
(12) United States Patent
Thomsen et al.

USOO7308702B1

US 7,308,702 B1
Dec. 11, 2007

(10) Patent No.:
(45) Date of Patent:

(54) LOCALLY ADAPTABLE CENTRAL
SECURITY MANAGEMENT IN A
HETEROGENEOUS NETWORK
ENVIRONMENT

(75) Inventors: Daniel Jay Thomsen, Minneapolis, MN
(US); Richard O’Brien, Brooklyn Park,
MN (US); Jessica Bogle, Roseville,
MN (US); Charles Payne, Oakdale,
MN (US)

(73) Assignee: Secure Computing Corporation, St.
Paul, MN (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/483,164

(22) Filed: Jan. 14, 2000

(51) Int. Cl.
G06F 7700 (2006.01)
H04LK LM00 (2006.01)
H04L 9/00 (2006.01)
GO6F 15/16 (2006.01)
GO6F 17/30 (2006.01)
G06F 7/00 (2006.01)

(52) U.S. Cl. 726/1; 726/6; 707/9
(58) Field of Classification Search 707/69;

713/200 201, 164-167; 705/69; 709/229;
726/1, 6

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,335,346 A * 8, 1994 Fabbio T11 163
5,745,687 A * 4, 1998 Randell TO9,201
5,826,239 A 10/1998 Du et al. 70.5/8
6,035,399 A * 3/2000 Klemba et al. T13/200
6,088,679 A * 7/2000 Barkley 70.5/8
6,324,647 B1 * 1 1/2001 Bowman-Amuah T13 201
6,357,010 B1* 3/2002 Viets et al. T13 201

constraNiss core key chan

FOREIGN PATENT DOCUMENTS

EP O854431 7, 1998

OTHER PUBLICATIONS

Olivier, Martin S. "Specifying Application-level Security in
Workflow Systems”, IEEE, Aug. 1998.*
Samarati, Pierangela. Ravi S. Sandhu. "Access Control: Principles
and Practice”, Sep. 1994.*
Awischus, Roland. “Role Based Access Control with the Security
Administration Manager (SAM), ACM, 1997.*
Sandhu, Ravi., Venkata Bhamidipati and Qamar Munawer. “The
ARBAC97 Model for Role-Based Administration of Roles', Feb.
1999.*

Black, Stewart. Vijah Varadharajan. “A Multilevel Security Model
for a Distributed Object-Oriented System”, IEEE 1990.*

(Continued)
Primary Examiner Kambiz Zand
Assistant Examiner Michael J Simitoski
(74) Attorney, Agent, or Firm—Schwegman, Lundberg &
Woessner, P.A.

(57) ABSTRACT

A system and method for defining and enforcing a security
policy. Security mechanism application specific information
for each security mechanism is encapsulated as a key and
exported to a semantic layer. Keys are combined to form key
chains within the semantic layer. The key chains are in turn
encapsulated as keys and passed to another semantic layer.
A security policy is defined by forming key chains from keys
and associating users with the key chains. The security
policy is translated and exported to the security mechanisms.
The security policy is then enforced via the security mecha
1SS.

34 Claims, 15 Drawing Sheets

CORBAKES

OBJECT HANCES

OBJECT METHOD

OCA SSADMIN
SYSTEMS KEY CHAIN S CONSTRINTS ApoR

KEY

(APPLICATION SUTE
key can recoNSTRANTS

KEY SEANTC
wo LAYERS

WRAPPERS

KEY chAIN (CONSTRANTS

NEWORK
APPLICATION

GRUPS A0 AO DEVELOPER

DENY DEY

US 7,308,702 B1
Page 2

OTHER PUBLICATIONS

Gligor, Virgil. “Characteristics of Role-Based Access Control”.
1996.
Greenwald, Steven J. "A New Security Policy for Distributed
Resource Management and Access Control', ACM, 1996.*
Lupu, Emil. Morris Sloman and Nicholas Yialelis. “Role-Based
Security for Distributed Object Systems”, IEEE 1996.*
Moffett, Jonathan D. Morris S. Sloman. “Policy Hierarchies for
Distributed Systems Management”. IEEE Journal on Selected Areas
in Communications, vol. 11 No. 9, Dec. 1993.
Munawer, Qamar, Ravi Sandhu. “The RRA97 Model for Role-Basd
Administration of Role Hierarchies', Dec. 1998.
Nyanchama, Matunda et al. “The Role Graph Model and Conflict of
Interest', Feb. 1999, ACM, ACM Transactions on Information and
System Security, vol. 2, No. 1, pp. 3-33.*

Chang, S. K., et al., “A Visual Language for Authorization Model
ing”, IEEE, 110-118. (Sep. 1997).
Payne, C., et al., “Napolean: A Recipe for Workflow”. Proceedings
of the 15th Annual Computer Security Applications Conference, pp.
1-9, (Dec. 1999).
Thomsen, D., et al., “Napoleon Network Application Policy Envi
ronment”. Proceedings of the 4th ACM Workshop On Role-Based
Access Control. XP002163998, pp. 145-152, (Oct. 1999).
Thomsen, D., et al., “Role Based Access Control Frameworks for
Network Enterprises”, 14th Annual Security Applications Confer
ence, pp. 1-9, (Dec. 1998).
Varadharajan, V., et al., “Issues in the Design of Secure Authoriza
tion Service for Distributed Applications'. IEEE, Sydney, Australia,
874-879, (Nov. 1998).

