels are increasing with common

difference 2. Since the largest gap between vertex labels is less than the modulus there is no wrap around. �

Theorem 3.4. C4 ∪ (Pn + K2) is properly even harmonious for n > 1.

Proof. The modulus is 6n + 6. We do the cases n = 2, 3, 4, 5 ad hoc.

• Case 1: n = 2, the modulus is 18

Step 1: Label the vertices of P2 with 1, 3 and the vertices of degree n with 5, 9. The edge labels are 4, 6, . . . , 12.

Step 2: Label the vertices of C4 with 16, 0, 14, 4 in this order. The corresponding edge labels are 14, 16, 0, 2.
• Case 2: n = 3, the modulus is 24

Step 1: Label the vertices of P3 with 1, 5, 3 in this order. Label the vertices of degree n with 9, 15. The edge labels
on P3 are 6, 8 and the remaining edges are 10, 12, . . . , 20.

Step 2: Label the vertices of C4 with 20, 2, 0, 4 in order. The edge labels are 22, 2, 4, 0.
• Case 3: n = 4, the modulus is 30

Step 1: Label the vertices of P4 with 1, 5, 3, 7 and the vertices of degree n with 11, 19. The edge labels are
6, 8, . . . , 26.

Step 2: Label the vertices of C4 with 0, 2, 26, 4 in order. The corresponding edge labels are 28, 0, 2, 4.
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Fig. 4. C4 ∪ (P6 + K2), (mod 42), Theorem 3.4.

• Case 4: n = 5, the modulus is 36

Step 1: Label the vertices of P5 with 1, 7, 3, 9, 5 in this order. Label the vertices of degree n with 15, 25. The edge
labels on P5 are 8, 10, 12, 14 and the remaining edge labels are 16, 18, . . . , 34.

Step 2: Label the vertices of C4 with 0, 2, 34, 6 in order. The corresponding edge labels are 0, 2, 4, 6.
• Case 5: n is even, n ≥ 6

Step 1: Label Pn starting with the first vertex with 1, 3, . . . , n − 1, skipping a vertex each time. Wrap around
and label remaining vertices with n + 1, n + 3, . . . , 2n − 1. Label the vertices of degree n with 3n − 1 and
5n − 1. The edge labels corresponding to the path are n + 2, n + 4, . . . , 3n − 2; the remaining edge labels are
3n, 4n, 3n + 2, 4n + 2, . . . , 4n − 2, 5n − 2 and 5n, 6n, 5n + 2, 6n + 2, . . . , 6n − 2, 7n − 2 = n − 8.

Step 2: Label C4 as 0, n−4, 6n+4, n in order. The corresponding edge labels are n−4, 7n = n−6, 7n+4 = n−2, n
as shown in Fig. 4.

To show there is no duplication in vertex labels, since 2n − 1 < 3n − 1 < 5n − 1, there is no duplication in the
(Pn + K2) component. In C4, we need n − 4 ≠ 6n + 4. This simplifies to n ≠ 2. Therefore there is no duplication
in vertex labels.

• Case 6: n is odd, n ≥ 7

Step 1: Label Pn starting with the first vertex as 1, 3, . . . , n skipping a vertex each time. Wrap around and
label remaining vertices as n + 2, n + 4, . . . , 2n − 1. Label the vertices of degree n as 3n and 5n. The
edge labels corresponding to the path will be n + 3, n + 5, . . . , 3n − 1 and the remaining edge labels are
3n + 1, 4n + 2, 3n + 3, 4n + 4, . . . , 5n − 1, 4n and 5n + 1, 6n + 2, 5n + 3, 6n + 4, . . . , 7n − 1, 6n.

Step 2: Label C4 with 6n+4, n−3, 2, n−1. The corresponding edge labels are 7n+1 = n−5, n−1, n+1, 7n+3 =

n − 3.
To show there is no duplication in vertex labels in the (Pn + K2) component, notice that 2n − 1 < 3n < 5n. To

verify that the vertex labels of C4 are distinct for n > 5 observe that 2 < n − 3 < n − 1 < 6n + 4 < 6n + 6. �

Theorem 3.5. K4 ∪ (Pn + Km) is properly even harmonious if n > 1.

Proof. The modulus is 2mn + 2n + 10.

