
(12) United States Patent
Boddy et al.

US008195599B2

US 8,195,599 B2
Jun. 5, 2012

(10) Patent No.:
(45) Date of Patent:

(54) INFERRING SYSTEM-LEVEL PROPERTIES

(75) Inventors: Mark S. Boddy, St. Paul, MN (US);
Hazel S. Shackleton, Minneapolis, MN
(US); Todd P. Carpenter, St. Paul, MN
(US); Kyle S. Nelson, Minneapolis, MN
(US)

(73) Assignee: Adventium Enterprises, Minneapolis,
MN (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 656 days.

(21)

(22)

Appl. No.: 12/389,945

Filed: Feb. 20, 2009

(65) Prior Publication Data

US 201O/OO76737 A1 Mar. 25, 2010

Related U.S. Application Data
Provisional application No. 61/030,416, filed on Feb.
21, 2008.

(60)

Int. C.
G06F 5/00 (2006.01)
G06F 5/8 (2006.01)
U.S. Cl. 706/62; 706/.45; 706/46; 706/47
Field of Classification Search None
See application file for complete search history.

(51)

(52)
(58)

(56) References Cited

U.S. PATENT DOCUMENTS

6,002,854. A * 12/1999 Lynch et al. TO3/1
6,099,575 A * 8/2000 Hardin et al. ... 703/22
6,675.294 B1* 1/2004 Gupta et al. . 713.1
7.464,064 B1* 12/2008 Smith TO6/47
7,644,377 B1 * 1/2010 Saxe et al. 716, 106

2002/0165701 A1* 1 1/2002 Lichtenberg et al. ... 7O3/7

2004/O153295 A1 8/2004 Lohmann et al. TO3/1
2005/009 103.6 A1* 4/2005 Shackleton et al. TO4/9
2006/0100829 A1* 5/2006 Lynch et al. TO3/1
2006/0184292 A1* 8/2006 Appleby et al. TO1/23
2008/O103750 A1* 5/2008 Khasidashvili et al. TO3, 16

OTHER PUBLICATIONS

Boddy et al. “System-Level Autonomy Trust Enabler (SLATE)”.
AIAA, 2008, pp. 1-13.*
Parthasarathy et al. "An Efficient Finite-Domain Constraint Solver
for Circuits', DAC, 2004, pp. 212-217.*
Boddy, et al., “Clockwork: Requirements Definition and Technology
Evaluation for Robust, Compiled Autonomous Spacecraft Execu
tives”. Final Report, NASA Grant NAG-2-1624. Jan. 15, 2004, pp.
1-55.
Boddy, et al., “A New Method for the Solution of Large Systems of
Continuous Constraints', COCOS-02, 14 pages.
Boddy, et al., “Integrated Planning and Scheduling for Petroleum
Refinery Operations.” American Association for Artificial Intelli
gence, 2004, 7 pages.

(Continued)

Primary Examiner — Omar Fernandez Rivas
(74) Attorney, Agent, or Firm — Brooks, Cameron &
Huebsch PLLC

(57) ABSTRACT

The present disclosure includes methods, devices, and sys
tems for inferring system-level properties. One or more
embodiments include generating a constraint model based on
a system model having a number of components at different
levels of abstraction and on a number of verified component
properties. The constraint model can include a number of
mission constraints modeling one or more mission require
ments, a number of system constraints modeling one or more
system-level properties, mid a number of component con
straints modeling one or more component properties. One or
more embodiments can include analyzing the constraint
model with a constraint solver to determine whether one or
more particular system-level properties can be inferred from
the constraint model.

19 Claims, 6 Drawing Sheets

a262%22%23
a%22%27
a22.2%
AIR ANDSPACECRAFTSYSTEMS

MOVEMENT DATARESMANAGEMENT ENVIRONMENTAL

SEQUENCEEXECUTIONENGINER

s

NMEOPERATING SYSTEM
POWERANTHERMALMANAGEMENT

PIDCONTROL
PHYSICACOMPONENTS

ATITUDECONTROLSYSTEMS

- - - - - - - - - - - - - - - - -

--------Cyr SION------ s
fif

US 8,195,599 B2
Page 2

OTHER PUBLICATIONS
Giannakopoulou, et al., "Component Verification with Automatically
Generated Assumption.” Journal of Automated Software Engineer
ing, vol. 11, Kluwer, 2004, pp. 1-30.
Frank, et al., “Constraint Based Attribute and Interval Planning”.
Journal of Constraints, 2002, pp. 1-31.
Laborie, et al., “Planning with Sharable Resource Constraints.” Pro
ceedings of IJCAI-95, pp. 1643-1649.
Software Engineering Institute, “Open Source AADLTool Environ
ment (OSTATE).” http://la.sei.cmu.edu/aadlinfosite?
OpenSourceAADLTool Environment.html, 2006, 2 pages.

Buffington, et al., “Validation and Verification of Intelligent and
Adaptive Control Systems.” AFRL-VA-WP-TP-2003-334, Oct.
2003, pp. 1-10.
O'Leary, D. E., “Verification and Validation of Intelligent Systems:
Five Years of AAAI Workshops'. International Journal of Intelligent
Systems, vol. 9, 1994, p. 653-657.
Eclipse Open Development Platform, http://www.eclipse.org/,
Accessed Aug. 2008, (2 pgs.).

* cited by examiner

U.S. Patent Jun. 5, 2012 Sheet 1 of 6 US 8,195,599 B2

700

a?z22222222223 2
a2% Z)
A5%32%

/ AIR AND SPACECRAFTSYSTEMS

se
H
e
?

c e2
s 22

55S e
s
Cd
CP f76

L

cy SIO >
f74

Ag. /

Z %/

US 8,195,599 B2 U.S. Patent

US 8,195,599 B2 U.S. Patent

US 8,195,599 B2 Sheet 5 of 6 Jun. 5, 2012 U.S. Patent

Z-989;:
IWS 3ONYWOH-d NIITV3 -TVOIO -SSNN

U.S. Patent Jun. 5, 2012 Sheet 6 of 6 US 8,195,599 B2

690

INPUTIOUTPUT

PROCESSOR

MEMORY

VERIFICATIONMODULE - 696

MODELINGMODULE - 697

INFERENCEMODULE - 698

Alig. 6

US 8, 195,599 B2
1.

NFERRING SYSTEM-LEVEL PROPERTIES

This application claims priority from U.S. Provisional
Application Ser. No. 61/030,416, filed Feb. 21, 2008, the
entire content of which is incorporated. herein by reference.

BACKGROUND

Manned, unmanned, and autonomous systems are growing
increasingly complex and contain functions with life and
safety critical implications. A challenge exists in inad
equately testing and evaluating that the implemented systems
will reliably meet their design requirements. This activity is
sometimes called verification and validation (V&V) or test
and evaluation (T&E). CurrentV&V and T&E techniques are
Suited for many systems with limited autonomous capabili
ties, but advanced autonomy and increased complexity makes
testing enormously more difficult and in some instances these
techniques are no longer Suitable.

The V&V and T&E difficulties arise primarily from two
characteristics. First, highly autonomous systems have a
complex internal State. This can result in an exponential
increase in the effort required for V&V or T&E, because the
systems internal state becomes part of the space that testing
must cover. Consequently, a highly autonomous system inter
acting with a complex environment represents a challenge for
V&V and T&E. Current approaches to achieve high confi
dence in Such systems can be resource, labor, and time pro
hibitive.

Secondly, most highly autonomous systems are heteroge
neous. They are typically constructed in multiple levels, com
prising at least low-level control, an intermediate layer of
reactive execution, and a high-level mission planning func
tion. In particularly complex cases, there may be more than
just three levels. Such heterogeneous systems may pose a
special difficulty for testing, because the mapping between
different functional layers can become part of the testing
problem. It is no longer simply a question of how two or more
system components interact. If these components are in dif
ferent functional layers, the errors or information loss in. the
mapping between representations should also be taken into
acCOunt.