* cited by examiner

U.S. Patent Dec. 11, 2007 Sheet 1 of 15 US 7,308,702 B1

SECURITY
POLICY

TRANSLATION-24

SECURITY
MECHANISM

N

SECURITY
MECHANISM 26.N

U.S. Patent Dec. 11, 2007 Sheet 3 of 15 US 7,308,702 B1

STEP 1: STEP 2: STEP 3:
POLICY DEFINITION POLICY TRANSLATION POLICY ENFORCEMENT

FIREWALL

DATABASE
SERVER

TRANSLATED POLICY
GUI

PLANNING
APPLICATION

FIG. 5

TOP LOCAL POLICY 32 DYNAMIC

SEMANTIC POLICY N - 56.N

MIDDLE O. O. O. MORE DYNAMIC

SEMANTIC POLICY 1 - 36.1
BOTTOM

APPLICATION POLICY K-50 STATIC

FIG. 6

U.S. Patent Dec. 11, 2007

42

Sheet 4 of 15 US 7,308,702 B1

KEY CHAIN CONSTRAINTS

KEY CHAIN CONSTRAINTS 36
-7

KEY CHAN CONSTRAINTS 44

CONSTRAINTS
APP. KEY CHAIN

FIG. 7

4.CORBA KEY CHAINS

3. CORBA KEYS

2. OBJECT HANDLES

1. OBJECT METHODS

OPTIONAL
CONSTRAINTS

FIG. 8

U.S. Patent

C C O C

X C C) Cd

:

Dec. 11, 2007

KO C

FIREWALL

LOCAL SYSADMN

APPLICATION SUTE

WORKFLOW

FIG. 9A

LOCAL SYSADMN

APPLICATION SUTE

WORKFLOW

N
DTEL CORBA

FIG. 9B

Sheet 5 of 15 US 7,308,702 B1

US 7,308,702 B1 Sheet 7 of 15 Dec. 11, 2007 U.S. Patent

?]ºmpon T?juonooddy No.-?jawon II

[×]

U.S. Patent Dec. 11, 2007 Sheet 8 of 15 US 7,308,702 B1

STANDARD
USER

U.S. Patent Dec. 11, 2007 Sheet 9 Of 15 US 7,308,702 B1

PRIMARY PHYSICAN CONSULTING PHYSICAN

V
PHYSICAN (ABSTRACT) NURSE

Nu
EMPLOYEE (ABSTRACT) - O BROWSE NYYYYY

FIG. 15A

CONSULTING PHYSICAN - O BROWSE

PRIMARY PHYSICAN- O BROWSE
WYYYYY

NURSE- O BROWSE
NYYYYY

FIG. 13B

U.S. Patent Dec. 11, 2007 Sheet 10 of 15 US 7,308,702 B1

20

(ve (ove /
- KEY CHAINS

(NEW ROLES) TO
HIGHER LAYERS

ASSETS COLLECT KEYS
5/ N N INTO KEY CHAINS

(2 (e. IMPORT KEYS (ROLES)
FROM LOWER LAYERS

KEY: (e ve

KEY CHAINS WITH CONSTRAINTS:

& e
FIG. 14

U.S. Patent Dec. 11, 2007 Sheet 11 of 15 US 7,308,702 B1

20

N DOCTOR CLERK INSURANCE

74 82 78
LOCAL

SYSADMN

PROVIDER ADMIN REVIEWER

76 84 80

PROVIDER ADMIN REVIEWER
64 72- e.g.

APP SUTE 58 S. 68
INTEGRATOR Zy

CAREGIVER CONSULTING ACCOUNTANT AUDITOR

66 60 62 70

CAREGIVER CONSULTING ACCOUNTANTAUDITOR
APPLICATION
DEVELOPER: 50 52 54 56

COM

U.S. Patent Dec. 11, 2007 Sheet 12 of 15 US 7,308,702 B1

WORKFLOW
CONDITIONS

100
CAN PERFORM

CAN BE
PERFORMED

USING

USES
WORK METHODS PRSIs

PRODUCES

FIG. 16

ACTS IN

PERFORMER

US 7,308,702 B1

/

U.S. Patent

ABX WEIS?S |NEWBS)WNWW MOTEXINOM

U.S. Patent Dec. 11, 2007 Sheet 14 of 15 US 7,308,702 B1

DOCTOR
START GD UPDATE RECORD

(2) CLERK
PREPARE BILL

G3) INSURANCE
AUTHORIZE PAYMENT

CLERK
FINISH BILL PATENT FOR BALANCE

FIG. 18

U.S. Patent Dec. 11, 2007 Sheet 15 of 15 US 7,308,702 B1

300

N CLERK
DOCTOR 82 INSURANCE

Ceve Cer
74 78

LOCAL SYSADMIN 3.10- | / \
STEP 1 STEP 2 STEP 4 STEP 3

(ve (; 2 (ve
STEP 1 STEP 2 STEP 4 STEP 3

Ce v C2 v Ce Cevd
302 304

WORKFLOW
ADMIN

PROVIDER ADMIN REVIEWER

76 84 80

PROVIDER ADMIN REVIEWER
64 72- e.g.

APP SUTE 58 S. 68
INTEGRATOR Zy

CAREGMER CONSULTING ACCOUNTANT AUDITOR

66 60 62 70

CAREGIVER CONSULTING ACCOUNTANTAUDITOR
APPLICATION |
DEVELOPER: : 50 52 54 56

- - - - - - - - - - - - - - - J L - - - - - - - COM

US 7,308,702 B1
1.

LOCALLY ADAPTABLE CENTRAL
SECURITY MANAGEMENT IN A
HETEROGENEOUS NETWORK

ENVIRONMENT

STATEMENT REGARDING GOVERNMENT
RIGHTS

This invention was made with Government support under
Contract F30602-97-C-0245 awarded by the Air Force. The
Government has certain rights in this invention.

FIELD OF THE INVENTION

The present invention is related to computer security, and
more particularly to a security management framework for
controlling access to computer resources.

