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(57) ABSTRACT 

The present disclosure includes methods, devices, and sys 
tems for inferring system-level properties. One or more 
embodiments include generating a constraint model based on 
a system model having a number of components at different 
levels of abstraction and on a number of verified component 
properties. The constraint model can include a number of 
mission constraints modeling one or more mission require 
ments, a number of system constraints modeling one or more 
system-level properties, mid a number of component con 
straints modeling one or more component properties. One or 
more embodiments can include analyzing the constraint 
model with a constraint solver to determine whether one or 
more particular system-level properties can be inferred from 
the constraint model. 
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1. 

NFERRING SYSTEM-LEVEL PROPERTIES 

This application claims priority from U.S. Provisional 
Application Ser. No. 61/030,416, filed Feb. 21, 2008, the 
entire content of which is incorporated. herein by reference. 

BACKGROUND 

Manned, unmanned, and autonomous systems are growing 
increasingly complex and contain functions with life and 
safety critical implications. A challenge exists in inad 
equately testing and evaluating that the implemented systems 
will reliably meet their design requirements. This activity is 
sometimes called verification and validation (V&V) or test 
and evaluation (T&E). CurrentV&V and T&E techniques are 
Suited for many systems with limited autonomous capabili 
ties, but advanced autonomy and increased complexity makes 
testing enormously more difficult and in some instances these 
techniques are no longer Suitable. 

The V&V and T&E difficulties arise primarily from two 
characteristics. First, highly autonomous systems have a 
complex internal State. This can result in an exponential 
increase in the effort required for V&V or T&E, because the 
systems internal state becomes part of the space that testing 
must cover. Consequently, a highly autonomous system inter 
acting with a complex environment represents a challenge for 
V&V and T&E. Current approaches to achieve high confi 
dence in Such systems can be resource, labor, and time pro 
hibitive. 

Secondly, most highly autonomous systems are heteroge 
neous. They are typically constructed in multiple levels, com 
prising at least low-level control, an intermediate layer of 
reactive execution, and a high-level mission planning func 
tion. In particularly complex cases, there may be more than 
just three levels. Such heterogeneous systems may pose a 
special difficulty for testing, because the mapping between 
different functional layers can become part of the testing 
problem. It is no longer simply a question of how two or more 
system components interact. If these components are in dif 
ferent functional layers, the errors or information loss in. the 
mapping between representations should also be taken into 
acCOunt. 

Relevant prior art for V&V approaches can broadly be 
divided into work on: component V&V for smaller, homoge 
neous components of high-level control and autonomous sys 
tems; constraint-based models for planning, scheduling, and 
execution; and solving and optimization for hybrid constraint 
models. Component V&V methods fall broadly into the cat 
egories of testing, static checking applied at a source-code 
level to establish validity of initial values and parameters 
passed between routines, model-checking methods based 
either on various kinds of automata or Boolean satisfiability, 
and automated synthesis methods. Constraint-based models 
for planning, scheduling, and execution are used to specify 
and predict behavior, especially for applications of the size 
and complexity typically found in Systems related to space 
exploration. Solving and optimization of hybrid constraint 
models is pursued in several separate technical communities. 
Within Operations Research, Mixed Integer Linear and Non 
linear models are employed. Some researchers in this com 
munity have been investigating "mixed logical-linear meth 
ods that integrate mathematical programming with methods 
for satisfiability or constraint satisfaction more commonly 
used in Computer Science. The constraint satisfaction com 
munity within Computer Science is bridging this gap as well, 
working in the other direction. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
However, current V&V and/or T&E techniques have vari 

ous limitations such as a limited ability to efficiently and 
adequately infer system-level properties without exorbitant 
amounts of testing, 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates a functional model of a system for which 
system-level properties can be inferred in accordance with 
one or more embodiments of the present disclosure. 

FIG. 2 illustrates a flow diagram for inferring system-level 
properties in accordance with one or more embodiments of 
the present disclosure. 

FIGS. 3A, 3B, and 3C illustrate functional architectures for 
constraint solvers in accordance with one or more embodi 
ments of the present disclosure. 

FIG. 4 illustrates an environment associated with a system 
for which system-level properties can be inferred in accor 
dance with one or more embodiments of the present disclo 
SUC. 

FIG. 5 illustrates a portion of a mapping of system-level 
properties to components at different levels within a hierar 
chy for the system shown in FIG. 4. 

FIG. 6 illustrates a tool for inferring system-level proper 
ties in accordance with one or more embodiments of the 
present disclosure. 

DETAILED DESCRIPTION 

The present disclosure includes methods, devices, and sys 
tems for inferring system-level properties. One or more 
embodiments includes generating a constraint model based 
on a system model having a number of components at differ 
ent levels of abstraction and on a number of verified compo 
nent properties. The constraint model can include a number of 
mission constraints modeling one or more mission require 
ments, a number of system constraints modeling one or more 
system-level properties, and a number of component con 
straints modeling one or more component properties. One or 
more embodiments can include analyzing the constraint 
model with a constraint solver to determine whether one or 
more particular system-level properties can be inferred from 
the constraint model. 

In the following detailed description of the present disclo 
Sure, reference is made to the accompanying drawings that 
form a part hereof, and in which is shown by way of illustra 
tion how one or more embodiments of the disclosure may be 
practiced. These embodiments are described in sufficient 
detail to enable those of ordinary skill in the art to practice the 
embodiments of this disclosure, and it is to be understood that 
other embodiments may be utilized and that process, electri 
cal, and/or structural changes may be made without departing 
from the scope of the present disclosure. 
The figures herein follow a numbering convention in which 

the first digit or digits correspond to the drawing figure num 
ber and the remaining digits identify an element or compo 
nent in the drawing. Similar elements or components between 
different figures may be identified by the use of similar digits. 
For example, 110 may reference element “01 in FIG. 1, and 
a similar element may be referenced as 210 in FIG. 2. As will 
be appreciated, elements shown in the various embodiments 
herein can be added, exchanged, and/or eliminated so as to 
provide a number of additional embodiments of the present 
disclosure. In addition, as will be appreciated, the proportion 
and the relative scale of the elements provided in the figures 
are intended to illustrate the embodiments of the present 
invention, and should not be taken in a limiting sense. 
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Many previous verification and validation (V&V) tech 
niques provide component guarantees, but do not fully 
address the behavior of systems built from those components. 
However, human acceptance of autonomy typically hinges on 
trusting system-level behavior. Embodiments of the present 
innovation can provide the capability to Verify system prop 
erties for complex autonomous systems operating in rich and 
unpredictable environments, thus providing the trust argu 
ments for the acceptance of autonomous systems in. mission 
critical and/or safety-critical applications. 

Given component-level behavioral guarantees, embodi 
ments of the present disclosure can employ constraint-based 
models and reasoning to Support compositional reasoning 
across components at the same level of abstraction in a con 
trol hierarchy, and/or across the abstraction mappings defin 
ing the different layers in that hierarchy, by building a formal 
constraint model, expressed as mathematical relationships, 
within each level of abstraction and between different levels. 

For some complex systems, it may not be enough to have a 
fixed set of behaviors at the lower level that are then invoked 
in “safe' ways from the top. For example, in path-planning 
for an autonomous ground vehicle, higher-level knowledge of 
the terrain and/or the planned path can be used to set control 
parameters for how the path can be traversed. 