Relevant prior art for V&V approaches can broadly be
divided into work on: component V&V for smaller, homoge
neous components of high-level control and autonomous sys
tems; constraint-based models for planning, scheduling, and
execution; and solving and optimization for hybrid constraint
models. Component V&V methods fall broadly into the cat
egories of testing, static checking applied at a source-code
level to establish validity of initial values and parameters
passed between routines, model-checking methods based
either on various kinds of automata or Boolean satisfiability,
and automated synthesis methods. Constraint-based models
for planning, scheduling, and execution are used to specify
and predict behavior, especially for applications of the size
and complexity typically found in Systems related to space
exploration. Solving and optimization of hybrid constraint
models is pursued in several separate technical communities.
Within Operations Research, Mixed Integer Linear and Non
linear models are employed. Some researchers in this com
munity have been investigating "mixed logical-linear meth
ods that integrate mathematical programming with methods
for satisfiability or constraint satisfaction more commonly
used in Computer Science. The constraint satisfaction com
munity within Computer Science is bridging this gap as well,
working in the other direction.

10

15

25

30

35

40

45

50

55

60

65

2
However, current V&V and/or T&E techniques have vari

ous limitations such as a limited ability to efficiently and
adequately infer system-level properties without exorbitant
amounts of testing,

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a functional model of a system for which
system-level properties can be inferred in accordance with
one or more embodiments of the present disclosure.

FIG. 2 illustrates a flow diagram for inferring system-level
properties in accordance with one or more embodiments of
the present disclosure.

FIGS. 3A, 3B, and 3C illustrate functional architectures for
constraint solvers in accordance with one or more embodi
ments of the present disclosure.

FIG. 4 illustrates an environment associated with a system
for which system-level properties can be inferred in accor
dance with one or more embodiments of the present disclo
SUC.

FIG. 5 illustrates a portion of a mapping of system-level
properties to components at different levels within a hierar
chy for the system shown in FIG. 4.

FIG. 6 illustrates a tool for inferring system-level proper
ties in accordance with one or more embodiments of the
present disclosure.

DETAILED DESCRIPTION

The present disclosure includes methods, devices, and sys
tems for inferring system-level properties. One or more
embodiments includes generating a constraint model based
on a system model having a number of components at differ
ent levels of abstraction and on a number of verified compo
nent properties. The constraint model can include a number of
mission constraints modeling one or more mission require
ments, a number of system constraints modeling one or more
system-level properties, and a number of component con
straints modeling one or more component properties. One or
more embodiments can include analyzing the constraint
model with a constraint solver to determine whether one or
more particular system-level properties can be inferred from
the constraint model.

In the following detailed description of the present disclo
Sure, reference is made to the accompanying drawings that
form a part hereof, and in which is shown by way of illustra
tion how one or more embodiments of the disclosure may be
practiced. These embodiments are described in sufficient
detail to enable those of ordinary skill in the art to practice the
embodiments of this disclosure, and it is to be understood that
other embodiments may be utilized and that process, electri
cal, and/or structural changes may be made without departing
from the scope of the present disclosure.
The figures herein follow a numbering convention in which

the first digit or digits correspond to the drawing figure num
ber and the remaining digits identify an element or compo
nent in the drawing. Similar elements or components between
different figures may be identified by the use of similar digits.
For example, 110 may reference element “01 in FIG. 1, and
a similar element may be referenced as 210 in FIG. 2. As will
be appreciated, elements shown in the various embodiments
herein can be added, exchanged, and/or eliminated so as to
provide a number of additional embodiments of the present
disclosure. In addition, as will be appreciated, the proportion
and the relative scale of the elements provided in the figures
are intended to illustrate the embodiments of the present
invention, and should not be taken in a limiting sense.

US 8, 195,599 B2
3

Many previous verification and validation (V&V) tech
niques provide component guarantees, but do not fully
address the behavior of systems built from those components.
However, human acceptance of autonomy typically hinges on
trusting system-level behavior. Embodiments of the present
innovation can provide the capability to Verify system prop
erties for complex autonomous systems operating in rich and
unpredictable environments, thus providing the trust argu
ments for the acceptance of autonomous systems in. mission
critical and/or safety-critical applications.

Given component-level behavioral guarantees, embodi
ments of the present disclosure can employ constraint-based
models and reasoning to Support compositional reasoning
across components at the same level of abstraction in a con
trol hierarchy, and/or across the abstraction mappings defin
ing the different layers in that hierarchy, by building a formal
constraint model, expressed as mathematical relationships,
within each level of abstraction and between different levels.

For some complex systems, it may not be enough to have a
fixed set of behaviors at the lower level that are then invoked
in “safe' ways from the top. For example, in path-planning
for an autonomous ground vehicle, higher-level knowledge of
the terrain and/or the planned path can be used to set control
parameters for how the path can be traversed.

In some instances, however, the systems behavior has to
be verified, for example, through testing or other means
against a wide range of both mission goals and/or environ
mental conditions. With embodiments of the present innova
tion, the increase in testing that would otherwise be needed
can be avoided by reasoning up and/or down the control
system's layers of abstraction. Such embodiments can be
used to establish that if the lower-level control system stays
within certain bounds (e.g., on navigational accuracy), then
the mission planner can generate safe plans to the goal posi
tion. Conversely, we can establish that if the mission planner
never commands the system to move closer than a specified.
tolerance to hazards or obstacles, then the navigational uncer
tainty of the control system only has to be tested to fall within
a relaxed set of error bounds.
One or more embodiments of the present innovation enable

incremental testing of system-level properties and Support the
maintenance and derivation and/or rederivation of guarantees
on system behavior in response to changes in factors such as
the environment, the platform being controlled, and/or the
mission profile, among various other factors.

FIG. 1 illustrates a functional model 100 of a system for
which system-level properties can be inferred in accordance
with one or more embodiments of the present disclosure. In
the embodiment illustrated in FIG. 1, the model 100 is for an
example heterogeneous air and/or spacecraft system. As
such, the functional model 100 includes several functional
layers that can be organized into an abstraction hierarchy as
shown. The functional layers can represent different layers of
abstraction associated with functional model 100.

In the example illustrated in FIG. 1, the model 100 includes
a low level layer that may be referred to as a device layer. In
model 100 the device layer is shown as “PHYSICAL COM
PONENTS’ and can include system hardware such as motors
and sensors, among various other hardware components and/
or Subsystem. hardware.

In the example illustrated in FIG. 1, the model 100 also
includes a number of intermediate layers, which each include
one or more system components and/or Subsystems associ
ated therewith. One or more of the intermediate layers may be
referred to as control layers. In the model 100, the first inter
mediate layer is shown as “PID CONTROL and can include
one or more components and/or Subsystems associated with

10

15

25

30

35

40

45

50

55

60

65

4
proportional-integral-derivative (PID) control functions. The
model 100 also includes an intermediate layer that includes
POWER AND THERMAL MANAGEMENT as well as
“ATTITUDE CONTROL SYSTEMS, an intermediate layer
that includes “SEQUENCE EXECUTION ENGINE/RUNT
IMEOPERATING SYSTEM,” and an intermediate layer that
includes “PROPULSION “ATTITUDE CONTROL
“NAVIGATION “COMMUNICATIONS: “COMMAND
AND DATA HANDLING.,” “DATA STORAGE” “ELEC
TRICAL POWER,” “THERMAL.” “RADIATION,
“FAULT DETECTION, ISOLATION, RECOVERY” and
“WEATHER EFFECTS. The model 100 also includes an
intermediate layer that includes one or more components
and/or subsystems associated with “MOVEMENT,” “DATA/
RES (resource) MANAGEMENT,” and “ENVIRONMEN
TAL models.