BACKGROUND INFORMATION

Administrating security systems is a complex task. In
order to enforce a tight security policy many security
constraints must be expressed. Security constraints can be
classified in to two broad categories: those required by the
application and those required by the local security policy.
It can be very difficult for local network administrators to
administer security constraints for applications. At the same
time, it is also very difficult for the application developer to
create security policies that apply to all sites. The problem
becomes even more complex when users are dispersed
across networks or applications are installed by different
vendors.
What is needed is a system and method for defining and

enforcing a security policy across a heterogenous set of
applications, each having different security mechanisms.

SUMMARY OF THE INVENTION

The above mentioned problems with defining and enforc
ing a security policy across a heterogenous set of applica
tions and other problems are addressed by the present
invention and will be understood by reading and studying
the following specification.

According to one aspect of the invention, in a system
having one or more security mechanisms, a system and
method is described for defining and enforcing a security
policy. Security mechanism application specific information
for each security mechanism is encapsulated as a key and
exported to a semantic layer. Keys are combined to form key
chains within the semantic layer. The key chains are in turn
encapsulated as keys and passed to another semantic layer.
A security policy is defined by forming key chains from keys
and associating users with the key chains. The security
policy is translated and exported to the security mechanisms.
The security policy is then enforced via the security mecha
nisms.

According to another aspect of the present invention, a
security system has a model comprising one or more seman
tic layers for defining different security policies and con
straints for each type of user, a tool for manipulating the
model and a translator for translating security policies from
the model to security mechanisms in one or more computer
SOUCS.

According to yet another aspect of the present invention,
a system and method are described for defining a security
policy. An application policy layer and a semantic policy
layer are defined. A set of access rights for a computer

10

15

25

30

35

40

45

50

55

60

65

2
resource is encapsulated as a key. Keys are combined to
form one or more key chains within the application policy
layer. Key chains from the application policy layer are
exported as keys and imported into the semantic policy
layer. One or more keys in the semantic policy layer are
combined to form a key chain and the key chains are
exported from the semantic layer as keys. At least one key
from the semantic policy layer is imported into a local policy
layer and combined with other keys in the local policy layer
to form one or more local policy key chains. Users are
assigned to local policy key chains in the local policy layer.

According to yet another aspect of the present invention,
a system and method are described for defining a security
policy. An application policy layer and a plurality of seman
tic policy layers, including a first semantic policy layer and
a second semantic layer, are defined. A set of access rights
for a computer resource is encapsulated as a key. Keys are
combined to form one or more key chains within the
application policy layer. Key chains from the application
policy layer are exported as keys and imported into the first
semantic policy layer. One or more keys in the first semantic
policy layer are combined to form a key chain and the key
chains are exported from the first semantic layer as keys.
One or more keys are imported into the second semantic
policy layer and combined to form a key chain. The key
chains are exported from the second semantic layer as keys.
At least one key from the second semantic policy layer is
imported into a local policy layer and combined with other
keys in the local policy layer to form one or more local
policy key chains. Users are assigned to local policy key
chains in the local policy layer.

According to yet another aspect of the present invention,
a system and method are described for modifying a security
policy. An application policy layer and a semantic policy
layer are defined. A set of access rights for a computer
resource is encapsulated as a key. Keys are combined to
form one or more key chains within the application policy
layer. Key chains from the application policy layer are
exported as keys and imported into the semantic policy
layer. One or more keys in the semantic policy layer are
combined to form a key chain and the key chains are
exported from the semantic layer as keys. At least one key
from the semantic policy layer is imported into a local policy
layer and combined with other keys in the local policy layer
to form one or more local policy key chains. Users are
assigned to local policy key chains in the local policy layer.
A role hierarchy is constructed by sorting the key chains into
a partial ordering based on set containment. The partial
ordering is displayed as a role hierarchy graph and keys are
added and deleted from the role hierarchy graph.

According to yet another aspect of the present invention,
in a system having a workflow management system and a
central policy management system, a method of controlling
workflow is described. A workflow class definition is created
and exported to the central policy management system.
Resources and roles are bound to steps within the central
policy management system. A workflow instance is created
in both the workflow management system and the central
policy management system. The workflow instance is then
executed.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following drawings, where the same number
reflects similar function in each of the drawings,

FIG. 1 illustrates a centralized security management sys
tem 10:

US 7,308,702 B1
3

FIG. 2 illustrates a security management system having a
multi-layered role-based access control model for unifying
diverse access control mechanisms into a single environ
ment,

FIG. 3 illustrates one embodiment of a security manage
ment system according to FIG. 1;

FIG. 4 illustrates another embodiment of a security man
agement system according to FIG. 1;

FIG. 5 illustrates a method of defining a security policy in
a security management system according to FIG. 1;

FIG. 6 illustrates another embodiment of a security man
agement system having a multi-layered role-based access
control model;

FIG. 7 illustrates linking of keys and key chains within
layers of the multi-layered role-based access control model
of FIG. 6;

FIG. 8 illustrates a CORBA application key having four
Sub-layers and a constraint;

FIGS. 9a and 9b illustrate two ways at looking at the
relationship between semantic layers;

FIG. 10 illustrates a CORBA-based model 20 having two
semantic layers used to transfer security mechanisms to the
system administration layer;

FIG. 11 illustrates a GUI screen which could be used to
define handles;