In some instances, however, the systems behavior has to 
be verified, for example, through testing or other means 
against a wide range of both mission goals and/or environ 
mental conditions. With embodiments of the present innova 
tion, the increase in testing that would otherwise be needed 
can be avoided by reasoning up and/or down the control 
system's layers of abstraction. Such embodiments can be 
used to establish that if the lower-level control system stays 
within certain bounds (e.g., on navigational accuracy), then 
the mission planner can generate safe plans to the goal posi 
tion. Conversely, we can establish that if the mission planner 
never commands the system to move closer than a specified. 
tolerance to hazards or obstacles, then the navigational uncer 
tainty of the control system only has to be tested to fall within 
a relaxed set of error bounds. 
One or more embodiments of the present innovation enable 

incremental testing of system-level properties and Support the 
maintenance and derivation and/or rederivation of guarantees 
on system behavior in response to changes in factors such as 
the environment, the platform being controlled, and/or the 
mission profile, among various other factors. 

FIG. 1 illustrates a functional model 100 of a system for 
which system-level properties can be inferred in accordance 
with one or more embodiments of the present disclosure. In 
the embodiment illustrated in FIG. 1, the model 100 is for an 
example heterogeneous air and/or spacecraft system. As 
such, the functional model 100 includes several functional 
layers that can be organized into an abstraction hierarchy as 
shown. The functional layers can represent different layers of 
abstraction associated with functional model 100. 

In the example illustrated in FIG. 1, the model 100 includes 
a low level layer that may be referred to as a device layer. In 
model 100 the device layer is shown as “PHYSICAL COM 
PONENTS’ and can include system hardware such as motors 
and sensors, among various other hardware components and/ 
or Subsystem. hardware. 

In the example illustrated in FIG. 1, the model 100 also 
includes a number of intermediate layers, which each include 
one or more system components and/or Subsystems associ 
ated therewith. One or more of the intermediate layers may be 
referred to as control layers. In the model 100, the first inter 
mediate layer is shown as “PID CONTROL and can include 
one or more components and/or Subsystems associated with 
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4 
proportional-integral-derivative (PID) control functions. The 
model 100 also includes an intermediate layer that includes 
POWER AND THERMAL MANAGEMENT as well as 
“ATTITUDE CONTROL SYSTEMS, an intermediate layer 
that includes “SEQUENCE EXECUTION ENGINE/RUNT 
IMEOPERATING SYSTEM,” and an intermediate layer that 
includes “PROPULSION “ATTITUDE CONTROL 
“NAVIGATION “COMMUNICATIONS: “COMMAND 
AND DATA HANDLING.,” “DATA STORAGE” “ELEC 
TRICAL POWER,” “THERMAL.” “RADIATION, 
“FAULT DETECTION, ISOLATION, RECOVERY” and 
“WEATHER EFFECTS. The model 100 also includes an 
intermediate layer that includes one or more components 
and/or subsystems associated with “MOVEMENT,” “DATA/ 
RES (resource) MANAGEMENT,” and “ENVIRONMEN 
TAL models. 

In the example illustrated in FIG. 1, the model 100 also 
includes a high level layer of abstraction that may be referred 
to as a planning layer. In model 100 the planning layer is 
shown as including "MISSION GOALS AND MANAGE 
MENT,” “DATA EXPLOITATION/SENSOR MANAGE 
MENT and “ACTUATOR MANAGEMENT/WEAPONS 
CONTROLS 

In the model 100, the lower layers support higher layers by 
providing services, and higher layers provide increased levels 
of functionality. Each of the layers of model 100 can include 
one or more system components and/or Subsystems. For 
instance, layers might be monolithic with this perspective, or 
each layer might have many components within it. Top level 
applications, such as mission management or data exploita 
tion, might rely on individual components beneath it or on the 
composition of the effects of all the subsystems. 
The embodiment illustrated in FIG. 1 includes notional 

information flows 114 (COMPOSITION) and 116 (AB 
STRACTION). The notional flows show, in a general way, 
that abstraction is moving information up a layered system 
view (e.g., system model 100) and composition is reasoning 
within a layer. Although not shown in FIG. 1, various embodi 
ments can also include a form of reasoning referred to as 
embedding. As described further below, embedding is a type 
of composition that includes relating the behavior of complex 
control systems to the changing demands of the environment. 

Embodiments of the present disclosure are not limited to 
the example illustrated in FIG. 1. For instance, although vari 
ous examples described herein focus on inferring system 
level properties of systems associated with unmanned or 
manned vehicle systems, various embodiments can be used to 
infer system-level properties of systems other than air and/or 
spacecraft systems, and/or such systems may be more or less 
complex than the system model 100 (e.g., the system model 
may include more or fewer layers of abstraction). 
As an example, embodiments of the present disclosure can 

be applied in other complex domains with Success, for 
example, deriving bounds on control settings for refinery 
processing units from upstream and/or downstream con 
straints on material properties, flow-rates, inventory levels, 
and/or the requirements of other processing units. Other sys 
tems which can be analyzed via one or more embodiments of 
the present disclosure include automated life Support systems 
and autonomous ground vehicles, among various other sys 
tems having physical components and/or Subsystems within a 
component hierarchy and having control functions capable of 
being represented at multiple layers of abstraction within a 
control hierarchy (e.g., the hierarchy of model 100 shown in 
FIG. 1). 

FIG. 2 illustrates a flow diagram for inferring system-level 
properties in accordance with one or more embodiments of 
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the present disclosure. One or more embodiments include 
maintaining a system model having a number of levels of 
abstraction (e.g., system model 100 shown in FIG. 1). In 
various embodiments, the layers of abstraction associated 
with a particular system model can include, a device layer, a 
control layer, an execution layer, and a planning layer. How 
ever, embodiments are not limited to system models having 
particular types or having particular numbers of layers of 
abstraction. 
The embodiment illustrated in FIG. 2 includes a system 

model 200 that includes a number of system-level properties 
202, a number of mission requirements 204, a component 
hierarchy 206, and a control hierarchy 208. The system model 
200 can be a model of a system Such as a manned or 
unmanned vehicle system (e.g., aircraft, spacecraft, water 
craft, ground vehicles, etc.), an automated life Support sys 
tem, or a refinery system, among various other systems 
capable of multiple modes of behavior and/or comprising 
multiple levels of abstraction. In one or more embodiments, 
the system model 200 can also include an environment model 
(e.g., a model of one or more environments within which a 
particular system may be interacting). 
As used herein, system level-properties (e.g., 202) refer to 

measureable or inferable properties of a particular system and 
are to be distinguished from component properties and Sub 
system properties, which refer to individual components or 
Subsystems that are a part of a larger system. In various 
embodiments, system-level properties (e.g., 202) can corre 
spond to system-level trust properties such as safety, liveness, 
criticality, real-time concerns, and/or performance, among 
various other trust properties that can be associated with a 
particular system. System-level properties may also be 
referred to herein as “system-level requirements.” As 
described further herein, various embodiments of the present 
disclosure can be used to Verify (e.g., prove) satisfaction of 
the system-level trust properties 202. 
As used herein, mission requirements (e.g., 204) can relate 

to desired system objectives, behaviors, and/or goals of a 
particular system's operation. The mission requirements may 
also be referred to herein as “mission properties.” Mission 
properties (e.g., 204) can be distinguished from system-level 
properties (e.g., 202) in that system-level properties refer to 
system states or system behaviors that may not be directly 
related to a particular mission goal or objective. As an 
example, a mission property may include a goal of “taking a 
picture of that particular rock.” while indirectly related sys 
tem-level properties may include “don’t tip over,” or “don’t 
cause damage to the habitat, among other properties indi 
rectly related to a particular mission property. Examples of 
system-level properties 202 and mission requirements 204 
are described further below in connection with FIGS. 4 and 5. 
The component hierarchy 206 of system model 200 illus 

trated in FIG. 2 can include models of one or more physical 
system components. Physical components can include 
motors, sensors, and/or actuators, among various other physi 
cal system components capable of being modeled in multiple 
levels. 
The control hierarchy 208 of system model 200 illustrated 

in FIG. 2 can include a hierarchy of control functions. The 
control functions of hierarchy 208 can include navigation 
control, arm control, rate control, sensor control, and power 
management, among various other control functions capable 
of being modeled at different levels of abstraction with con 
trol hierarchy 208. 