In the example illustrated in FIG. 1, the model 100 also
includes a high level layer of abstraction that may be referred
to as a planning layer. In model 100 the planning layer is
shown as including "MISSION GOALS AND MANAGE
MENT,” “DATA EXPLOITATION/SENSOR MANAGE
MENT and “ACTUATOR MANAGEMENT/WEAPONS
CONTROLS

In the model 100, the lower layers support higher layers by
providing services, and higher layers provide increased levels
of functionality. Each of the layers of model 100 can include
one or more system components and/or Subsystems. For
instance, layers might be monolithic with this perspective, or
each layer might have many components within it. Top level
applications, such as mission management or data exploita
tion, might rely on individual components beneath it or on the
composition of the effects of all the subsystems.
The embodiment illustrated in FIG. 1 includes notional

information flows 114 (COMPOSITION) and 116 (AB
STRACTION). The notional flows show, in a general way,
that abstraction is moving information up a layered system
view (e.g., system model 100) and composition is reasoning
within a layer. Although not shown in FIG. 1, various embodi
ments can also include a form of reasoning referred to as
embedding. As described further below, embedding is a type
of composition that includes relating the behavior of complex
control systems to the changing demands of the environment.

Embodiments of the present disclosure are not limited to
the example illustrated in FIG. 1. For instance, although vari
ous examples described herein focus on inferring system
level properties of systems associated with unmanned or
manned vehicle systems, various embodiments can be used to
infer system-level properties of systems other than air and/or
spacecraft systems, and/or such systems may be more or less
complex than the system model 100 (e.g., the system model
may include more or fewer layers of abstraction).
As an example, embodiments of the present disclosure can

be applied in other complex domains with Success, for
example, deriving bounds on control settings for refinery
processing units from upstream and/or downstream con
straints on material properties, flow-rates, inventory levels,
and/or the requirements of other processing units. Other sys
tems which can be analyzed via one or more embodiments of
the present disclosure include automated life Support systems
and autonomous ground vehicles, among various other sys
tems having physical components and/or Subsystems within a
component hierarchy and having control functions capable of
being represented at multiple layers of abstraction within a
control hierarchy (e.g., the hierarchy of model 100 shown in
FIG. 1).

FIG. 2 illustrates a flow diagram for inferring system-level
properties in accordance with one or more embodiments of

US 8, 195,599 B2
5

the present disclosure. One or more embodiments include
maintaining a system model having a number of levels of
abstraction (e.g., system model 100 shown in FIG. 1). In
various embodiments, the layers of abstraction associated
with a particular system model can include, a device layer, a
control layer, an execution layer, and a planning layer. How
ever, embodiments are not limited to system models having
particular types or having particular numbers of layers of
abstraction.
The embodiment illustrated in FIG. 2 includes a system

model 200 that includes a number of system-level properties
202, a number of mission requirements 204, a component
hierarchy 206, and a control hierarchy 208. The system model
200 can be a model of a system Such as a manned or
unmanned vehicle system (e.g., aircraft, spacecraft, water
craft, ground vehicles, etc.), an automated life Support sys
tem, or a refinery system, among various other systems
capable of multiple modes of behavior and/or comprising
multiple levels of abstraction. In one or more embodiments,
the system model 200 can also include an environment model
(e.g., a model of one or more environments within which a
particular system may be interacting).
As used herein, system level-properties (e.g., 202) refer to

measureable or inferable properties of a particular system and
are to be distinguished from component properties and Sub
system properties, which refer to individual components or
Subsystems that are a part of a larger system. In various
embodiments, system-level properties (e.g., 202) can corre
spond to system-level trust properties such as safety, liveness,
criticality, real-time concerns, and/or performance, among
various other trust properties that can be associated with a
particular system. System-level properties may also be
referred to herein as “system-level requirements.” As
described further herein, various embodiments of the present
disclosure can be used to Verify (e.g., prove) satisfaction of
the system-level trust properties 202.
As used herein, mission requirements (e.g., 204) can relate

to desired system objectives, behaviors, and/or goals of a
particular system's operation. The mission requirements may
also be referred to herein as “mission properties.” Mission
properties (e.g., 204) can be distinguished from system-level
properties (e.g., 202) in that system-level properties refer to
system states or system behaviors that may not be directly
related to a particular mission goal or objective. As an
example, a mission property may include a goal of “taking a
picture of that particular rock.” while indirectly related sys
tem-level properties may include “don’t tip over,” or “don’t
cause damage to the habitat, among other properties indi
rectly related to a particular mission property. Examples of
system-level properties 202 and mission requirements 204
are described further below in connection with FIGS. 4 and 5.
The component hierarchy 206 of system model 200 illus

trated in FIG. 2 can include models of one or more physical
system components. Physical components can include
motors, sensors, and/or actuators, among various other physi
cal system components capable of being modeled in multiple
levels.
The control hierarchy 208 of system model 200 illustrated

in FIG. 2 can include a hierarchy of control functions. The
control functions of hierarchy 208 can include navigation
control, arm control, rate control, sensor control, and power
management, among various other control functions capable
of being modeled at different levels of abstraction with con
trol hierarchy 208.

In various embodiments, and as described further below,
the system-level properties (e.g., 202) associated with a sys
tem model (e.g., 200) can be mapped to one or more of a

5

10

15

25

30

35

40

45

50

55

60

65

6
number of physical system components associated with a
component hierarchy (e.g., 206) and/or can be mapped to one
or more control functions associated with a control hierarchy
(e.g., 208) associated with the system model (e.g., 200). An
example of Such mapping is described further below in con
nection with FIG. 5.
The embodiment illustrated in FIG. 2 includes a number of

validation and verification techniques 210. The V&V tech
niques 210 are grouped into a number of categories such as
tools used off-line and during the development process (OFF
LINE, DESIGN AND BUILD), on-line tools used for the
active system (ON-LINE), and other techniques such as
transferring the V&V load to other parts of the system (EX
TERNAL TRANSFER), as well as manual methods
(MANUAL METHODS). In the embodiment illustrated in
FIG. 2, the tools used off-line and during the development
process include command sequence checking, model consis
tency checkers, automata-based behavioral compositional
Verification, static analysis, automated theorem proving, and
synthesis. The on-line tools used for the active system include
command sequence checking, dynamic analysis, and run
time monitoring. The techniques for transferring the V&V
load to other parts of the system include techniques for exter
nal transfer to requirements (e.g., system/mission require
ments), environment, hardware, and mechanical compo
nents. The manual methods can include peer review, process
or documentation standards (e.g., DO-178B), manual theo
rem proving, and intuitive model viewing tools.

Embodiments are not limited to the example V&V tech
niques 210. These techniques 210 and/or other existing or
new V&V methods can provide evidence of component and/
or subsystem behaviors about which one or more embodi
ments of the present disclosure will then reason. For instance,
one or more of the V&V techniques 210 can be used to verify
one or more component properties associated with physical
components of the component hierarchy 206 and/or compo
nent properties associated with functional components of the
control hierarchy 208 of system model 200.

In various embodiments, the functional components of a
complex, highly-autonomous system interact with one
another and/or with the environment in several different ways
and can utilize different forms of reasoning, Such as compo
sition (e.g., 114 shown in FIG.1), embedding, and abstraction
(e.g., 116 shown in FIG. 1). Composition is reasoning where
the collective behavior of a set of interacting modules (e.g.,
components, Subsystems, and/or processes) are at a single
level of abstraction, given known or assumed behavioral char
acteristics of the individual modules. For example, in an
autonomous rendezvous and docking (ARD) system (e.g.,
in-flight refueling, satellite operations, etc.), error bounds on
estimates of relative Velocity, attitude, and position can be
derived from known properties of the available sensing hard
ware, along with the computational properties of post-pro
cessing and sensor fusion functions such as Kalman filters.
Those error bounds can then be used to establish bounds on
the allowable maximum control error in velocity, attitude, and
position, for a given control algorithm and set of effectors
(e.g., thrusters). This reasoning will also utilize knowing the
physical configuration of the vehicle being controlled, as its
mass, center of gravity, relative position of the thrusters, and
moments of inertia will all affect the systems behavior for a
given set of control decisions.