FIG. 12 illustrates a key chain having three keys:
FIGS. 13a and 13b illustrates inheritance;
FIG. 14 illustrates how keys and key chains are used to

build semantic layers;
FIG. 15 illustrates an RBAC policy modeled as three

layers;
FIG. 16 illustrates a role-based perspective of workflow:
FIG. 17 illustrates a workflow enforcement system;
FIG. 18 illustrates a simple workflow example; and
FIG. 19 illustrates how a new workflow layer is defined

in the workflow enforcement system of FIG. 17.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the following detailed description of the preferred
embodiments, reference is made to the accompanying draw
ings which form a part hereof, and in which is shown by way
of illustration specific embodiments in which the invention
may be practiced. It is to be understood that other embodi
ments may be utilized and structural changes may be made
without departing from the scope of the present invention.
Some portions of the detailed description which follows

are presented in terms of algorithms and symbolic repre
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled in the data processing
arts to most effectively convey the substance of their work
to others skilled in the art. An algorithm is here, and
generally, conceived to be a self-consistent sequence of steps
leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored, trans
ferred, combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
elements, symbols, characters, terms, numbers, or the like. It
should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as

10

15

25

30

35

40

45

50

55

60

65

4
apparent from the following discussions, it is appreciated
that throughout the present invention, discussions utilizing
terms such as “processing or "computing or "calculating
or “determining or “displaying or the like, refer to the
action and processes of a computer system, or similar
electronic computing device, that manipulates and trans
forms data represented as physical (electronic) quantities
within the computer system's registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other Such
information storage, transmission or display devices.

FIG. 1 illustrates a centralized security management sys
tem 10. System 10 includes a computer 12 connected to
nonvolatile memory 14. The term “computer is defined
here to include any digital or analog data processing unit.
Examples include personal computers, workstations, set top
boxes, mainframes, servers, Supercomputers, laptops or per
Sonal digital assistants capable of embodying the inventions
described herein.

In one embodiment, computer 12 is capable of reading
program code such as computer instructions and data from
computer readable medium 16. Examples of articles com
prising computer readable media are read-write or read-only
memory devices such as floppy disks, hard drives, CD-ROM
or DVD.

In one embodiment, computer 12 is capable of reading
information and receiving commands and data from a net
work 18 and of writing data and commands to network 18.

System 10 uses a layered approach to Role-Based Access
Control (RBAC). In one embodiment, as is shown in FIG. 2,
security management system 10 includes a multi-layered
RBAC model 20 for unifying diverse access control mecha
nisms into a single environment, a Graphical User Interface
(GUI) 22 for manipulating model 20, and translation soft
ware 24 for translating a security policy defined by GUI 22
to specific access control mechanisms 26.1 through 26.N.

In one embodiment, system 10 provides centralized secu
rity policy management for many different access control
mechanisms. System 10 is not designed to be a centralized
clearinghouse for security decisions. Instead, applications
are responsible for enforcement. Each application will have
one or more access control mechanisms 26. System 10 is
used to load the applications with the policy they are going
to enforce.
To be effective, a centralized security management system

10 should be able to abstract security mechanism application
specific information from each security mechanism 26 and
present it to the local system administrator in a clearly
understandable manner.

Administrating security systems can be a complex task. In
order to enforce a tight security policy many security
constraints must be expressed. In one embodiment, detailed
permission sets are grouped into related sets. These sets are
grouped into larger sets, which may in turn be incorporated
into still larger sets. Creating arbitrary sets of sets allows any
policy to be expressed. However, while this offers the
greatest degree of flexibility the lack of organization makes
it difficult to understand and maintain the policy.

In one embodiment, therefore, RBAC model 20 is divided
into well-defined layers. Each layer has a well-defined set of
semantics and constraints. In one embodiment, security
constraints are classified into two broad categories: those
required by the application, and those required by the local
security policy. A first step in designing a system to model
complex security systems is to define these two broad
categories and devise a consistent interface between them.
One such approach is shown in FIG. 3.

US 7,308,702 B1
5

In the embodiment shown in FIG. 3, RBAC model 20
includes an application developer layer 30, a local system
administration layer 32, and an interface 34 for communi
cation security constraints between layers 30 and 32. The
RBAC model 20 shown in FIG. 3 applies a divide and
conquer principle to the tough problem of security manage
ment. Rather than place all the burden of security manage
ment on a system administrator in the field, the application
developers share the burden by creating basic security
building blocks. These building blocks capture complex
application specific security constraints, freeing the local
system administrators from configuring the many detailed
constraints. The application developers are the people who
best understand the application and can best describe the
application security constraints. Only the local administra
tors know the local security policies, thus they are the only
ones who can describe their security constraints. The appli
cation designers cannot create security policies that apply to
all sites. Thus the local system administrators must have the
capability to create their own building blocks, should those
prepared by the application developer be insufficient. The
goal of the RBAC framework is to centrally control access
to a wide variety of network resources. This means incor
porating diverse applications on a variety of hosts, legacy
applications, and applications with unsophisticated security
mechanisms.

In another embodiment, interface 34 includes one or more
semantic layers 36. Such an approach allows policy creation
to be split between many different groups based on their
assigned, or defined, semantic layers. Multiple layers allow
users to work with a layer they understand. Thus a balance
can be struck between fine grained access control and ease
of management. The goal is to provide easy security man
agement for a wide variety of network applications.

Before access to network resources can be granted those
resources must be understood. This means that the network
applications must be incorporated into the model. Applica
tions are written in different languages and run on a variety
of hosts with different security mechanisms. A universal
description of applications is needed that is independent of
their implementations. Currently there are two widely
accepted frameworks for developing distributed network
applications: CORBA and Microsoft's COM/DCOM. Both
frameworks use an interface definition language (IDL) to
describe how an application can be accessed. The IDL
definition expresses the application in an object oriented
framework by listing each object’s publicly available meth
ods. Thus, in one embodiment, an object oriented approach
is used for the RBAC framework.