In various embodiments, and as described further below, 
the system-level properties (e.g., 202) associated with a sys 
tem model (e.g., 200) can be mapped to one or more of a 
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6 
number of physical system components associated with a 
component hierarchy (e.g., 206) and/or can be mapped to one 
or more control functions associated with a control hierarchy 
(e.g., 208) associated with the system model (e.g., 200). An 
example of Such mapping is described further below in con 
nection with FIG. 5. 
The embodiment illustrated in FIG. 2 includes a number of 

validation and verification techniques 210. The V&V tech 
niques 210 are grouped into a number of categories such as 
tools used off-line and during the development process (OFF 
LINE, DESIGN AND BUILD), on-line tools used for the 
active system (ON-LINE), and other techniques such as 
transferring the V&V load to other parts of the system (EX 
TERNAL TRANSFER), as well as manual methods 
(MANUAL METHODS). In the embodiment illustrated in 
FIG. 2, the tools used off-line and during the development 
process include command sequence checking, model consis 
tency checkers, automata-based behavioral compositional 
Verification, static analysis, automated theorem proving, and 
synthesis. The on-line tools used for the active system include 
command sequence checking, dynamic analysis, and run 
time monitoring. The techniques for transferring the V&V 
load to other parts of the system include techniques for exter 
nal transfer to requirements (e.g., system/mission require 
ments), environment, hardware, and mechanical compo 
nents. The manual methods can include peer review, process 
or documentation standards (e.g., DO-178B), manual theo 
rem proving, and intuitive model viewing tools. 

Embodiments are not limited to the example V&V tech 
niques 210. These techniques 210 and/or other existing or 
new V&V methods can provide evidence of component and/ 
or subsystem behaviors about which one or more embodi 
ments of the present disclosure will then reason. For instance, 
one or more of the V&V techniques 210 can be used to verify 
one or more component properties associated with physical 
components of the component hierarchy 206 and/or compo 
nent properties associated with functional components of the 
control hierarchy 208 of system model 200. 

In various embodiments, the functional components of a 
complex, highly-autonomous system interact with one 
another and/or with the environment in several different ways 
and can utilize different forms of reasoning, Such as compo 
sition (e.g., 114 shown in FIG.1), embedding, and abstraction 
(e.g., 116 shown in FIG. 1). Composition is reasoning where 
the collective behavior of a set of interacting modules (e.g., 
components, Subsystems, and/or processes) are at a single 
level of abstraction, given known or assumed behavioral char 
acteristics of the individual modules. For example, in an 
autonomous rendezvous and docking (ARD) system (e.g., 
in-flight refueling, satellite operations, etc.), error bounds on 
estimates of relative Velocity, attitude, and position can be 
derived from known properties of the available sensing hard 
ware, along with the computational properties of post-pro 
cessing and sensor fusion functions such as Kalman filters. 
Those error bounds can then be used to establish bounds on 
the allowable maximum control error in velocity, attitude, and 
position, for a given control algorithm and set of effectors 
(e.g., thrusters). This reasoning will also utilize knowing the 
physical configuration of the vehicle being controlled, as its 
mass, center of gravity, relative position of the thrusters, and 
moments of inertia will all affect the systems behavior for a 
given set of control decisions. 

Embedding, or relating the behavior of complex control 
systems to the changing demands of the environment, is a 
type of composition. In embedding, the range of conditions, 
for example temperature, pressure, wind speed, terrain slope, 
humidity, incident energy, moving obstacles, or other agents 



US 8, 195,599 B2 
7 

that may be encountered in the environment, become part of 
the composition being considered. 

Abstraction is reasoning where interactions between mod 
ules across different abstraction boundaries maps from one 
level of representation (e.g., pixels, or second-by-second 
route-traversal) to another (objects in the visual field, or way 
point navigation). In such embodiments, abstraction map 
pings should be validated with regard to a number of potential 
error Sources. For example, information loss addresses that 
the abstraction mapping may obscure relevant information 
utilized to prove properties at the higher level of abstraction. 
As an example, ground-based waypoint navigation 

between locations will typically include only an abstract 
model of the intervening terrain, perhaps as a set of costs 
(power, time) or uncertainty bounds (a difficult traversal may 
have a much less predictable duration). If this loss of preci 
sion is explicitly modeled, it can be incorporated into the 
system-level proof, for example, by making worst-case 
assumptions regarding the missing information. Another 
potential Source of erroris that the abstraction mapping can be 
outright incorrect, for example, errors in identifying an object 
in the visual field, or in determining the system’s current 
location. Providing a model of the nature and/or likelihood of 
these potential errors can enable system-level V&V and T&E 
reasoning about them. 

Reasoning across abstraction boundaries to Support sys 
tem-level V&V and T&E involves some capabilities that may 
not be obvious at first glance. In an interaction between mis 
sion planning and execution, for example, typically either the 
projections used in planning must be sufficiently accurate, or 
the execution system sufficiently capable of controlling to a 
specified trajectory, to avoid projected failures (e.g., “Execut 
ing a return to base at the requested airspeed will exhaust the 
available fuel before touchdown.”). In addition, abstraction 
mapping should permit propagation in both directions, so that 
information added at one level. Such as plan models and 
control accuracy in the previous examples, can constrain rea 
soning in other abstraction layers. 
As described further below, one or more embodiments of 

the present disclosure implement processes of composition, 
abstraction, and/or embedding, for example, by using con 
straint-based behavioral envelopes. Constraint-based behav 
ioral envelopes permit propagation of constraints (e.g., con 
straints 232-1, 232-2, 232-3, 232-4, and 232-5) from one 
function (hardware or software) backward or forward through 
a chain of related functions (e.g., hardware sensors, Software 
filtering, identification, decision, and/or limitations on hard 
ware actuators). Using constraint envelopes can result in a 
strongly least-commitment form of search for a solution or 
for a proof of infeasibility. 

In one or more embodiments and as shown in FIG. 2, a 
specification 220 can be used to represent a number of the 
components and/or Subsystems of a particular system being 
tested (e.g., a system for which inference of system-level 
properties is desired). In the example illustrated in FIG. 2, the 
specification 220 is represented using the Architecture Analy 
sis and Design Language (AADL). However, embodiments 
are not limited to a particular design language. As one of 
ordinary skill in the art will appreciate, AADL can represent 
Subsystems or components in the system being tested, 
attributes on those components (e.g., cost, weight, power, 
heat generated), and relationships between those components 
(e.g., inside, above, before). In the embodiment illustrated in 
FIG. 2, the specification 220 includes subsystem elements 
222-1 (Navigation Sensor Processing), 222-2 (Integrated 
Navigation), 222-3 (Guidance Processing), 222-4 (Telemetry 
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8 
Processing), and 222-5 (Attitude Processing) and their inter 
action with shared data 224 (e.g., shared memory). 