Embedding, or relating the behavior of complex control
systems to the changing demands of the environment, is a
type of composition. In embedding, the range of conditions,
for example temperature, pressure, wind speed, terrain slope,
humidity, incident energy, moving obstacles, or other agents

US 8, 195,599 B2
7

that may be encountered in the environment, become part of
the composition being considered.

Abstraction is reasoning where interactions between mod
ules across different abstraction boundaries maps from one
level of representation (e.g., pixels, or second-by-second
route-traversal) to another (objects in the visual field, or way
point navigation). In such embodiments, abstraction map
pings should be validated with regard to a number of potential
error Sources. For example, information loss addresses that
the abstraction mapping may obscure relevant information
utilized to prove properties at the higher level of abstraction.
As an example, ground-based waypoint navigation

between locations will typically include only an abstract
model of the intervening terrain, perhaps as a set of costs
(power, time) or uncertainty bounds (a difficult traversal may
have a much less predictable duration). If this loss of preci
sion is explicitly modeled, it can be incorporated into the
system-level proof, for example, by making worst-case
assumptions regarding the missing information. Another
potential Source of erroris that the abstraction mapping can be
outright incorrect, for example, errors in identifying an object
in the visual field, or in determining the system’s current
location. Providing a model of the nature and/or likelihood of
these potential errors can enable system-level V&V and T&E
reasoning about them.

Reasoning across abstraction boundaries to Support sys
tem-level V&V and T&E involves some capabilities that may
not be obvious at first glance. In an interaction between mis
sion planning and execution, for example, typically either the
projections used in planning must be sufficiently accurate, or
the execution system sufficiently capable of controlling to a
specified trajectory, to avoid projected failures (e.g., “Execut
ing a return to base at the requested airspeed will exhaust the
available fuel before touchdown.”). In addition, abstraction
mapping should permit propagation in both directions, so that
information added at one level. Such as plan models and
control accuracy in the previous examples, can constrain rea
soning in other abstraction layers.
As described further below, one or more embodiments of

the present disclosure implement processes of composition,
abstraction, and/or embedding, for example, by using con
straint-based behavioral envelopes. Constraint-based behav
ioral envelopes permit propagation of constraints (e.g., con
straints 232-1, 232-2, 232-3, 232-4, and 232-5) from one
function (hardware or software) backward or forward through
a chain of related functions (e.g., hardware sensors, Software
filtering, identification, decision, and/or limitations on hard
ware actuators). Using constraint envelopes can result in a
strongly least-commitment form of search for a solution or
for a proof of infeasibility.

In one or more embodiments and as shown in FIG. 2, a
specification 220 can be used to represent a number of the
components and/or Subsystems of a particular system being
tested (e.g., a system for which inference of system-level
properties is desired). In the example illustrated in FIG. 2, the
specification 220 is represented using the Architecture Analy
sis and Design Language (AADL). However, embodiments
are not limited to a particular design language. As one of
ordinary skill in the art will appreciate, AADL can represent
Subsystems or components in the system being tested,
attributes on those components (e.g., cost, weight, power,
heat generated), and relationships between those components
(e.g., inside, above, before). In the embodiment illustrated in
FIG. 2, the specification 220 includes subsystem elements
222-1 (Navigation Sensor Processing), 222-2 (Integrated
Navigation), 222-3 (Guidance Processing), 222-4 (Telemetry

10

15

25

30

35

40

45

50

55

60

65

8
Processing), and 222-5 (Attitude Processing) and their inter
action with shared data 224 (e.g., shared memory).

In one or more embodiments, one or more formal con
straint models (e.g., 230) can be generated via a specification
such as specification 220 based on a system model (e.g., 200)
and a number of Verified component properties (e.g., a num
ber of component properties 211 verified via one or more of
the V&V techniques 210). As such, in this process, the system
model 200 can be translated into a formal constraint model
23O.
The constraint model 230 can be built using manual tech

niques and/or automated techniques (e.g., using AADL
scheduling, reliability, latency analysis tools), for example.
The constraint model 230 can permit reasoning about allowed
relationships and can provide a framework for reasoning and
Successive refinement.

In the embodiment illustrated in FIG. 2, the formal con
straint model 230 includes system constraints 232-1, mission
constraints 232-2, component constraints 232-3, behavioral
constraints 232-4, and static constraints 232-5. The system
constraints 232-1 model system-level properties (e.g., sys
tem-level properties 202). The mission constraints 232-2
model mission requirements (e.g., mission requirements
204). The component constraints 232-3 model component
and/or Subsystem properties such as those associated with
component hierarchy 206 and control hierarchy 208. Behav
ioral constraints 232-4 can refer to time-varying component
properties. As an example, the rate of change in temperature
would be subject to a behavioral constraint. Static constraints
232–5 can refer to properties of the system which are not
directly related to dynamics and the passage of time. As an
example, overall vehicle mass can be subject to a static con
straint. Embodiments are not limited to the particular types of
constraints within formal constraint model 230.
As described further below, the constraint model 230 can

be provided as input to a constraint solver (e.g., hybrid con
straint solver 240). In various embodiments, the constraint
solver 240 can be used to analyze the constraint model 230 to
determine whether one or more particular system-level prop
erties (e.g., 202) can be inferred from the constraint model
230. In one or more embodiments, the constraint solver 240
may not be a hybrid constraint solver (e.g., a. mixture of
discrete and continuous values may not be involved in the
analysis of the formal constraint model 230).

Existing or new linear, nonlinear, or hybrid constraint solv
ing systems, such as a simple finite-domain constraint propa
gation and solving engine with an open-source MILP) engine
(e.g., Bonsai-G) may be used to evaluate a constraint graph
associated with one or more constraints of constraint model
230 to Verify requirements satisfaction, validate consistency,
identify system performance properties, as well as to identify
inconsistencies (e.g., the system requires more memory than
it has), and potential assumptions (e.g., a processor of speed
X is required, but was not specified). Three example archi
tectures for a hybrid constraint solving engine are shown in
FIGS. 3A, 3B, and 3C.

Invarious embodiments, and as illustrated in FIG.2, opera
tion on the formal constraint model 230 by the hybrid con
straint model 240 can provide outputs to both the original
design process as well as to additional analysis indicating
capabilities if additional separation properties 252 (e.g., spa
tial partitioning and/or time partitioning, among other sepa
ration properties) arc introduced into the system model 200.

In the embodiment illustrated in FIG. 2, a separation kernel
250 can receive outputs from the constraint solver 240 for
separation property analysis. Although embodiments are not

US 8, 195,599 B2

so limited, the separation kernel 250 can be a. LynxSecure
Separation Kernel, for example.
As illustrated in FIG. 2, the hybrid constraint solver 240

can determine system performance properties, validate
requirements, identify inconsistencies, and can determine
potential assumptions, which can then be output to the origi
nal design process. In various embodiments, one or more
results output from the hybrid constraint solver 240 can be
used to modify the system model 200, which can allow for
incremental refinement and evaluation as the cycle illustrated
in FIG. 2 repeats.

In various embodiments, behavioral envelopes apply
directly to composition. By segmenting the problem into
manageable pieces, the approach illustrated in FIG. 2 can
provide a means to incrementally re-evaluate a system-level
T&E proofand identify which constraints (e.g., 232-1, 232-2,
232-3, 232-4, and 232-5) may no longer be satisfied. As
previously discussed, embedding can be handled as a Subset
of composition, using Such an approach. Embodiments of the
present innovation can be used to Support reasoning about
abstraction using behavioral envelopes that utilize, as addi
tional information, a characterization of the abstraction map
ping, including models of the nature and/or likelihood of
potential errors as described above.