In one such embodiment, access is either granted to an
object method or it is denied. Creating this object oriented
model of the application is simple in the CORBA and
COM/DCOM environments. The IDL file that describes an
object’s publicly available methods can be parsed and
automatically incorporated into a security management tool.
To incorporate a legacy application into the framework, an
IDL file must be created. This involves defining the legacy
application in terms of objects and object methods. This
approach is similar to the method used to wrap applications
with a CORBA interface for the CORBA environment. Here,
however, the interface does not have to connect to the legacy
application. The concern for the RBAC framework is, IF a
method can be accessed not HOW. Instead, a component can
be created to translate between the RBAC framework and
the legacy applications enforcement mechanism.

The RBAC framework is especially useful in a heteroge
neous network environment. Making access control deci

10

15

25

30

35

40

45

50

55

60

65

6
sions centrally for the entire enterprise would likely create a
performance bottleneck. Centralized decision making also
leads to a single point of failure that could shutdown the
entire network. While these performance problems could be
mitigated by duplicate security servers, performance would
still lag local enforcement.

In one embodiment, as is shown in FIG. 5, there are three
steps in defining a security policy with system 10. First GUI
22 is used in conjunction with RBAC model 20 to define the
policy. Next translator 24 translates the policy to application
security mechanisms 26 within each application. Finally the
application security mechanisms enforce the security policy.

It is preferable to centralize management of the policy,
with the security decisions being enforced as close as
possible to the application. The centralized management tool
of FIG. 5 grants users access to objects. Once a change is
made the tool translates the security policy from the RBAC
framework to the target's native security mechanism, which
is then transported to the target. For example, if a user was
given access to the Internet via the security management
tool, the tool translates that request into a number of
modifications to a firewall Access Control List (ACL). These
modifications are then communicated to the firewall, which
implements the changes. The location of each application is
known. The tool must push the security information out to
the application making the access control decisions. Since
we are assuming a heterogeneous network the central Secu
rity policy must be translated into security mechanisms for
each host making up the enterprise. If the target host already
has an understanding of roles, or has a unified access control
mechanism like CORBA, the translation process is easy. If
the host does not understand roles the translation of the
policy becomes more difficult. For legacy applications the
translation from the RBAC framework to the legacy appli
cation’s security mechanisms is harder still.

For example, protecting an FTP server on a Unix host first
requires describing the FTP server in object oriented terms.
For enforcement the policy must be translated to the equiva
lent user accounts and file permissions. While this transla
tion is difficult, the important point is that the legacy
applications can be included into the centralized policy
management, albeit at a higher cost.
As noted above, system 10 can be designed to serve two

primary users: application developers and local system
administrators. In one such embodiment, application devel
opers, using their in-depth knowledge of the application,
create generic security components. These security compo
nents serve to hide the application-specific details. The local
system administrators use these security components as the
security building blocks to customize the security policy for
their organization. Just as it is important to document
Software design to facilitate application maintenance, it is
important to document the security components of the
application. When the application developers create the
security building blocks not only are they creating tools for
the local system administrators, but they are also document
ing security design and usage. Permanent documentation is
critical for the long term maintenance of an application,
since application developers may leave or may forget details
of their implementation.

Semantic layers such as the semantic layers 36 shown in
FIG. 4 provide even more flexibility. For instance, applica
tions in an application Suite may have common constraints
and semantics (e.g., they may all use a clipboard to move
data between applications). The pattern of accesses to the
clipboard is the same for each application. The architect of
the application Suite, therefore, is the person best Suited to

US 7,308,702 B1
7

design the clipboard policy. In one embodiment, the archi
tect combines the policy components created by the appli
cation developer into a new semantic layer that spans all the
applications in the Suite. This prevents the local system
administrator from having to understand the clipboard
policy.

Another example is a policy layer based on the environ
ment in which the application runs. If a client application
must communicate with a server before it can execute in a
certain environment, the policy interactions between the
client and server are best captured in a policy layer for the
system architect rather than the local system administrator.
By providing semantic layers 36, the underlying structure of
each layer remains the same. Pieces of policy from Support
ing layers were combined to produce policy for higher
layers. The number of semantic layers for a given target
environment depends only on the target environment. For
example, some enterprises may not have organized applica
tions into Suites; thus they don’t need the application Suite
layer. In most discussions of security policy there is an
underlying assumption that a small set of users define the
policy from start to finish. The approach used in system 10
is that distinct sets of users maintain different parts of the
policy based on their understanding and responsibilities.

In the model of FIG. 3, there were two target users, local
system administrators and application developers. The
expanded model of FIG. 4 divides policy maintenance
between any number of users. Each user combines policy
pieces from the Supporting layers to capture the policy
constraints and semantics of their layer. These security
building blocks are then available for other layers to build
on. As is shown in FIG. 6, multiple semantic layers (36.1
through 36.N) can be used to provide as many layers of
abstraction as are needed.

In one embodiment, the building blocks of system 10 are
called keys. A key represents the ability to access some
resource; just like in the real world where having a key
allows a person to open a door. Keys become an atomic unit
of the security policy. A key cannot be divided into smaller
access control pieces. As shown in FIG. 7, application keys
40 formed at the application developer layer are passed up
to semantic layers 36 and combined and passed to the next
layer. The process continues up to layer 32, which binds
users to the policy pieces.

Keys are not capabilities. A key is an abstract represen
tation of Some rights, independent of the implementation
mechanism. A capability is data that States the bearer has the
rights defined in the capability. Capabilities can be passed to
other users. System 10 manipulates keys to define the policy.
Once the policy is defined it is translated into access control
mechanisms.

Another common construct to all the layers is the concept
of a key chain. A key chain is, not surprisingly, a collection
of keys. A key chain can also contain other key chains. This
allows the user to create a Partially Ordered Set (POSET)
equivalent to a role hierarchy. Key chains 42 may also have
constraints 44 associated with them. If the constraint is
satisfied, access in the key chain is granted, otherwise it is
denied.