In one or more embodiments, one or more formal con 
straint models (e.g., 230) can be generated via a specification 
such as specification 220 based on a system model (e.g., 200) 
and a number of Verified component properties (e.g., a num 
ber of component properties 211 verified via one or more of 
the V&V techniques 210). As such, in this process, the system 
model 200 can be translated into a formal constraint model 
23O. 
The constraint model 230 can be built using manual tech 

niques and/or automated techniques (e.g., using AADL 
scheduling, reliability, latency analysis tools), for example. 
The constraint model 230 can permit reasoning about allowed 
relationships and can provide a framework for reasoning and 
Successive refinement. 

In the embodiment illustrated in FIG. 2, the formal con 
straint model 230 includes system constraints 232-1, mission 
constraints 232-2, component constraints 232-3, behavioral 
constraints 232-4, and static constraints 232-5. The system 
constraints 232-1 model system-level properties (e.g., sys 
tem-level properties 202). The mission constraints 232-2 
model mission requirements (e.g., mission requirements 
204). The component constraints 232-3 model component 
and/or Subsystem properties such as those associated with 
component hierarchy 206 and control hierarchy 208. Behav 
ioral constraints 232-4 can refer to time-varying component 
properties. As an example, the rate of change in temperature 
would be subject to a behavioral constraint. Static constraints 
232–5 can refer to properties of the system which are not 
directly related to dynamics and the passage of time. As an 
example, overall vehicle mass can be subject to a static con 
straint. Embodiments are not limited to the particular types of 
constraints within formal constraint model 230. 
As described further below, the constraint model 230 can 

be provided as input to a constraint solver (e.g., hybrid con 
straint solver 240). In various embodiments, the constraint 
solver 240 can be used to analyze the constraint model 230 to 
determine whether one or more particular system-level prop 
erties (e.g., 202) can be inferred from the constraint model 
230. In one or more embodiments, the constraint solver 240 
may not be a hybrid constraint solver (e.g., a. mixture of 
discrete and continuous values may not be involved in the 
analysis of the formal constraint model 230). 

Existing or new linear, nonlinear, or hybrid constraint solv 
ing systems, such as a simple finite-domain constraint propa 
gation and solving engine with an open-source MILP) engine 
(e.g., Bonsai-G) may be used to evaluate a constraint graph 
associated with one or more constraints of constraint model 
230 to Verify requirements satisfaction, validate consistency, 
identify system performance properties, as well as to identify 
inconsistencies (e.g., the system requires more memory than 
it has), and potential assumptions (e.g., a processor of speed 
X is required, but was not specified). Three example archi 
tectures for a hybrid constraint solving engine are shown in 
FIGS. 3A, 3B, and 3C. 

Invarious embodiments, and as illustrated in FIG.2, opera 
tion on the formal constraint model 230 by the hybrid con 
straint model 240 can provide outputs to both the original 
design process as well as to additional analysis indicating 
capabilities if additional separation properties 252 (e.g., spa 
tial partitioning and/or time partitioning, among other sepa 
ration properties) arc introduced into the system model 200. 

In the embodiment illustrated in FIG. 2, a separation kernel 
250 can receive outputs from the constraint solver 240 for 
separation property analysis. Although embodiments are not 
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so limited, the separation kernel 250 can be a. LynxSecure 
Separation Kernel, for example. 
As illustrated in FIG. 2, the hybrid constraint solver 240 

can determine system performance properties, validate 
requirements, identify inconsistencies, and can determine 
potential assumptions, which can then be output to the origi 
nal design process. In various embodiments, one or more 
results output from the hybrid constraint solver 240 can be 
used to modify the system model 200, which can allow for 
incremental refinement and evaluation as the cycle illustrated 
in FIG. 2 repeats. 

In various embodiments, behavioral envelopes apply 
directly to composition. By segmenting the problem into 
manageable pieces, the approach illustrated in FIG. 2 can 
provide a means to incrementally re-evaluate a system-level 
T&E proofand identify which constraints (e.g., 232-1, 232-2, 
232-3, 232-4, and 232-5) may no longer be satisfied. As 
previously discussed, embedding can be handled as a Subset 
of composition, using Such an approach. Embodiments of the 
present innovation can be used to Support reasoning about 
abstraction using behavioral envelopes that utilize, as addi 
tional information, a characterization of the abstraction map 
ping, including models of the nature and/or likelihood of 
potential errors as described above. 

In various embodiments, a constraint-based approach can 
have a number of advantages, including access to a broad 
variety of propagation and solution techniques, many provid 
ing formal guarantees of correctness and/or completeness. In 
addition, constraint-based models can make it much easier to 
Support both incremental modifications and bi-directional 
reasoning (i.e., to change which are the premises, which are 
the conclusions). Thus, using the same model we can reason 
either from component behaviors and properties to system 
level properties (providing proofs of correctness), or from 
system-level properties to constraints on component behavior 
(deriving sufficient sets of assumptions under Which a proof 
could be derived, and thus proposed component-level tests). 

In various embodiments, the constraint-based models can 
be integrated across multiple levels of abstraction and used to 
provide a system-level test generation function and/or testing 
plan. For instance, the example shown in FIG. 2 illustrates 
how embodiments of the present innovation exploit the bi 
directionality of a constraint-based behavioral envelope 
approach to develop an inverse form of inference, deriving 
sufficient conditions on component behavior to be able to 
prove that the system-level properties (e.g., system-level 
properties 202) and/or goals will be satisfied. 

Its support for incremental reasoning (for example, the 
ability to explore different designs efficiently) address life 
cycle concerns, while Support for reconfiguration (based on 
that same incremental reasoning) can, for example, be useful 
for dealing with dynamic environments, changes in mission 
profiles and/or requirements (e.g., mission requirements 
204), and/or hardware and Software changes to one or more 
system components (e.g., components associated with com 
ponent hierarchy 206 and/or control hierarchy 208). In vari 
ous embodiments, the approach to defining behavior as enve 
lopes of acceptable performance and integrating with 
standard tools enables testing of inherently non-deterministic 
systems, without attempting the impossible goal of testing all 
possible behaviors, by testing that the envelopes are not vio 
lated. 

In various embodiments, the hybrid constraint solver 240 
can analyze the formal constraint model 230 and can deter 
mine whether one or more Of the system constraints, mission 
constraints, component constraints, behavioral constraints, 
and/or static constraints arc satisfied, are not satisfied, or 
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10 
whether further information is needed to determine whether 
one or more of the constraints is or is not satisfied. In one or 
more embodiments, if the hybrid constraint solver 240 deter 
mines, based on the current constraint model 230, that a 
particular system-level property (e.g., 202) is infeasible, or 
that more information is needed in order to make a feasibility 
determination as to the particular system-level property, the 
hybrid constraint solver 240 can identify one or more addi 
tional constraints which, when added to the formal constraint 
model 230, can be used to determine whether the particular 
system-level property (e.g., 202) is satisfied (e.g., proved or 
disproved). 