• Case 1: n ≡ 0 (mod 4)

Start with the first vertex of Pn use 1, 3, 5, . . . , n skipping a vertex at each step and wrapping around.
Label the m vertices of Km with 3n − 1, 5n − 1, . . . , (2m + 1)n − 1. This gives the edge labels for

Pn + Km : n + 2, n + 4, . . . , (2m + 3)n − 2 = 2mn + 3n − 2 mod (2mn + 2n + 10).
Since these are increasing before reaching the modulus and less than n + 2 after they exceed the modulus there

is no duplication of edge labels.
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Fig. 5. K4 ∪ (P9 + K1), (mod 46), n ≡ 1 (mod 4), Theorem 3.5.

Label the vertices of K4 with x, x + 4, x + 8, x + 6 in order, where x = (2mn + 3n − 4)/2. This gives the edge
labels 2x + 4, 2x + 6, 2x + 8, 2x + 10, 2x + 12, 2x + 14 = 2mn + 3n + 10 mod (2mn + 2n + 10) = n, as desired.
Since n ≡ 0 (mod 4) implies that x is even the vertex labels of K4 cannot overlap with those used on Pn + Km .

• Case 2: n ≡ 1 (mod 4)

Label the vertices of Pn as in Case 1.
Label the m vertices of Km with 3n, 5n, . . . , (2m + 1)n. This gives the edge labels for Pn + Km : n +

3, . . . , (2m + 3)n − 1 = 2mn + 3n − 1 mod (2mn + 2n + 10).
As in Case 1 there is no duplication of vertex or edge labels of Pn + Km . Label the vertices of K4 with

x, x + 4, x + 8, x + 6 in order, where x = (2mn + 3n − 3)/2 + mn + n + 5 = 2mn + 5n/2 + 7/2. See
Fig. 5.

This gives the edge labels 2x + 4, 2x + 6, 2x + 8, 2x + 10, 2x + 12, 2x + 14 = 2mn + 3n + 11 mod
(2mn + 2n + 10) = n + 1, as desired.

Since these labels are even there is no overlap with the labels for Pn + Km .
• Case 3: n ≡ 2 (mod 4)

This case is identical to Case 1 except that x = (2mn + 3n − 4)/2 + mn + n + 5 = 2mn + 5n/2 + 3. This
results in even labels for K4 but the same vertex labels as in Case 1 and shown in Fig. 6.

• Case 4: n ≡ 3 (mod 4)
– Subcase i: n = 3

The modulus is 6m + 16.
Label the vertices of P3 with 5, 1, 3 in order. Label the vertices of Km with 7, 13, . . . , 6m + 1 in order. This

gives the edge labels for P3 + Km : 4, 6, . . . , 6m + 6.
Label the vertices of K4 with x, x +4, x +8, x +6 in order, where x = 6m+10 when m is odd and x = 3m+2

when m is even. Modulo 6m + 16, this gives the edge labels 6m + 8, . . . , 6m + 14, 0, 2, as desired.
– Subcase ii: n > 3

Label the vertices of Pn + Km as in Case 2.
This gives the edge labels for Pn + Km : n + 3, . . . , (2m + 3)n − 1 = 2mn + 3n − 1 mod (2mn + 2n + 10).

As in Case 1 there is no duplication of vertex or edge labels of Pn + Km .
Label the vertices of K4 with x, x + 4, x + 8, x + 6 in order, where x = (2mn + 3n − 3)/2. This gives the

edge labels 2x + 4, 2x + 6, 2x + 8, 2x + 10, 2x + 12, 2x + 14 = 2mn + 3n + 11 mod (2mn + 2n + 10) = n + 1,
as desired.
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Fig. 6. K4 ∪ (P6 + K2), (mod 46), n ≡ 2 (mod 4), Theorem 3.5.

Fig. 7. C3 ∪ (P5 + K1), (mod 24), n ≡ 1 (mod 4), Theorem 3.7.

To prove that these labels do not overlap with the labels for Pn + Km we need only check that none of these
four have the form tn. To do so first observe that for n > 3, the inequality x > (m + 1)n holds, and for n > 13
the inequality (m + 2)n > x + 8 holds. Thus the only possible overlap of the labels for K4 and Pn + Km can
occur only when (m + 2)n = (2mn + 3n − 3)/2 + k where k = 0, 4, 6, or 8 and n = 7 or 11. But this simplifies
to n = −3, 5, 9, or 13, none of which are 3 mod 4. �

The labeling algorithm in Theorem 3.5 also yields the following two results.