A final common construct to all layers is the concept of
abstract key chains. The concept behind abstract key chains
is very similar to the object-oriented concept of an abstract
class. An abstract key chain is an intermediary grouping of
keys to reflect Some common policy elements. For example,
there may be an abstract key chain called “health care
provider” that contains permissions common to doctors and

10

15

25

30

35

40

45

50

55

60

65

8
nurses. A user must never be assigned to the “health care
provider” key chain rather to either a doctor or a nurse.

System 10 therefore, as is shown in FIG. 6, includes a
base layer 30 providing application specific access control
information, middle layers 36 which are flexible semantic
layers, and a top layer 32 used by the local system admin
istrator to assign users to the policy pieces.
The first layer 30 of RBAC model 20 is the application

specific access control mechanism. The goal of this bottom
layer is to encapsulate application specific information So
that it can be incorporated into the higher layers in a uniform
manner. This data could be Unix permission bits, Access
Control Lists (ACLs) on a firewall, or sets of CORBA
methods. The approach is for the application developer to
use their in depth knowledge of the application to create
security policy pieces that can be used to assign access to
USCS.

For example, in a health care system the application
developer groups the accesses needed by a physician into a
key. A doctor assigned to this key has all the necessary
permission to a patient record. Internal to the application key
the policy information may be organized in any way that is
convenient for the application. In one embodiment, GUI 22
is able to display and manipulate the information in the key.
In another embodiment, policy information is displayed in
text.

Each key has a text description of the key’s intended use,
and the kind of access it grants. In one embodiment, a
CORBASEC version 2 provides access control to a CORBA
application. In one such embodiment, as is shown in FIG. 8,
a CORBA application key has four sub-layers (1-4) plus
constraints 6. In the approach shown, constraints 6 are
bound directly to CORBA key chains 4.

In one such embodiment, GUI 22 reads in the CORBA
Interface Definition Language (IDL) file for the application.
From this file the tool discovers the objects that have been
defined for the application and their public methods. Object
methods 1 are grouped into sets (object handles 2) based on
the semantics of the object. Handles, in turn, are grouped
into keys 3. In one embodiment, to control the scope of the
key, keys 3 can only contain handles from within a single
IDL file.

Finally key chains are groups of keys that can span several
IDL files. This allows the application developer to structure
their code independent of system 10 and incorporate all the
necessary privileges. Each key chain corresponds to an
application role and defines the methods that are allowed to
that role.

For CORBA in the DTEL++ environment the interface is
very similar. DTEL++ is NAI Labs implementation of
Domain Type Enforcement for the CORBA object oriented
environment (see, D. Sterne et al., “Scalable Access Control
for Distributed Object Systems, to appear in Proceedings of
the 8th USENIX Security Symposium, Washington, D.C.,
August 1999). In addition to controlling who can access
methods DTEL++also controls who can implement the
method. This is designed to protect the CORBA client from
using hostile servers masquerading as legitimate servers.

In one embodiment, the key viewer for DTEL++ is
identical to the CORBA viewer described above except that
when a key is created it can be marked as an implement key.
When the policy is translated all the users assigned an
implement key get implement permission to the methods
contained in the key. As noted in FIG. 8, constraints 6 can
optionally be associated with key chains 4. Constraints 6 are
used to capture policy information that cannot be repre
sented as sets. Consider, for example, the fact that a role of

US 7,308,702 B1
9

doctor can easily describe the kinds of access a doctor needs
to a patient record. However, it cannot express the fact that
a doctor can only access patient records that have been
assigned to them. These problems parallel the object ori
ented concepts of class and instance.
Once the application specific information has been encap

Sulated into an application key, it can be combined with
other keys to form semantic layers 36 Such as are shown in
FIG. 7. Each layer 36 starts with a set of keys 40 and uses
them to build up key chains 42 representing the policy at that
level. Once key chains have been built, constraints 44 may
be associated with them. The key chains for one layer
become keys 40 of other layers 36. Within a layer 36 keys
40 are atomic units of policy. By drilling down to another
layer 36 the user can determine how the key was composed.

In one embodiment, semantic layers 36 are not just
stacked one on top of the other; the relationship between
semantic layers must be explicitly defined. For example, the
workflow policy for a specific site may only cover the
accounting and medical record applications. Thus the work
flow layer only needs to use the policy components from
accounting and medical records. In one such embodiment,
model 20 requires each policy layer to explicitly import the
policy components from the layers on which they depend.
The result is much like the diagrams used to discuss layers
in a software system (see FIG. 9a). However, a poset more
accurately describes the relationship between semantic lay
ers (see FIG. 9b), where the dotted line shows the local
sysadmin may need to bypass certain layers 36 of policy to
give people direct access to the firewall.

Since in one embodiment semantic layers 36 form a poset,
a single layer 36 could represent any policy represented in
many layers 36. The advantage of semantic layers over a
standard role hierarchy is that they impose well-defined
structure. Adding semantic layers to a role hierarchy does
not increase the depth of the hierarchy. However, the depth
of the hierarchy in each semantic layer is Small, usually two
or three. While hierarchies are excellent tools for program
mers and researchers to use, a depth of seven starts to tax the
limits of understanding. Deep hierarchies are even more
problematic for system administrators without a program
ming background. Semantic layers allow users to focus on
specific portions of the hierarchy increasing policy under
Standing.

In one embodiment, each semantic layer 36 has the
following properties:

1. Each layer produces a set of key chains that can be
exported to other layers as keys.

2. Each layer explicitly lists the other layers it is importing
keys from.

3. Keys cannot be modified within a layer. Only the layer
that created the key can modify it.

4. Keys can be combined within a layer to form key
chains.

5. Key chains can contain other key chains (from the same
layer).

6. Key chains can be marked as abstract, meaning they are
structural place holders like abstract classes. In this
context what this means is that these key chains are not
exported to the next layer.