FIGS. 3A, 3B, and 3C illustrate three example architec 
tures for a hybrid constraint solving engine (e.g., hybrid con 
straint solver 240 shown in FIG. 2) that can be used in accor 
dance with one or more embodiments of the present 
disclosure. As illustrated in FIGS. 3A, 3B, and 3C, the respec 
tive constraint solvers 301-0, 301-1, and 301-2 are hybrid 
constraint solvers. That is, each of the solvers 301-0, 301-1, 
and 301-2 can operate on both discrete and continuous con 
straints. 
As illustrated in FIGS. 3A, 3B, and 3C, each of the con 

straint solvers 301-0, 301-1, and 301-2 includes a respective 
discrete solver 360-0, 360-1, and 360-2. The solver 301-0 
includes a continuous feasibility oracle 362, the solver 301-1 
includes a continuous culprit identifier 364, and the solver 
301-2 includes a continuous solver 366. 

In the example illustrated in FIG. 3A, the discrete solver 
360-1 is capable of making discrete decisions, some of which 
lead to the addition of constraints in the continuous feasibility 
oracle 362. The continuous feasibility oracle 362 is config 
ured to return a decision (YES/NO) regarding whether the 
continuous model remains feasible in light of added con 
straints. 
The example illustrated in FIG. 3B is similar to the 

example illustrated in FIG. 3A. In the example illustrated in 
FIG. 3B, the continuous culprit identifier 364 can return a 
decision (YES/NO) regarding whether the continuous model 
remains feasible in light of added constraints from the dis 
crete solver 360-1. However, the continuous culprit identifier 
364 can also return a set of “culprits' if the current continuous 
model is infeasible. The term culprits can refer to added 
constraints causing the continuous model to be infeasible. 

In the example illustrated in FIG. 3C, the CCHIPS Frame 
work368 can be configured to control the interaction between 
the discrete solver 360-2 and the continuous solver 366. For 
instance, the framework 368 can direct when the solvers 
360-2 and 366 are active, and on which portions of the respec 
tive models the solvers 360-2 and 366 are active. 

Embodiments of the present disclosure are not limited to 
the examples illustrated in FIGS. 2 and 3. For instance, other 
constraint solving systems (e.g., MiniSAT, HyperSAT, UBC 
SAT, QBFLIB, CPlex, COIN-OR), modeling tools (e.g., 
UML, VHDL), separation kernels (e.g., DDC-I DEOS, 
GreenHills INTEGRITY, Xen, VMWare), and other compo 
nents can be used in various embodiments. Also, embodi 
ments may include a number of additional Supporting tools 
that can be used to model and characterize the physical and 
functional components, document and/or model the specifi 
cations, and/or analyze the constraints. 

FIG. 4 illustrates an environment 470 associated with a 
system 475 for which system-level properties can be inferred 
in accordance with one or more embodiments of the present 
disclosure. That is, the system 475 is an example system for 
which a system model having a number of components at 
different levels of abstraction (e.g., system. model 100 or 200 
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shown in FIGS. 1 and 2) can be generated and analyzed as 
described in connection with the analysis flow illustrated in 
FIG 2. 

In the embodiment illustrated in FIG. 4, the system 475 is 
a robotic. system (e.g., a robot 475). The robot 475 has several 
hardware and software components not shown in FIG. 4. A 
number of these components are shown in FIG. 5, which 
illustrates a portion of a mapping of system-level properties 
associated with the robot 475 to components of the robot that 
are modeled at different levels of abstraction within a hierar 
chy in accordance with one or more embodiments of the 
present disclosure. 

In the example described in connection with FIGS. 4 and 5. 
the robot was designed with four wheels, two powered with 
good traction, and two neutral with low friction. Each of the 
powered wheels, at the rear of the robot, was controlled by 
separate motors (e.g., left motor 585-2 and right motor 585-3 
shown in FIG. 5). Each motor worked independently. The 
front wheels acted as skids to allow the robot 475 to turn 
freely. An optical light sensor 585-6 was mounted on the rear 
of the robot 475 and was controlled using a motor mounted 
horizontally. The motor rotated the sensor a full 360 degrees, 
but there was no slip-joint or other rotational interface for the 
sensor control and data lines, so there was a bound on how far 
the sensor can be rotated in each direction. 
Two touch sensors (e.g., location sensor 585-6) were 

located on the front of the robot 475, positioned to align with 
a docking station (e.g., target 479). There was an arm 585-7 
mounted on the side of the robot 475. In this example embodi 
ment, successful contact between the arm 585-7 and the des 
ignated target 479 was the indication of a successful mission. 

In this example, a mission requirement of the robot was that 
the robot navigate from the starting region 474 to the target 
479 while maintaining the light sensor 585-6 located on a 
moving source 472. The robots mission in this scenario 
requires that the light sensor control 583–4 run in parallel to 
the navigation code 583-2. In this example embodiment, this 
parallel processing allows one to demonstrate how the two 
functions (e.g., light sensor control and navigation control) 
have interactions other than the need for the light sensor 
585-6 to reposition as the robot 475 turns corners or moves 
away from the light source 472. 
The mission design described in FIGS. 4 and 5 includes 

multiple execution phases, with constraints among them 
based on one phase setting the initial conditions (including 
the initial error) for the next phase. As shown in FIG. 5, the 
robot control system (e.g., arm control 583-5, light sensor 
control 583-4, navigation control 583-2) can be implemented 
hierarchically, thus Supporting a test of abstraction mapping. 

The robot 475 can simulate a rover with the mission 
requirements to dock at a fixed station and keep a sensor 
aligned to a light Source. The demonstration environment, for 
example the environment 470 shown in the embodiment illus 
trated in FIG. 4, includes a performance area with three 
obstacles 476-1,476-2, and 476-3 and a target area 479. The 
robot 475 can be required to navigate from the starting region 
474 at one end of the performance area, around the obstacles 
476-1, 476-2, and 476-3, and end at the target 479 which is 
located at the opposite end of the performance area. 

In the embodiment illustrated in FIGS. 4 and 5, the navi 
gation process was broken into three parts: the coarse navi 
gation phase, which moves the robot 475 from the start region 
474 to near the target (e.g., to region 478-1), the fine naviga 
tion phase (e.g., within region 478-2), which will align the 
robot 475 with the target 479, and the arm navigation phase 
which will drop the robots arm 585-7 to land on the target 
479 at a given position. In addition, through all of the navi 
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gation phases, the robot can be required (as a mission require 
ment) to maintain a sensor (e.g., light sensor 585-6) on a 
moving light Source 472, and align itself to a fixed observa 
tion target within a given time. 
The embodiment illustrated. in FIG. 5 shows a number of 

system-level properties 581-1 (SAFETY), 581-2 (LIVE 
NESS),581-3 (CRITICAL),581-4 (REAL TIME), and 581-5 
(PERFORMANCE) associated with the robot 475 shown in 
FIG. 4. FIG. 5 includes a portion of a mapping of the system 
level properties 581-1, 581-2, 581-3, 581-4, 581-5, to one or 
more appropriate functional and/or physical components at 
various levels of abstraction. 

In the embodiment illustrated in FIG. 5, the robot 475 was 
modeled in tour layers: device, control, execution, and plan 
ning. The device layer represented the actual hardware (e.g., 
physical components) that make up the robot 475. In this 
example, the hardware includes an accelerometer 585-0, a 
block 585-1 (e.g., processing hardware such as a CPU), a left 
motor 585-2 and a right motor 585-3 associated with rear 
wheels of the robot, a traction system 585-4, a location sensor 
585-5, a light sensor 585-6, an arm 585-7 and an arm motor 
586 used to move arm 585-7, a battery 585-8, and a commu 
nication port 585-9. As the reader will appreciate, the 
example shown in FIG. 5 can include more. or fewer physical 
components, in some embodiments. 