In various embodiments, a constraint-based approach can
have a number of advantages, including access to a broad
variety of propagation and solution techniques, many provid
ing formal guarantees of correctness and/or completeness. In
addition, constraint-based models can make it much easier to
Support both incremental modifications and bi-directional
reasoning (i.e., to change which are the premises, which are
the conclusions). Thus, using the same model we can reason
either from component behaviors and properties to system
level properties (providing proofs of correctness), or from
system-level properties to constraints on component behavior
(deriving sufficient sets of assumptions under Which a proof
could be derived, and thus proposed component-level tests).

In various embodiments, the constraint-based models can
be integrated across multiple levels of abstraction and used to
provide a system-level test generation function and/or testing
plan. For instance, the example shown in FIG. 2 illustrates
how embodiments of the present innovation exploit the bi
directionality of a constraint-based behavioral envelope
approach to develop an inverse form of inference, deriving
sufficient conditions on component behavior to be able to
prove that the system-level properties (e.g., system-level
properties 202) and/or goals will be satisfied.

Its support for incremental reasoning (for example, the
ability to explore different designs efficiently) address life
cycle concerns, while Support for reconfiguration (based on
that same incremental reasoning) can, for example, be useful
for dealing with dynamic environments, changes in mission
profiles and/or requirements (e.g., mission requirements
204), and/or hardware and Software changes to one or more
system components (e.g., components associated with com
ponent hierarchy 206 and/or control hierarchy 208). In vari
ous embodiments, the approach to defining behavior as enve
lopes of acceptable performance and integrating with
standard tools enables testing of inherently non-deterministic
systems, without attempting the impossible goal of testing all
possible behaviors, by testing that the envelopes are not vio
lated.

In various embodiments, the hybrid constraint solver 240
can analyze the formal constraint model 230 and can deter
mine whether one or more Of the system constraints, mission
constraints, component constraints, behavioral constraints,
and/or static constraints arc satisfied, are not satisfied, or

10

15

25

30

35

40

45

50

55

60

65

10
whether further information is needed to determine whether
one or more of the constraints is or is not satisfied. In one or
more embodiments, if the hybrid constraint solver 240 deter
mines, based on the current constraint model 230, that a
particular system-level property (e.g., 202) is infeasible, or
that more information is needed in order to make a feasibility
determination as to the particular system-level property, the
hybrid constraint solver 240 can identify one or more addi
tional constraints which, when added to the formal constraint
model 230, can be used to determine whether the particular
system-level property (e.g., 202) is satisfied (e.g., proved or
disproved).

FIGS. 3A, 3B, and 3C illustrate three example architec
tures for a hybrid constraint solving engine (e.g., hybrid con
straint solver 240 shown in FIG. 2) that can be used in accor
dance with one or more embodiments of the present
disclosure. As illustrated in FIGS. 3A, 3B, and 3C, the respec
tive constraint solvers 301-0, 301-1, and 301-2 are hybrid
constraint solvers. That is, each of the solvers 301-0, 301-1,
and 301-2 can operate on both discrete and continuous con
straints.
As illustrated in FIGS. 3A, 3B, and 3C, each of the con

straint solvers 301-0, 301-1, and 301-2 includes a respective
discrete solver 360-0, 360-1, and 360-2. The solver 301-0
includes a continuous feasibility oracle 362, the solver 301-1
includes a continuous culprit identifier 364, and the solver
301-2 includes a continuous solver 366.

In the example illustrated in FIG. 3A, the discrete solver
360-1 is capable of making discrete decisions, some of which
lead to the addition of constraints in the continuous feasibility
oracle 362. The continuous feasibility oracle 362 is config
ured to return a decision (YES/NO) regarding whether the
continuous model remains feasible in light of added con
straints.
The example illustrated in FIG. 3B is similar to the

example illustrated in FIG. 3A. In the example illustrated in
FIG. 3B, the continuous culprit identifier 364 can return a
decision (YES/NO) regarding whether the continuous model
remains feasible in light of added constraints from the dis
crete solver 360-1. However, the continuous culprit identifier
364 can also return a set of “culprits' if the current continuous
model is infeasible. The term culprits can refer to added
constraints causing the continuous model to be infeasible.

In the example illustrated in FIG. 3C, the CCHIPS Frame
work368 can be configured to control the interaction between
the discrete solver 360-2 and the continuous solver 366. For
instance, the framework 368 can direct when the solvers
360-2 and 366 are active, and on which portions of the respec
tive models the solvers 360-2 and 366 are active.

Embodiments of the present disclosure are not limited to
the examples illustrated in FIGS. 2 and 3. For instance, other
constraint solving systems (e.g., MiniSAT, HyperSAT, UBC
SAT, QBFLIB, CPlex, COIN-OR), modeling tools (e.g.,
UML, VHDL), separation kernels (e.g., DDC-I DEOS,
GreenHills INTEGRITY, Xen, VMWare), and other compo
nents can be used in various embodiments. Also, embodi
ments may include a number of additional Supporting tools
that can be used to model and characterize the physical and
functional components, document and/or model the specifi
cations, and/or analyze the constraints.

FIG. 4 illustrates an environment 470 associated with a
system 475 for which system-level properties can be inferred
in accordance with one or more embodiments of the present
disclosure. That is, the system 475 is an example system for
which a system model having a number of components at
different levels of abstraction (e.g., system. model 100 or 200

US 8, 195,599 B2
11

shown in FIGS. 1 and 2) can be generated and analyzed as
described in connection with the analysis flow illustrated in
FIG 2.

In the embodiment illustrated in FIG. 4, the system 475 is
a robotic. system (e.g., a robot 475). The robot 475 has several
hardware and software components not shown in FIG. 4. A
number of these components are shown in FIG. 5, which
illustrates a portion of a mapping of system-level properties
associated with the robot 475 to components of the robot that
are modeled at different levels of abstraction within a hierar
chy in accordance with one or more embodiments of the
present disclosure.

In the example described in connection with FIGS. 4 and 5.
the robot was designed with four wheels, two powered with
good traction, and two neutral with low friction. Each of the
powered wheels, at the rear of the robot, was controlled by
separate motors (e.g., left motor 585-2 and right motor 585-3
shown in FIG. 5). Each motor worked independently. The
front wheels acted as skids to allow the robot 475 to turn
freely. An optical light sensor 585-6 was mounted on the rear
of the robot 475 and was controlled using a motor mounted
horizontally. The motor rotated the sensor a full 360 degrees,
but there was no slip-joint or other rotational interface for the
sensor control and data lines, so there was a bound on how far
the sensor can be rotated in each direction.
Two touch sensors (e.g., location sensor 585-6) were

located on the front of the robot 475, positioned to align with
a docking station (e.g., target 479). There was an arm 585-7
mounted on the side of the robot 475. In this example embodi
ment, successful contact between the arm 585-7 and the des
ignated target 479 was the indication of a successful mission.

In this example, a mission requirement of the robot was that
the robot navigate from the starting region 474 to the target
479 while maintaining the light sensor 585-6 located on a
moving source 472. The robots mission in this scenario
requires that the light sensor control 583–4 run in parallel to
the navigation code 583-2. In this example embodiment, this
parallel processing allows one to demonstrate how the two
functions (e.g., light sensor control and navigation control)
have interactions other than the need for the light sensor
585-6 to reposition as the robot 475 turns corners or moves
away from the light source 472.
The mission design described in FIGS. 4 and 5 includes

multiple execution phases, with constraints among them
based on one phase setting the initial conditions (including
the initial error) for the next phase. As shown in FIG. 5, the
robot control system (e.g., arm control 583-5, light sensor
control 583-4, navigation control 583-2) can be implemented
hierarchically, thus Supporting a test of abstraction mapping.