7. A key chain may have constraints associated with it. If
constraints are associated with a key chain the con
straints must be satisfied before access is granted.

Semantic layers 36 clearly divide responsibility for policy
creation between several different users. However, it is a
static type of administration. The import and export of
policy components make semantic layers more static. The

10

15

25

30

35

40

45

50

55

60

65

10
static nature of semantic layers has little impact because they
are closely tied to static application descriptions. In fact, the
application keys are a part of the application interface that
deals with policy. The application keys change as frequently
as the application interface.
As is shown in FIG. 6, starting from the bottom of RBAC

model 20, there is a general trend for the lower layers to be
more static because they are tied closely with the applica
tion, and the upper layers to be more dynamic. System
administration can be simplified by limiting decisions to
ranges of roles to be managed in the role hierarchy. A
semantic layer is equivalent to a range of roles. Many of the
challenging problems in maintaining policy consistency are
avoided in Such an approach because the new policy is
installed at the same time the latest version of the application
1S.

Changes to the underlying applications will, however, on
occasion require changes at the top level of model 20. For
example, if the sysadmindepends on a “browse' key and the
latest version of the application does not have it, the sysad
mins must recreate their policy to compensate for the loss of
the key. In one embodiment, migration tools are provided to
guide the sysadmin into choosing a new key to replace the
deleted key.
The final layer of RBAC model 20 is identical to the other

layers except that at this level users can be associated with
key chains 42. The top layer is the only layer where such
user role binding takes place. The top layer is also assumed
to be under the control of the local sysadmin. As noted
above, the top layer is more dynamic than the lower layers
as it must respond to the day-to-day operations of network
18. One embodiment of a CORBA-based model 20 is shown
in FIG. 10, where two semantic layers (Application Suite
and Wrappers) are used to transfer security mechanisms to
the system administration layer. A GUI 22 screen which
could be used to define handles is shown in FIG. 11.

In one embodiment, it is assumed that the local sysadmins
are not familiar with the applications and that they must,
therefore, depend on the application developer to create
policy pieces they can use to set up local policies. Invariably
some pieces will not be sufficient. When this is the case, in
one embodiment, GUI 22 allows the sysadmin to “drill
down to other layers 36 and create a new key chain that
meets their requirements. In one such embodiment, Sysad
mins are limited to drilling down only one semantic layer 36.
The next section looks at the issues that arise from trying

to clearly display system 10 concepts to different users with
different responsibilities and varying levels of sophistica
tion. When considering how to display policy information to
a user, an important distinction must be made between
policies that are designed and policies that evolve over time.
A basic premise of RBAC model 22 is that semantic levels

36 are designed. The application developers and system
architects must put as much time developing the security
policy pieces as they would in generating a good API.
Application developers and system architects are familiar
with object-oriented hierarchies. Thus building and main
taining a good role hierarchy is a task they are well Suited to
do.
On the other hand the skills of the local sysadmin can vary

greatly. They may have little or no experience with inher
itance concepts used by the role hierarchy. More importantly
sysadmins usually have a large number of responsibilities
that keep them extremely busy. As a result they do not have
a great deal of time to devote to learning a new tool, and in
particular they do not have time to design a role hierarchy.
In fact, a role hierarchy for a local enclave can quickly

US 7,308,702 B1
11

change due to the introduction of new applications or policy
directives. As a result, a policy created by a sysadmin
evolves over time to meet the needs of the organization.

In one embodiment, GUI 22 is designed to accommodate
both a design and an evolutionary approach to policy
development. The local sysadmin needs a simplified way to
create and maintain the local policy. A role hierarchy may be
needed to express the potential policies, but a poset is a
confusing data structure for the Sysadmin to maintain. The
most effective role hierarchies must be carefully designed,
which the sysadmin does not have time to do. To simplify
the GUI, in one embodiment key chains 42 are prevented
from containing other key chains 42 within local system
administration layer 32. This results in each key chain
simply having a list of keys. One such representative key
chain 42 is shown in FIG. 12, where three keys 40 are
combined to form a standard user key chain 42.

Limiting key chains at local system administration layer
32 to combinations of keys 40 may seem like a drastic
measure but, if the lower semantic layers have done their
job, all the policy pieces should be there for the local
sysadmin. As a result the role hierarchy for the top layer is
very shallow. Practical experience in other environments
shows that the role hierarchy is not very deep, rarely more
than three. For such shallow structures the benefit of the role
hierarchy is Small compared to the gain in simplification.

Simplicity does, however, come with a cost. Lack of a role
hierarchy makes three operations more difficult: 1) visual
izing the relationship between roles; 2) creating a new role;
and 3) global policy changes that affect more than one role.
Each of these drawbacks are discussed in more detail below.
The drawbacks of eliminating role inheritance can be

mitigated by a hybrid approach that constructs a role hier
archy from the lists of keys. In Such an embodiment, each
key chain 42 is a set of keys 40: GUI 22 sorts the key chains
into a partial ordering based on set containment. For
example, a key chain with keys {a, b, c is more powerful
than a key chain with (b. c. Key chains with the most keys
appear on top, key chains with fewer keys on the bottom.
Once the partial ordering is calculated the information is
shown to the sysadmin via a standard role hierarchy graph.
The benefit of this approach is that the sysadmin does not
have to maintain the role to role relationships explicitly, the
tool constructs the role hierarchy for the user.

The first problem is visualization. A role hierarchy is an
excellent way to get a quick Snapshot of the relative privi
leges between roles. For a shallow role hierarchy visualiza
tion is probably not an issue. Furthermore, the constructed
role hierarchy easily can be displayed as a standard role
hierarchy with all the proper visual semantics.