In the embodiment illustrated in FIG. 5, the control layer 
and the device layer were both components of the robot 475 
and its programming environment. High level control blocks 
such as Navigation 583-2 and Arm Control 583-5 use a com 
bination of sensor reading and conformant positioning (or 
other error mitigation techniques) to minimize the propaga 
tion of uncertainty and perform a series of lower level control 
blocks or device level operations. 

In the embodiment illustrated in FIG. 5, the execution layer 
represents a next level of detail. The coarse navigation mode, 
fine navigation mode, arm navigation mode, light sensor Scan 
mode, light sensor tracking mode and communications sen 
sor mode were the primary pieces at this level. Each of these 
modes can have one of several algorithmic Solutions assigned 
and each can have a set of requirements (such as acceptable 
error) that needs to be met independently. 
The planning layer was at the same high level of abstraction 

as a mission plan and can be directed primarily by the mission 
requirements. For example, one objective of the mission plan 
was for the robot 475 to reach the target 479 at a given position 
in the coordinate system within an acceptable error, time, and 
power usage. In one or more embodiments a tool for inferring 
system-level trust properties may be designed to calculate the 
probability of completion of the given mission plan within the 
given bounds, but for the example shown in FIG. 5, it calcu 
lates ranges for each of these parameters. 
As illustrated in the embodiment shown in FIG. 5, the 

functional components are arranged in a control hierarchy 
that includes a high level planning function 583-1, a naviga 
tion function 583-2, a drive operation. function 583-3, a light 
sensor control function 583-4, an arm control function 583-5, 
a power management function 583-6, and a communication 
function 583-7 located at a lower end of the control hierarchy. 
The system-level trust properties modeled for the example 

illustrated in FIGS. 4 and 5 were those of safety 581-1, live 
ness 581-2, criticality 581-3, real-time issues 581-4, and per 
formance 581-5 although more, less, or other system-level 
properties may be used in Some embodiments. Each of the 
modeled system-level trust properties includes a number of 
system requirements, which are mapped to one or more 
appropriate functional components. As noted above, FIG. 5 
shows a portion of this mapping. As illustrated in FIG. 5, the 



US 8, 195,599 B2 
13 

components affected are within different levels of the hierar 
chy, demonstrating that trust properties may not necessarily 
result in System requirements at only one level of abstraction 
within the robot control hierarchy. 

In the example illustrated in FIGS. 4 and 5, the combina 
tion of robot platform, Scenario, and system model can be 
sufficient to model details at multiple levels of the hierarchy, 
enabling the use of abstraction and composition to analyze 
system behavior. The propagation of error through the model 
can be an important aspect of this analysis. The physical 
components at the device level have a built in error based on 
the manufacturing and maintenance of that part. At the con 
trol level, sensor accuracy, internal error correction, and 
mechanical differences can be modeled. At the planning and 
execution level the algorithms themselves, the modes incor 
porated, and both active and passive mitigation plans affect 
the error values. And, finally, how the environment that the 
robot is performing in affects the results through the physical 
properties such as traction 585-4 was modeled. 

Tests on each motor (e.g.,585-2, 585-3, and 586) were run 
to determine its behavioral error under different circum 
stances. In one test, it was discovered that one of the motors 
performed at a significantly different speed from the others 
which affected the results when measured over time rather 
than by number of revolutions. Based upon these results, it 
was determined to discard that motor for future time-based 
tests. This was particularly important later as two motors were 
used in parallel to control the direction of the robot. The data 
collected from these experiments allowed the performance 
and error values for the devices in this example constraint 
model to be set. 
The light sensor software worked in two modes, scan and 

track. These modes were implemented to work at different 
frequencies. The scan mode worked on the 40 Hz bandwidth, 
completing a 360 degree turn and then moving to the brightest 
light source recorded on the scan. Once a source had been 
located the 20 Hz process took over by continuously tracking 
the light. This was done by comparing the current light value 
to the light values one degree beach side of it, the brightest of 
those became the new current value. If the tracking value 
changed by too large of an amount then a complete rescan was 
performed. 

In addition to the scan and track operations used for the 
light sensor 585-6 it appeared necessary to add an additional 
limitation based on the mechanical restraints of the robotkit. 
A cable connecting the light sensor 585-6 to the main robot 
brick would get wound up around the sensor each time the 
sensor turned 360 degrees. The cable was long enough to do 
this two or three times, but would then interfere with the 
turning rate. To nullify this issue a limit was placed on the 
number of degrees the sensor would trackinone direction and 
having it turn back 360 degrees the opposite way to unwind 
the cord. It was found, based on the experiments, that using 
400 degrees for the sensor tracking limit was sufficient for 
these tests. 

Also at the device level the mechanical error on the arm 
movement was identified. This constant was added to the 
constraint model (e.g. a formal constraint model Such as 230 
of FIG. 2). 
The next set of experiments for the example embodiment 

shown in FIGS. 4 and 5 looked at the control layer compo 
nents of the robot 475 and their behavior. These tests focused 
on how the different power levels and built in error correction 
methods affect performance and more importantly affect the 
error values. By using the motor values, the error of the robot 
could be predicted (e.g., by calculating how the errors from 
the two motors would combine due to timing offset for 
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14 
simplicity, a constant was used). By comparing these theo 
retical results to the actual robot results, the error correction 
done by the motor controller could be determined. A com 
parison of these results with both the controller using the 
built-in error correction and without can be made. In the 
example embodiment, the error correction actually gives 
worse results unless the power is on full or nearly full (greater 
than 68%). 

Based upon these results, it was determined that using a 
reset for low power operations may not provide the optimal 
result, while using it for high power movements could be 
beneficial. Hidden trade-offs like these that occurat an inter 
mediate level of abstraction can be important because it 
shows that changing control methods or behaviors can in 
Some instances result in significant and non obvious changes 
in the end results. 
The control level testing for the example embodiment illus 

trated in FIGS. 4 and 5 focused on the turning behaviors of the 
robot 475. There are two control methods for performing 
turns. The first is to turn the one wheel while keeping the other 
stationary and the second is to turn one wheel forward while 
the other turns backwards. The offset which occurs for the one 
wheel powered approach was ignored in this example. The 
tests showed that turning the robot could produce large errors. 
The predicted errors were based on performing a quarter 
rotation at varying power levels both with and without the 
reset. Without taking traction into account it was calculated 
that the robot 475 would turn 51.4 degrees with an expected 
turn error for the end angle of the robot between 0.6 degrees 
and 1.0 degrees. The actual errors were between 5 and 12 
degrees, with the largest errors coming for low powered turns. 
This analysis led to a beliefthat this was from the lightweight 
of the robot 475 and lack of traction at low power. To adjust 
the model of the robot system 475 to fit the recorded behavior, 
a turn error factor of 8.0 was added. 