The robot 475 can simulate a rover with the mission
requirements to dock at a fixed station and keep a sensor
aligned to a light Source. The demonstration environment, for
example the environment 470 shown in the embodiment illus
trated in FIG. 4, includes a performance area with three
obstacles 476-1,476-2, and 476-3 and a target area 479. The
robot 475 can be required to navigate from the starting region
474 at one end of the performance area, around the obstacles
476-1, 476-2, and 476-3, and end at the target 479 which is
located at the opposite end of the performance area.

In the embodiment illustrated in FIGS. 4 and 5, the navi
gation process was broken into three parts: the coarse navi
gation phase, which moves the robot 475 from the start region
474 to near the target (e.g., to region 478-1), the fine naviga
tion phase (e.g., within region 478-2), which will align the
robot 475 with the target 479, and the arm navigation phase
which will drop the robots arm 585-7 to land on the target
479 at a given position. In addition, through all of the navi

10

15

25

30

35

40

45

50

55

60

65

12
gation phases, the robot can be required (as a mission require
ment) to maintain a sensor (e.g., light sensor 585-6) on a
moving light Source 472, and align itself to a fixed observa
tion target within a given time.
The embodiment illustrated. in FIG. 5 shows a number of

system-level properties 581-1 (SAFETY), 581-2 (LIVE
NESS),581-3 (CRITICAL),581-4 (REAL TIME), and 581-5
(PERFORMANCE) associated with the robot 475 shown in
FIG. 4. FIG. 5 includes a portion of a mapping of the system
level properties 581-1, 581-2, 581-3, 581-4, 581-5, to one or
more appropriate functional and/or physical components at
various levels of abstraction.

In the embodiment illustrated in FIG. 5, the robot 475 was
modeled in tour layers: device, control, execution, and plan
ning. The device layer represented the actual hardware (e.g.,
physical components) that make up the robot 475. In this
example, the hardware includes an accelerometer 585-0, a
block 585-1 (e.g., processing hardware such as a CPU), a left
motor 585-2 and a right motor 585-3 associated with rear
wheels of the robot, a traction system 585-4, a location sensor
585-5, a light sensor 585-6, an arm 585-7 and an arm motor
586 used to move arm 585-7, a battery 585-8, and a commu
nication port 585-9. As the reader will appreciate, the
example shown in FIG. 5 can include more. or fewer physical
components, in some embodiments.

In the embodiment illustrated in FIG. 5, the control layer
and the device layer were both components of the robot 475
and its programming environment. High level control blocks
such as Navigation 583-2 and Arm Control 583-5 use a com
bination of sensor reading and conformant positioning (or
other error mitigation techniques) to minimize the propaga
tion of uncertainty and perform a series of lower level control
blocks or device level operations.

In the embodiment illustrated in FIG. 5, the execution layer
represents a next level of detail. The coarse navigation mode,
fine navigation mode, arm navigation mode, light sensor Scan
mode, light sensor tracking mode and communications sen
sor mode were the primary pieces at this level. Each of these
modes can have one of several algorithmic Solutions assigned
and each can have a set of requirements (such as acceptable
error) that needs to be met independently.
The planning layer was at the same high level of abstraction

as a mission plan and can be directed primarily by the mission
requirements. For example, one objective of the mission plan
was for the robot 475 to reach the target 479 at a given position
in the coordinate system within an acceptable error, time, and
power usage. In one or more embodiments a tool for inferring
system-level trust properties may be designed to calculate the
probability of completion of the given mission plan within the
given bounds, but for the example shown in FIG. 5, it calcu
lates ranges for each of these parameters.
As illustrated in the embodiment shown in FIG. 5, the

functional components are arranged in a control hierarchy
that includes a high level planning function 583-1, a naviga
tion function 583-2, a drive operation. function 583-3, a light
sensor control function 583-4, an arm control function 583-5,
a power management function 583-6, and a communication
function 583-7 located at a lower end of the control hierarchy.
The system-level trust properties modeled for the example

illustrated in FIGS. 4 and 5 were those of safety 581-1, live
ness 581-2, criticality 581-3, real-time issues 581-4, and per
formance 581-5 although more, less, or other system-level
properties may be used in Some embodiments. Each of the
modeled system-level trust properties includes a number of
system requirements, which are mapped to one or more
appropriate functional components. As noted above, FIG. 5
shows a portion of this mapping. As illustrated in FIG. 5, the

US 8, 195,599 B2
13

components affected are within different levels of the hierar
chy, demonstrating that trust properties may not necessarily
result in System requirements at only one level of abstraction
within the robot control hierarchy.

In the example illustrated in FIGS. 4 and 5, the combina
tion of robot platform, Scenario, and system model can be
sufficient to model details at multiple levels of the hierarchy,
enabling the use of abstraction and composition to analyze
system behavior. The propagation of error through the model
can be an important aspect of this analysis. The physical
components at the device level have a built in error based on
the manufacturing and maintenance of that part. At the con
trol level, sensor accuracy, internal error correction, and
mechanical differences can be modeled. At the planning and
execution level the algorithms themselves, the modes incor
porated, and both active and passive mitigation plans affect
the error values. And, finally, how the environment that the
robot is performing in affects the results through the physical
properties such as traction 585-4 was modeled.

Tests on each motor (e.g.,585-2, 585-3, and 586) were run
to determine its behavioral error under different circum
stances. In one test, it was discovered that one of the motors
performed at a significantly different speed from the others
which affected the results when measured over time rather
than by number of revolutions. Based upon these results, it
was determined to discard that motor for future time-based
tests. This was particularly important later as two motors were
used in parallel to control the direction of the robot. The data
collected from these experiments allowed the performance
and error values for the devices in this example constraint
model to be set.
The light sensor software worked in two modes, scan and

track. These modes were implemented to work at different
frequencies. The scan mode worked on the 40 Hz bandwidth,
completing a 360 degree turn and then moving to the brightest
light source recorded on the scan. Once a source had been
located the 20 Hz process took over by continuously tracking
the light. This was done by comparing the current light value
to the light values one degree beach side of it, the brightest of
those became the new current value. If the tracking value
changed by too large of an amount then a complete rescan was
performed.

In addition to the scan and track operations used for the
light sensor 585-6 it appeared necessary to add an additional
limitation based on the mechanical restraints of the robotkit.
A cable connecting the light sensor 585-6 to the main robot
brick would get wound up around the sensor each time the
sensor turned 360 degrees. The cable was long enough to do
this two or three times, but would then interfere with the
turning rate. To nullify this issue a limit was placed on the
number of degrees the sensor would trackinone direction and
having it turn back 360 degrees the opposite way to unwind
the cord. It was found, based on the experiments, that using
400 degrees for the sensor tracking limit was sufficient for
these tests.

Also at the device level the mechanical error on the arm
movement was identified. This constant was added to the
constraint model (e.g. a formal constraint model Such as 230
of FIG. 2).
The next set of experiments for the example embodiment

shown in FIGS. 4 and 5 looked at the control layer compo
nents of the robot 475 and their behavior. These tests focused
on how the different power levels and built in error correction
methods affect performance and more importantly affect the
error values. By using the motor values, the error of the robot
could be predicted (e.g., by calculating how the errors from
the two motors would combine due to timing offset for

10

15

25

30

35

40

45

50

55

60

65

14
simplicity, a constant was used). By comparing these theo
retical results to the actual robot results, the error correction
done by the motor controller could be determined. A com
parison of these results with both the controller using the
built-in error correction and without can be made. In the
example embodiment, the error correction actually gives
worse results unless the power is on full or nearly full (greater
than 68%).