Theorem 3.6. W4 ∪ (Pn + Km) is properly even harmonious for n > 1.

Theorem 3.7. C3 ∪ (Pn + Km) and C5 ∪ (Pn + Km) are properly even harmonious for n > 1. (See Fig. 7.)

Theorem 3.8. W4 ∪ Pn is properly even harmonious if n > 1.

Proof. The modulus is 2n + 14.

• Case 1: n ≡ 0 (mod 4)

Step 1: Starting with the first vertex of Pn use 1, 3, 5, . . . , n skipping a vertex at each step and wrapping around.
This gives the edge labels for Pn : n + 2, n + 4, . . . , 3n − 2 mod (2n + 14). Since these are increasing before

reaching the modulus and less than n + 2 after they exceed the modulus there is no duplication of edge labels.

Step 2: Label the rim vertices of W4 with x, x + 6, x + 10, x + 8 in order and the center of W4 with x + 4 where
x = 3n/2 − 2.
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Fig. 8. W4 ∪ P9, (mod 32), n ≡ 1 (mod 4), Theorem 3.8.

Fig. 9. W4 ∪ P11, (mod 36), n ≡ 3 (mod 4), Theorem 3.8.

This gives the edge labels 2x + 4, 2x + 6, 2x + 8, 2x + 10, 2x + 12, 2x + 14, 2x + 16, 2x + 18 = 3n + 14 mod
(2n + 14) = n, as desired.

Since n ≡ 0 mod 4 implies that x is even the vertex labels of W4 cannot overlap with those used on Pn .
• Case 2: n ≡ 1 (mod 4)

Step 1: Starting with the first vertex of Pn use 1, 3, 5, . . . , n skipping a vertex at each step and wrapping around.
This gives the edge labels for Pn : n + 3, n + 5, . . . , 3n − 1 mod (2n + 14).

Since these are increasing before reaching the modulus and less than n + 3 after they exceed the modulus there
is no duplication of edge labels.

Step 2: Label the rim vertices of W4 with x, x + 6, x + 10, x + 8 in order and the center of W4 with x + 4 where
x = 3n/2 − 3/2.

This gives the edge labels 2x + 4, 2x + 6, 2x + 8, 2x + 10, 2x + 12, 2x + 14, 2x + 16, 2x + 18 = 3n + 15 mod
(2n + 14) = n + 1, as desired.

Since n ≡ 1 mod 4 implies that x is even the vertex labels of W4 cannot overlap with those used on Pn . See
Fig. 8.

• Case 3: n ≡ 2 (mod 4)

Step 1: Label Pn as described in Case 1.

Step 2: Label W4 as described in Case 1 except x = 5n/2 + 5.
This gives the edge labels 2x + 4, 2x + 6, 2x + 8, 2x + 10, 2x + 12, 2x + 14, 2x + 16, 2x + 18 = 5n + 28 mod

(2n + 14) = n as desired.
Since n ≡ 0 mod 4 implies that x is even the vertex labels of W4 cannot overlap with those used on Pn .

• Case 4: n ≡ 3 (mod 4)

Step 1: Label the first vertex of Pn with 3n − 4. Starting with the second vertex of Pn use 1, 3, 5, . . . , 2n − 3
skipping a vertex at each step, wrapping around to the third vertex, and continuing to skip a vertex at each step.
See Fig. 9.
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Fig. 10. K4 ∪ P13, (mod 36), n ≡ 1 (mod 4), Theorem 3.9.

This gives the edge labels for Pn : 3n − 3, n + 1, n + 3, . . . , 3n − 5 mod (2n + 14). Since these are increasing
before reaching the modulus and less than n + 2 after they exceed the modulus there is no duplication of edge
labels.

Step 2: Label the rim vertices of W4 with x, x + 6, x + 10, x + 8 in order and the center of W4 with x + 4 where
x = 3n/2 − 5/2.

This gives the edge labels 2x + 4, 2x + 6, 2x + 8, 2x + 10, 2x + 12, 2x + 14, 2x + 16, 2x + 18 = 3n + 13 mod
(2n + 14) = n − 1 as desired.