Finally with the device and control layers of the robot 475 
modeled, the planning and execution layers were added and 
predictions about the robots behavior were made. For 
example, experimentation with changing the robots course 
navigation code to analyze different operating modes and 
algorithms was performed. Three navigation algorithms were 
used for these example experiments. The first, “direct rout 
ing code, simply weaved through the obstructions 476-1, 
476-2, and 476-3 to reach the end region 478-1, The formal 
constraint model was used. to calculate the error on each leg 
or turn of the route, which compounded for each additional 
leg and turn. 
To minimize the compound errors associated with the 

direct routing code, two additional algorithms, conformant 
positioning and limited turn routing, were implemented and 
added to the formal constraint model. Conformant position 
ing used a wall 477 (or known obstacle like a docking plat 
form) to minimize the error in one dimension. Once the robot 
475 found the wall it could reset the error in that dimension. 
In limited turn routing, the number of turns was minimized 
which reduced the number of legs and turns, but also 
increased the leg length and angles. 
The formal constraint model was used to compare these 

three planning solutions against changing requirements. For 
example, if a component requirement was added to restrict 
the turn radius (e.g., due to either mechanical design or a 
performance issue), the limited turn routing algorithm was 
not feasible and resulted in an increased error. If accurate 
navigation was required (e.g., low error), a conformant posi 
tioning algorithm was used coupled with sensors to detect 
when it reached the end region 478-1 and docked successfully 
at the target 479. 
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In some embodiments, the time/power usage for each of 
these navigation algorithms can be compared. In an example 
embodiment where this was utilized, the conformant course 
navigation was the worst in this category, and again the lim 
ited turn did well. However, if the test was concerned about 
the obstacles 476-1, 476-2, and 476-3, the limited turn 
approach gave the slimmest room for error, and in a number of 
test runs the obstacles were often hit, either damaging the 
robot 475 or an obstacle. 

In the example illustrated in FIGS. 4 and 5, alternate solu 
tions which modified some part of the robot, its environment, 
or its programming were collected. For example, the planning 
algorithms were modified by tightening the course navigation 
restrictions and shortening the time period required. Experi 
mentation was also performed by adding execution restric 
tions such as limiting the turning radius allowed for stability 
of the robot, or adding power constraints. Control level errors 
were introduced by not resetting internal compensation for 
drift and by modifying the power levels on the individual 
motors, and finally device level issues were introduced by 
Substituting sensors or motors with poorer performance than 
those originally used. 

Each of these experimental changes helped. Verify the abil 
ity of embodiments of the innovation to predict the robots 
behavior, recognize impact of the changes, and provide con 
fidence (e.g., trust) that the system-level properties could be 
modeled to the level needed. For example, after reconfiguring 
the robot 475 so as to alter its weight by adding an additional 
arm, the innovation (e.g., a tool implementing an analysis 
flow such as that described in FIG. 2) accurately determined 
that some system-level properties are no longer guaranteed 
and identified Sufficient changes to the current control system 
to re-establish those system-level properties. 

FIG. 6 illustrates a tool 690 for inferring system-level 
properties in accordance with one or more embodiments of 
the present disclosure. In the embodiment illustrated in FIG. 
6, the tool 690 is a computing device having a processor 692, 
a memory 694, and an input/output component 691. 
The input/output component 691 can receive data from a 

particular system for which one or more system-level prop 
erties are to be verified. The received data can be data received 
from one or more sensors of the particular system, for 
instance. In various embodiments, the received data (e.g. 
sensor data) can be used by one or more of the modules 696, 
697, and 698 to infer system-level. properties as described 
herein. 

In the embodiment illustrated in FIG. 6, the memory 694 
includes a number of modules (e.g., Verification Module 696, 
Modeling Module 697, and Inference Module 698). The 
modules 696, 697, and 698 can be executable instructions 
(e.g., program instructions) such as Software modules or 
applications executable by processor 692 to perform embodi 
ments of the present disclosure as described herein. 

For instance, in one or more embodiments, the verification 
module 696 can be configured. to verify a number of compo 
nent. properties corresponding to a number of components of 
a particular system (e.g., a particular system Such as those 
described herein for which system-level trust properties are to 
be inferred). Also, in various embodiments, the modeling 
module 697 can be configured to generate a constraint model 
(e.g., constraint model 230) based on a system model (e.g., 
system model 200) and a number of verified component prop 
erties (e.g., a number of components verified via V&V tech 
niques 210). In various embodiments, the inference module 
698 can be configured to analyze the constraint model (e.g., 
via a constraint solver such as 240 shown in FIG. 2) to deter 
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mine whether one or more particular system-level properties 
can be inferred from the constraint model (e.g., 230). 

In various embodiments, the inference module 698 is con 
figured to reason across different levels of abstraction to 
determine whether the one or more particular system-level 
properties can be interred from the constraint model. The 
inference module 698 can include forms of reasoning that 
includes composition, embedding, and abstraction, as 
described above. 

In one or more embodiments, the inference module 698 is 
configured to derive a number of system-level properties 
based on a number of performed component level tests and 
determine a number of additional component level tests suf 
ficient to provide verification of a particular set of system 
level properties (e.g., system-level properties 202 shown in 
FIG. 2). 

In various embodiments, the inference module 698 is con 
figured to determine, for each of the one or more particular 
system-level properties, whether the particular system-level 
property can be inferred from the constraint model and 
whether additional information is needed to determine 
whether the particular system-level property can be inferred 
from the constraint model. In one or more embodiments, the 
inference module 698 is configured to propose one or more 
additional constraints sufficient for a constraint solver (e.g., 
240) to determine whether the one or more particular system 
level properties can be inferred from the constraint model 
(e.g.,230) when it is determined that additional information is 
needed to determine whether the particular system-level 
property can be inferred from the constraint model. 

In various embodiments of the present disclosure, the tool 
690 can include a planning module configured to generate a 
number of trusted plans to a particular system goal. In various 
embodiments, the tool 691 can include a reconfiguration 
module configured to reconfigure the system in response to at 
least one of a change in at least one environment; a change in 
the system; a change in one or more of the mission require 
ments; and a change in one or more of the system-level 
properties. 

Various embodiments of the present disclosure can be per 
formed by software and/or firmware (i.e., computer execut 
able instructions), hardware, application modules, and the 
like, executable and/or resident on the tools, systems, and 
devices shown herein or otherwise. 

CONCLUSION 

The present disclosure includes methods, devices, and sys 
tems for inferring system-level properties. One or more 
embodiments include generating a constraint model based on 
a system model having a number of components at different 
levels of abstraction and on a number of verified component 
properties. The constraint model can include a number of 
mission constraints modeling one or more mission require 
ments, a number of system constraints modeling one or more 
system-level properties, and a number of component con 
straints modeling one or more component properties. One or 
more embodiments can include analyzing the constraint 
model with a constraint solver to determine whether one or 
more particular system-level properties can he inferred from 
the constraint model. 
One or more embodiments of the innovation provide a 

representation and reasoning system for system-level T&E 
and V&V of high-level autonomous control for complex sys 
tems operating in rich and unpredictable environments. Such 
embodiments can facilitate implementing and fielding trusted 
high-level autonomous control systems across a range of 
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relevant applications, including manned and unmanned air 
craft, spacecraft, rovers, and habitats. In some instances, 
implementing Such capabilities will simplify control system 
reconfiguration in response to changes in the environment, 
the system being controlled, and/or the mission profile. 

Embodiments of the present disclosure can, for example, 
provide: expressive models of behavioral characteristics and/ 
or constraints so that system requirements can be captured 
with greater fidelity; inference over those models that is suf 
ficient to provide proofs of (in)validity; one or more methods 
for deriving additional behavioral constraints on system com 
ponents that can serve as assumptions, the confirmation of 
which by testing would suffice to enable a proof of validity; 
one or more models of the complex system as a whole, includ 
ing, for example, multiple layers of software at all different 
levels of abstraction, and all ultimately interacting with a set 
of hardware sensors and effectors (in Such embodiments mis 
sion specifications and/or the characteristics of the operating 
environment should be included); and one or more methods to 
Support reasoning about a mixture of discrete and continuous 
values. 