Based upon these results, it was determined that using a
reset for low power operations may not provide the optimal
result, while using it for high power movements could be
beneficial. Hidden trade-offs like these that occurat an inter
mediate level of abstraction can be important because it
shows that changing control methods or behaviors can in
Some instances result in significant and non obvious changes
in the end results.
The control level testing for the example embodiment illus

trated in FIGS. 4 and 5 focused on the turning behaviors of the
robot 475. There are two control methods for performing
turns. The first is to turn the one wheel while keeping the other
stationary and the second is to turn one wheel forward while
the other turns backwards. The offset which occurs for the one
wheel powered approach was ignored in this example. The
tests showed that turning the robot could produce large errors.
The predicted errors were based on performing a quarter
rotation at varying power levels both with and without the
reset. Without taking traction into account it was calculated
that the robot 475 would turn 51.4 degrees with an expected
turn error for the end angle of the robot between 0.6 degrees
and 1.0 degrees. The actual errors were between 5 and 12
degrees, with the largest errors coming for low powered turns.
This analysis led to a beliefthat this was from the lightweight
of the robot 475 and lack of traction at low power. To adjust
the model of the robot system 475 to fit the recorded behavior,
a turn error factor of 8.0 was added.

Finally with the device and control layers of the robot 475
modeled, the planning and execution layers were added and
predictions about the robots behavior were made. For
example, experimentation with changing the robots course
navigation code to analyze different operating modes and
algorithms was performed. Three navigation algorithms were
used for these example experiments. The first, “direct rout
ing code, simply weaved through the obstructions 476-1,
476-2, and 476-3 to reach the end region 478-1, The formal
constraint model was used. to calculate the error on each leg
or turn of the route, which compounded for each additional
leg and turn.
To minimize the compound errors associated with the

direct routing code, two additional algorithms, conformant
positioning and limited turn routing, were implemented and
added to the formal constraint model. Conformant position
ing used a wall 477 (or known obstacle like a docking plat
form) to minimize the error in one dimension. Once the robot
475 found the wall it could reset the error in that dimension.
In limited turn routing, the number of turns was minimized
which reduced the number of legs and turns, but also
increased the leg length and angles.
The formal constraint model was used to compare these

three planning solutions against changing requirements. For
example, if a component requirement was added to restrict
the turn radius (e.g., due to either mechanical design or a
performance issue), the limited turn routing algorithm was
not feasible and resulted in an increased error. If accurate
navigation was required (e.g., low error), a conformant posi
tioning algorithm was used coupled with sensors to detect
when it reached the end region 478-1 and docked successfully
at the target 479.

US 8, 195,599 B2
15

In some embodiments, the time/power usage for each of
these navigation algorithms can be compared. In an example
embodiment where this was utilized, the conformant course
navigation was the worst in this category, and again the lim
ited turn did well. However, if the test was concerned about
the obstacles 476-1, 476-2, and 476-3, the limited turn
approach gave the slimmest room for error, and in a number of
test runs the obstacles were often hit, either damaging the
robot 475 or an obstacle.

In the example illustrated in FIGS. 4 and 5, alternate solu
tions which modified some part of the robot, its environment,
or its programming were collected. For example, the planning
algorithms were modified by tightening the course navigation
restrictions and shortening the time period required. Experi
mentation was also performed by adding execution restric
tions such as limiting the turning radius allowed for stability
of the robot, or adding power constraints. Control level errors
were introduced by not resetting internal compensation for
drift and by modifying the power levels on the individual
motors, and finally device level issues were introduced by
Substituting sensors or motors with poorer performance than
those originally used.

Each of these experimental changes helped. Verify the abil
ity of embodiments of the innovation to predict the robots
behavior, recognize impact of the changes, and provide con
fidence (e.g., trust) that the system-level properties could be
modeled to the level needed. For example, after reconfiguring
the robot 475 so as to alter its weight by adding an additional
arm, the innovation (e.g., a tool implementing an analysis
flow such as that described in FIG. 2) accurately determined
that some system-level properties are no longer guaranteed
and identified Sufficient changes to the current control system
to re-establish those system-level properties.

FIG. 6 illustrates a tool 690 for inferring system-level
properties in accordance with one or more embodiments of
the present disclosure. In the embodiment illustrated in FIG.
6, the tool 690 is a computing device having a processor 692,
a memory 694, and an input/output component 691.
The input/output component 691 can receive data from a

particular system for which one or more system-level prop
erties are to be verified. The received data can be data received
from one or more sensors of the particular system, for
instance. In various embodiments, the received data (e.g.
sensor data) can be used by one or more of the modules 696,
697, and 698 to infer system-level. properties as described
herein.

In the embodiment illustrated in FIG. 6, the memory 694
includes a number of modules (e.g., Verification Module 696,
Modeling Module 697, and Inference Module 698). The
modules 696, 697, and 698 can be executable instructions
(e.g., program instructions) such as Software modules or
applications executable by processor 692 to perform embodi
ments of the present disclosure as described herein.

For instance, in one or more embodiments, the verification
module 696 can be configured. to verify a number of compo
nent. properties corresponding to a number of components of
a particular system (e.g., a particular system Such as those
described herein for which system-level trust properties are to
be inferred). Also, in various embodiments, the modeling
module 697 can be configured to generate a constraint model
(e.g., constraint model 230) based on a system model (e.g.,
system model 200) and a number of verified component prop
erties (e.g., a number of components verified via V&V tech
niques 210). In various embodiments, the inference module
698 can be configured to analyze the constraint model (e.g.,
via a constraint solver such as 240 shown in FIG. 2) to deter

10

15

25

30

35

40

45

50

55

60

65

16
mine whether one or more particular system-level properties
can be inferred from the constraint model (e.g., 230).

In various embodiments, the inference module 698 is con
figured to reason across different levels of abstraction to
determine whether the one or more particular system-level
properties can be interred from the constraint model. The
inference module 698 can include forms of reasoning that
includes composition, embedding, and abstraction, as
described above.

In one or more embodiments, the inference module 698 is
configured to derive a number of system-level properties
based on a number of performed component level tests and
determine a number of additional component level tests suf
ficient to provide verification of a particular set of system
level properties (e.g., system-level properties 202 shown in
FIG. 2).

In various embodiments, the inference module 698 is con
figured to determine, for each of the one or more particular
system-level properties, whether the particular system-level
property can be inferred from the constraint model and
whether additional information is needed to determine
whether the particular system-level property can be inferred
from the constraint model. In one or more embodiments, the
inference module 698 is configured to propose one or more
additional constraints sufficient for a constraint solver (e.g.,
240) to determine whether the one or more particular system
level properties can be inferred from the constraint model
(e.g.,230) when it is determined that additional information is
needed to determine whether the particular system-level
property can be inferred from the constraint model.

In various embodiments of the present disclosure, the tool
690 can include a planning module configured to generate a
number of trusted plans to a particular system goal. In various
embodiments, the tool 691 can include a reconfiguration
module configured to reconfigure the system in response to at
least one of a change in at least one environment; a change in
the system; a change in one or more of the mission require
ments; and a change in one or more of the system-level
properties.

Various embodiments of the present disclosure can be per
formed by software and/or firmware (i.e., computer execut
able instructions), hardware, application modules, and the
like, executable and/or resident on the tools, systems, and
devices shown herein or otherwise.

CONCLUSION

The present disclosure includes methods, devices, and sys
tems for inferring system-level properties. One or more
embodiments include generating a constraint model based on
a system model having a number of components at different
levels of abstraction and on a number of verified component
properties. The constraint model can include a number of
mission constraints modeling one or more mission require
ments, a number of system constraints modeling one or more
system-level properties, and a number of component con
straints modeling one or more component properties. One or
more embodiments can include analyzing the constraint
model with a constraint solver to determine whether one or
more particular system-level properties can he inferred from
the constraint model.
One or more embodiments of the innovation provide a

representation and reasoning system for system-level T&E
and V&V of high-level autonomous control for complex sys
tems operating in rich and unpredictable environments. Such
embodiments can facilitate implementing and fielding trusted
high-level autonomous control systems across a range of

US 8, 195,599 B2
17

relevant applications, including manned and unmanned air
craft, spacecraft, rovers, and habitats. In some instances,
implementing Such capabilities will simplify control system
reconfiguration in response to changes in the environment,
the system being controlled, and/or the mission profile.