Since n ≡ 3 (mod 4), this implies that x is even. Thus the vertex labels of W4 cannot overlap with those used
on Pn . �

Theorem 3.9. K4 ∪ Pn is properly even harmonious if n > 1.

Proof. The modulus is 2n + 10.

• Case 1: n ≡ 0 (mod 4)

Starting with the first vertex of Pn use 1, 3, 5, . . . , 2n − 1 skipping a vertex at each step and wrapping around.
This gives the edge labels of n + 2, n + 4, . . . , 3n − 2 for Pn . Since these are increasing before reaching the

modulus and less than n + 2 after they are equal or exceed the modulus there is no duplication of edge labels.
Label the vertices of K4 with x, x + 4, x + 8, x + 6 in order, where x = (3n − 4)/2. This gives the edge labels

2x + 4 = 3n, 3n + 2, 3n + 4, 3n + 6, 3n + 8, 3n + 10, which is n mod (2n + 10), as desired.
Because n ≡ 0 (mod 4) the vertex labels of K4 are even and therefore cannot overlap with the odd labels of Pn .

• Case 2: n ≡ 1 (mod 4)

Starting with the first vertex of Pn but ignoring the last vertex use 1, 3, 5, . . . , 2n − 3 skipping a vertex at
each step and wrapping around. Label the last vertex of Pn with n + 12 (see Fig. 10). This gives the edge labels
n + 1, . . . , 3n − 5, n − 1 for Pn .

Label the vertices of K4 with x, x + 4, x + 8, x + 6 in order, where x = (3n − 7)/2.
This gives the K4 edge labels 2x + 4 = 3n − 3, 3n − 1, 3n + 1, 3n + 3, 3n + 5, 3n + 7, which is n − 3 mod

(2n + 10), as desired.
Because n ≡ 1 (mod 4) the vertex labels of K4 are even and therefore cannot overlap with the odd labels of Pn .

• Case 3: n ≡ 2 (mod 4)

Write n = 4k + 2. Label Pn as in Case 1 to obtain the edge labels of Pn : n + 2, n + 4, . . . , 3n − 2.
Label the vertices of K4 with x, x + 4, x + 8, x + 6 in order, where x = 10k + 8.
Then 2x + 4 = 20k + 20 = 5n + 10 = 3n mod (2n + 10). So the edge labels of K4 are: 3n, 3n + 2, 3n +

4, 3n + 6, 3n + 8, 3n + 10, which is n mod 2n + 10, as desired.
Because x is even the vertex labels of K4 are even and therefore cannot overlap with the odd labels of Pn .

• Case 4: n ≡ 3 (mod 4)

Label the first vertex of Pn with 3n − 4. Starting with the second vertex of Pn use 1, 3, 5, . . . , 2n − 3 skipping
a vertex at each step and wrapping around (see Fig. 11).

This gives the edge labels of Pn : 3n − 3, n + 1, n + 3, . . . , 3n − 5 mod (2n + 10).
Label the vertices of K4 with x, x + 4, x + 8, x + 6 in order, where x = (3n − 5)/2.
This gives the edge labels 2x +4 = 3n −1, 3n +1, 3n +3, 3n +5, 3n +7, 3n +9, which is n −1 (mod 2n +10),

as desired.
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Fig. 11. K4 ∪ P7, (mod 24), n ≡ 3 (mod 4), Theorem 3.9.

Fig. 12. P2
7 ∪ P2

6 ∪ P2
5 ∪ P2

3 , (mod 60), Theorem 3.10.

Because n ≡ 3 (mod 4) the vertex labels of K4 are even and therefore cannot overlap with the odd labels of
Pn . �

Theorem 3.10. P2
m1

∪ P2
m2

∪ · · · ∪ P2
mn

is strongly even harmonious for m > 2, n ≥ 1.

Proof. The modulus is 4(m1 + m2 + · · · + mn) − 6n.
Label the vertices of P2

m1
with 0, 2, . . . , 2m1 − 2.

Label the vertices of P2
m2

with 2m1 − 3, 2m1 − 1, . . . , 2m1 + 2m2 − 5.
Label the vertices of P2

m3
with 2m1 + 2m2 − 6, 2m1 + 2m2 − 4, . . . , 2m1 + 2m2 + 2m3 − 8.