Embodiments of the innovation include a representation 
and reasoning system that uses hybrid constraint-based 
behavioral envelopes to Support reasoning about the interac 
tion of component properties, such as how the composition of 
those properties can be used to verify properties of the system 
as a whole. In Such embodiments, if the desired system prop 
erties cannot be proved from the current set of component 
properties, the reasoning approach can be used as a tool to 
explore additional assumptions on component properties 
under which the desired system properties could be shown to 
hold. 

It will be understood that when an clement is referred to as 
being “on.” “connected to’ or “coupled with another ele 
ment, it can be directly on, connected, or coupled with the 
other element or intervening elements may be present. In 
contrast, when an element is referred to as being “directly on.” 
“directly connected to’ or “directly coupled with another 
element, there are no intervening elements or layers present. 
As used herein, the term “and/or includes any and all com 
binations of one or more of the associated listed items. 

It will be understood that, although the terms first, second, 
etc. may be used herein to describe various elements and that 
these elements should not be limited by these terms. These 
terms are only used to distinguish one element from another 
element. Thus, a first element could be termed a second 
element without departing from the teachings of the present 
disclosure. 

Although specific embodiments have been illustrated and 
described herein, those of ordinary skill in the art will appre 
ciate that an arrangement calculated to achieve the same 
results can be substituted for the specific embodiments 
shown. This disclosure is intended to cover adaptations or 
variations of one or more embodiments of the present disclo 
sure. It is to be understood that the above description has been 
made in an illustrative fashion, and not a restrictive one. 

Combination of the above embodiments, and other 
embodiments not specifically described herein will be appar 
ent to those of skill in the art upon reviewing the above 
description. The scope of the one or more embodiments of the 
present disclosure includes other applications in which the 
above structures and methods are used. Therefore, the scope 
of one or more embodiments of the present disclosure should 
be determined with reference to the appended claims, along 
with the full range of equivalents to which Such claims are 
entitled. 
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In the foregoing Detailed Description, Some features are 

grouped together in a single embodiment for the purpose of 
streamlining the disclosure. This method of disclosure is not 
to be interpreted as reflecting an intention that the disclosed 
embodiments of the present disclosure have to use more fea 
tures than are expressly recited in each claim. 

Rather, as the following claims reflect, inventive subject 
matter lies in less than all features of a single disclosed 
embodiment. Thus, the following claims are hereby incorpo 
rated into the Detailed Description, with each claim. standing 
on its own as a separate embodiment. 

What is claimed is: 
1. A method for inferring system-level properties, compris 

ing: 
maintaining a system model having a number of levels of 

abstraction, the system model including: 
a number of physical system components within a com 

ponent hierarchy; and 
a number of control functions at different levels of 

abstraction within a control hierarchy: 
providing a number of mission requirements; 
providing a number of system-level properties; 
mapping at least one of the number of system-level prop 

erties to one or more of the number of control functions; 
mapping at least one of the system-level properties to one 

or more of the number of physical system components; 
generating a constraint model from the system model, the 
number of mission requirements, and the number of 
system-level properties; and 

reasoning across the constraint model to determine 
whether one or more of the number of system-level 
properties mapped to the one or more of the number of 
control functions and to the one or more of the number of 
physical system components are satisfied in response to 
one or more particular adjustments to: 
the number of mission requirements; 
the number of system-level properties: 
the system model; 
the number of physical system components; and 
the number of control functions. 

2. The method of claim 1, wherein the number of levels of 
abstraction include: 

a device layer, 
a control layer, 
an execution layer, and 
a planning layer. 
3. The method of claim 1, wherein the system model 

includes a model of at least one environment in which the 
system is to perform. 

4. The method of claim 3, including reconfiguring the 
system in response to at least one of 

a change in the at least one environment; 
a change in the system; and 
a change in one or more of the number of mission require 

mentS. 

5. The method of claim 1, including reconfiguring the 
system in response to a determination that the one or more of 
the system-level trust properties is unsatisfied in response to 
the one or more particular adjustments to: 

the number of mission requirements; 
the number of system-level properties; 
the system model; and 
the one or more of the control functions. 
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6. The method of claim 1, wherein the constraint model 
includes: 

a number of mission constraints modeling one or more of 
the number of mission requirements; 

a number of system constraints modeling one or more of 
the number of system-level properties; and 

a number of component constraints modeling one or more 
of the number of control functions. 

7. The method of claim 1, including developing at least one 
inverse inference based, at least partially, on the generated 
constraint model. 

8. The method of claim 1, including deriving a set of 
component-level properties sufficient to determine whether a 
particular one of the number of system-level properties 
remains satisfied. 

9. A tool for inferring system-level properties, comprising: 
a processor; 
memory coupled to the processor, 
a verification module stored in the memory and executable 
by the processor to verify a number of component prop 
erties corresponding to a number of components of a 
particular system; 

a modeling module stored in the memory and executable 
by the processor to generate a constraint model based on 
a system model and a number of Verified component 
properties, wherein the system model includes: 
a component architecture and hierarchy: 
a control architecture and hierarchy; 
a number of mission requirements; and 
a number of system-level properties; and 

wherein the constraint model includes: 
a number of mission constraints modeling one or more 

of the number of mission requirements; 
a number of system constraints modeling one or more of 

the number of system-level properties; and 
a number of component constraints modeling one or 
more of a number of component properties associated 
with the component architecture and hierarchy and 
the control architecture and hierarchy; and 

an inference module stored in the memory and executable 
by the processor to analyze the constraint model to deter 
mine whether one or more particular system-level prop 
erties can be inferred from the constraint model. 

10. The tool of claim 9, wherein the inference module is 
configured to reason across different levels of abstraction to 
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determine whether the one or more particular system-level 
properties can be inferred from the constraint model. 

11. The tool of claim 10, wherein the inference module 
includes forms of reasoning that includes composition, 
embedding, and abstraction. 

12. The tool of claim 9, wherein the inference module is 
configured to: 

derive a number of system-level properties based on a 
number of performed component level tests; and 

determine a number of additional component level tests 
sufficient to provide verification of a particular set of 
system-level properties. 

13. The tool of claim 9, wherein the system is an unmanned 
autonomous system. 

14. The tool of claim 9, wherein the system is an unmanned 
vehicle. 

15. The tool of claim 9, wherein the inference module is a 
hybrid constraint solver including discrete and continuous 
values. 

16. The tool of claim 9, wherein the system includes a 
planning module configured to generate a number of trusted 
plans to a particular system goal. 

17. The tool of claim 9, including a reconfiguration module 
configured to reconfigure the system in response to at least 
one of: 

a change in at least one environment; 
a change in the system; 
a change in one or more of the mission requirements; and 
a change in one or more of the system-level properties. 
18. The tool of claim 9, wherein the inference module is 

configured to determine, for each of the one or more particu 
lar system-level properties: 

whether the particular system-level property can be 
inferred from the constraint model; and 

whether additional information is needed to determine 
whether the particular system-level property can be 
inferred from the constraint model. 

19. The tool of claim 18, wherein the inference module is 
configured to propose one or more additional constraints 
sufficient for a constraint solver to determine whether the one 
or more particular system-level properties can be inferred 
from the constraint model when it is determined that addi 
tional information is needed to determine whether the par 
ticular system-level property can be inferred from the con 
straint model. 