Embodiments of the present disclosure can, for example,
provide: expressive models of behavioral characteristics and/
or constraints so that system requirements can be captured
with greater fidelity; inference over those models that is suf
ficient to provide proofs of (in)validity; one or more methods
for deriving additional behavioral constraints on system com
ponents that can serve as assumptions, the confirmation of
which by testing would suffice to enable a proof of validity;
one or more models of the complex system as a whole, includ
ing, for example, multiple layers of software at all different
levels of abstraction, and all ultimately interacting with a set
of hardware sensors and effectors (in Such embodiments mis
sion specifications and/or the characteristics of the operating
environment should be included); and one or more methods to
Support reasoning about a mixture of discrete and continuous
values.

Embodiments of the innovation include a representation
and reasoning system that uses hybrid constraint-based
behavioral envelopes to Support reasoning about the interac
tion of component properties, such as how the composition of
those properties can be used to verify properties of the system
as a whole. In Such embodiments, if the desired system prop
erties cannot be proved from the current set of component
properties, the reasoning approach can be used as a tool to
explore additional assumptions on component properties
under which the desired system properties could be shown to
hold.

It will be understood that when an clement is referred to as
being “on.” “connected to’ or “coupled with another ele
ment, it can be directly on, connected, or coupled with the
other element or intervening elements may be present. In
contrast, when an element is referred to as being “directly on.”
“directly connected to’ or “directly coupled with another
element, there are no intervening elements or layers present.
As used herein, the term “and/or includes any and all com
binations of one or more of the associated listed items.

It will be understood that, although the terms first, second,
etc. may be used herein to describe various elements and that
these elements should not be limited by these terms. These
terms are only used to distinguish one element from another
element. Thus, a first element could be termed a second
element without departing from the teachings of the present
disclosure.

Although specific embodiments have been illustrated and
described herein, those of ordinary skill in the art will appre
ciate that an arrangement calculated to achieve the same
results can be substituted for the specific embodiments
shown. This disclosure is intended to cover adaptations or
variations of one or more embodiments of the present disclo
sure. It is to be understood that the above description has been
made in an illustrative fashion, and not a restrictive one.

Combination of the above embodiments, and other
embodiments not specifically described herein will be appar
ent to those of skill in the art upon reviewing the above
description. The scope of the one or more embodiments of the
present disclosure includes other applications in which the
above structures and methods are used. Therefore, the scope
of one or more embodiments of the present disclosure should
be determined with reference to the appended claims, along
with the full range of equivalents to which Such claims are
entitled.

10

15

25

30

35

40

45

50

55

60

65

18
In the foregoing Detailed Description, Some features are

grouped together in a single embodiment for the purpose of
streamlining the disclosure. This method of disclosure is not
to be interpreted as reflecting an intention that the disclosed
embodiments of the present disclosure have to use more fea
tures than are expressly recited in each claim.

Rather, as the following claims reflect, inventive subject
matter lies in less than all features of a single disclosed
embodiment. Thus, the following claims are hereby incorpo
rated into the Detailed Description, with each claim. standing
on its own as a separate embodiment.

What is claimed is:
1. A method for inferring system-level properties, compris

ing:
maintaining a system model having a number of levels of

abstraction, the system model including:
a number of physical system components within a com

ponent hierarchy; and
a number of control functions at different levels of

abstraction within a control hierarchy:
providing a number of mission requirements;
providing a number of system-level properties;
mapping at least one of the number of system-level prop

erties to one or more of the number of control functions;
mapping at least one of the system-level properties to one

or more of the number of physical system components;
generating a constraint model from the system model, the
number of mission requirements, and the number of
system-level properties; and

reasoning across the constraint model to determine
whether one or more of the number of system-level
properties mapped to the one or more of the number of
control functions and to the one or more of the number of
physical system components are satisfied in response to
one or more particular adjustments to:
the number of mission requirements;
the number of system-level properties:
the system model;
the number of physical system components; and
the number of control functions.

2. The method of claim 1, wherein the number of levels of
abstraction include:

a device layer,
a control layer,
an execution layer, and
a planning layer.
3. The method of claim 1, wherein the system model

includes a model of at least one environment in which the
system is to perform.

4. The method of claim 3, including reconfiguring the
system in response to at least one of

a change in the at least one environment;
a change in the system; and
a change in one or more of the number of mission require

mentS.

5. The method of claim 1, including reconfiguring the
system in response to a determination that the one or more of
the system-level trust properties is unsatisfied in response to
the one or more particular adjustments to:

the number of mission requirements;
the number of system-level properties;
the system model; and
the one or more of the control functions.

US 8, 195,599 B2
19

6. The method of claim 1, wherein the constraint model
includes:

a number of mission constraints modeling one or more of
the number of mission requirements;

a number of system constraints modeling one or more of
the number of system-level properties; and

a number of component constraints modeling one or more
of the number of control functions.

7. The method of claim 1, including developing at least one
inverse inference based, at least partially, on the generated
constraint model.

8. The method of claim 1, including deriving a set of
component-level properties sufficient to determine whether a
particular one of the number of system-level properties
remains satisfied.

9. A tool for inferring system-level properties, comprising:
a processor;
memory coupled to the processor,
a verification module stored in the memory and executable
by the processor to verify a number of component prop
erties corresponding to a number of components of a
particular system;

a modeling module stored in the memory and executable
by the processor to generate a constraint model based on
a system model and a number of Verified component
properties, wherein the system model includes:
a component architecture and hierarchy:
a control architecture and hierarchy;
a number of mission requirements; and
a number of system-level properties; and

wherein the constraint model includes:
a number of mission constraints modeling one or more

of the number of mission requirements;
a number of system constraints modeling one or more of

the number of system-level properties; and
a number of component constraints modeling one or
more of a number of component properties associated
with the component architecture and hierarchy and
the control architecture and hierarchy; and

an inference module stored in the memory and executable
by the processor to analyze the constraint model to deter
mine whether one or more particular system-level prop
erties can be inferred from the constraint model.

10. The tool of claim 9, wherein the inference module is
configured to reason across different levels of abstraction to

5

10

15

25

30

35

40

45

20
determine whether the one or more particular system-level
properties can be inferred from the constraint model.

11. The tool of claim 10, wherein the inference module
includes forms of reasoning that includes composition,
embedding, and abstraction.

12. The tool of claim 9, wherein the inference module is
configured to:

derive a number of system-level properties based on a
number of performed component level tests; and

determine a number of additional component level tests
sufficient to provide verification of a particular set of
system-level properties.

13. The tool of claim 9, wherein the system is an unmanned
autonomous system.

14. The tool of claim 9, wherein the system is an unmanned
vehicle.

15. The tool of claim 9, wherein the inference module is a
hybrid constraint solver including discrete and continuous
values.

16. The tool of claim 9, wherein the system includes a
planning module configured to generate a number of trusted
plans to a particular system goal.

17. The tool of claim 9, including a reconfiguration module
configured to reconfigure the system in response to at least
one of:

a change in at least one environment;
a change in the system;
a change in one or more of the mission requirements; and
a change in one or more of the system-level properties.
18. The tool of claim 9, wherein the inference module is

configured to determine, for each of the one or more particu
lar system-level properties:

whether the particular system-level property can be
inferred from the constraint model; and

whether additional information is needed to determine
whether the particular system-level property can be
inferred from the constraint model.

19. The tool of claim 18, wherein the inference module is
configured to propose one or more additional constraints
sufficient for a constraint solver to determine whether the one
or more particular system-level properties can be inferred
from the constraint model when it is determined that addi
tional information is needed to determine whether the par
ticular system-level property can be inferred from the con
straint model.