Continue in this fashion and label the vertices of P2
mn

with 2(m1 + m2 + · · ·+ mn−1)− 3n + 3, 2(m1 + m2 + · · ·+

mn−1) − 3n + 5, . . . , 2(m1 + m2 + · · · + mn) − 3n + 1 as shown in Fig. 12.
The corresponding edge labels are 2, 4, . . . , 4(m1 + m2 + · · · + mn) − 6n = 0. �

Theorem 3.10 can easily be extended to the union of K4 or W4 and the squares of paths. Notice in labeling K4, we pick
up the largest edge labels. This enables us to label P2

m1
such that the first edge label is zero and increasing sequentially

from there.

Theorem 3.11. K4 ∪ P2
m1

∪ P2
m2

∪ · · · ∪ P2
mn

is properly even harmonious for mi > 2, n ≥ 1.

Proof. The modulus is 4(m1 + m2 + · · · + mn) − 6n + 12.
Step 1: Label the vertices of K4 with 4(m1 +m2 +· · ·+mn)−6n +6, 4(m1 +m2 +· · ·+mn)−6n +8, 0, 4(m1 +

m2 + · · · + mn) − 6n + 10. The edge labels are 4(m1 + m2 + · · · + mn) − 6n, 4(m1 + m2 + · · · + mn) − 6n +

2, . . . , 4(m1 + m2 + · · · + mn) − 6n + 10.
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Fig. 13. K4 ∪ P2
7 ∪ P2

6 ∪ P2
5 ∪ P2

3 , (mod 72), Theorem 3.11.

Fig. 14. W4 ∪ P2
5 ∪ P2

5 ∪ P2
3 , (mod 50), Theorem 3.12.

Step 2: Label the vertices of P2
m1

with −1 = 4(m1 + m2 + · · · + mn) − 6n + 11, 1, 3, . . . , 2m1 − 3.
Label the vertices of P2

m2
with 2m1 − 4, 2m1 − 2, . . . , 2m1 + 2m2 − 6.

Label the vertices of P2
m3

with 2m1 + 2m2 − 7, 2m1 + 2m2 − 5, . . . , 2m1 + 2m2 + 2m3 − 9.
Continue in this fashion and label the vertices of P2

mn
with 2(m1 + m2 + · · ·+ mn−1)− 3n + 2, 2(m1 + m2 + · · ·+

mn−1) − 3n + 4, . . . , 2(m1 + m2 + · · · + mn) − 3n. See Fig. 13.
The corresponding edge labels are 0, 2, . . . , 4(m1 + m2 + · · · + mn) − 6n − 2. �

Theorem 3.12. W4 ∪ P2
m1

∪ P2
m2

∪ · · · ∪ P2
mn

is properly even harmonious for mi > 2, n ≥ 1.

Proof. The modulus is 4(m1 + m2 + · · · + mn) − 6n + 16.
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Step 1: Label the interior vertex of W4 with 4(m1 + m2 + · · · + mn) − 6n + 10 and the perimeter vertices with
4(m1 + m2 + · · · + mn) − 6n + 6, 4(m1 + m2 + · · · + mn) − 6n + 12, 0, 4(m1 + m2 + · · · + mn) − 6n + 14. The
corresponding edge labels are the even integers from 4(m1 +m2 +· · ·+mn)−6n to 4(m1 +m2 +· · ·+mn)−6n +14.

Step 2: Label the vertices of P2
m1

with −1 = 4(m1 + m2 + · · · + mn) − 6n + 15, 1, 3, . . . , 2m1 − 3.
Label the vertices of P2

m2
with 2m1 − 4, 2m1 − 2, . . . , 2m1 + 2m2 − 6.

Label the vertices of P2
m3

with 2m1 + 2m2 − 7, 2m1 + 2m2 − 5, . . . , 2m1 + 2m2 + 2m3 − 9.
Continue in this fashion and label the vertices of P2

mn
with 2(m1 + m2 + · · ·+ mn−1)− 3n + 2, 2(m1 + m2 + · · ·+

mn−1) − 3n + 4, . . . , 2(m1 + m2 + · · · + mn) − 3n. See Fig. 14.
The corresponding edge labels are 0, 2, . . . , 4(m1 + m2 + · · · + mn) − 6n − 2. �
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