The second problem is in creating a new role. In a role
hierarchy, the new role is created by first determining its
parent. The role derives most of its content from the parent.
Without a role hierarchy there is no parent so all of the keys
for the new role have to be specifically added. To make role
creation simpler without a role hierarchy, in one embodi
ment, the user is allowed to select keys or key chains to add
to new key chains. Since the underlying structure is based on
sets, duplicate keys are eliminated during the process. In one
Such embodiment, creating a new role starts with creating an
empty key chain. The user can then select a set of keys from
other key chains or a set of key chains to copy into the new
key chain.
The third difficulty arises from the fact that low level

constraints 44 could be modified in a single place and that
these changes would directly impact all the senior roles.
Consider the policy in FIGS. 13a and b. In FIG.13a, system

10

15

25

30

35

40

45

50

55

60

65

12
10 includes role inheritance. In Such an approach, the local
policy has changed; now, all employees were allowed to
browse the web. With a role hierarchy the “browse” key
could be added to the employee node and the permission
would automatically flow up the hierarchy.
On the other hand, as can be seen in FIG. 13b, without

role inheritance there would only be three roles: primary
physician, consulting physician and nurse (because the
abstract roles do not exist). Without role inheritance the
“browse' key must be added directly to the three roles.
Initially, adding two extra keys does not seem like a great
burden compared to eliminating the complexity of main
taining a poset.

In one embodiment, the user makes global policy changes
by adding or deleting keys from the constructed role hier
archy. System 10 then translates the operation from the
constructed hierarchy to the underlying roles. Creating a
new role could also be done using the constructed hierarchy
to indicate the parent and the role's context. The constructed
hierarchy obtains the advantages of the role hierarchy with
out the complexity of designing and maintaining it.

Eliminating the role hierarchy only makes sense, how
ever, when the security policy is evolving. Clearly a
designed policy is more desirable, but design takes effort and
So it is best Suited for a static environment. A well-designed
role hierarchy represents constraints, such as “all employees
can access the online vending machine'. When GUI 22
calculates the partial ordering, however, there are no seman
tics associated with the relationship between roles. Elimi
nating role inheritance simplifies maintenance only if the
operations of creation of new roles, and adding global
constraints are rare. If they happened frequently a role
hierarchy is the best approach.

Scale is another factor. Role hierarchies scale better than
flat lists as the number of roles goes up. So if assumptions
about the number of sysadmin roles are wrong, a role
hierarchy may be a better approach. In fact, a hybrid
approach is possible. A sophisticated Sysadmin may create a
new semantic layer 36 just below top layer 32. The new
layer would have a role hierarchy for capturing the more
static sysadmin’s constraints. The top layer retains the
simplified interface for the rapidly changing portions of the
policy.

While each semantic layer has to meet the conditions
outlined above, how each semantic layer 36 is presented to
the user can very greatly. The distinguishing characteristic of
each layer is semantics, which implies each layer 36 could
be presented differently based on those semantics. For
example, in a workflow layer the order of the steps is
important to the user but not to the model. The viewer must
include the step order information to provide the user with
the context they need. Thus, in one embodiment, GUI 22
Supports a separate viewer for each layer.

Sometimes, however, it is simply the grouping of keys
that provides semantics, such as in the case of an application
Suite layer. In these cases a generic viewer is needed that
provides an interface for manipulating keys and key chains.
Often the cost of creating a specific viewer for a layer is
prohibitive. In these cases the generic viewer can also be
used.

Application development layer keys pose an interesting
problem. Each security mechanism, for the most part, has
already developed a way for viewing its policy. Rather than
duplicate the GUI of the original mechanism, in one embodi
ment it is possible to use the security mechanism’s native
GUI remotely from GUI 22. For example, a firewall GUI can
be used to manipulate user ACLS on a proxy.

US 7,308,702 B1
13

At other times the native viewing mechanism is too
complex or does not lend itself well to being encapsulated.
In Such cases an opaque key can be created. An opaque key
is a construct for representing policy pieces that cannot be
manipulated by the user in system 10. The administrator
cannot “drill down into the key, only the key’s description
of its intended use is provided. The opaque key represents
Some access privilege. No access control information
resides, however, in the opaque key. The access control
details are filled in when the policy is translated to the target
mechanism. The opaque key approach lets the user assign
predefined privileges for complex access control mecha
nisms.
Once a security policy has been specified in system 10 it

must be translated to the application specific security mecha
nisms. In one embodiment, the translation process works
much like a compiler. A great deal depends on the security
mechanism Supported.

In one CORBA embodiment, the entire policy is trans
lated to each target mechanism. In another embodiment,
parts of the policy are translated to different security mecha
nisms. For example, Pledge enforces part of the policy and
DTEL++enforces the rest.
A translator can also be designed for Microsoft's COM/

DCOM distributed object protocol. To enforce access con
trol on methods in DCOM, DCOM interceptors were
designed to access requests, providing fine-grained access
control.
The work with policy translation has provided two impor

tant lessons. First, sets provide an excellent starting point for
combining and working with policy. Building a translator
once the security mechanism is in place is usually a simple
matter of conversion taking less that two weeks.

Second, a relational database is useful for converting
set-based policies. The database allows one to construct
queries to pull out the relevant pieces. For example, the
DTEL++ translation relies heavily on a relational database
to calculate the minimum number of equivalence classes for
DTEL++ types.
Workflow

System 10 also provides a practical solution for business
process control, or workflow, policy management. System
10 addresses two challenges posed to workflow technology
developers: simplify policy management and Support dis
tributed computing systems. The layered model of system 10
simplifies policy management by dividing the burden among
all principals in the systems development. System 10 Sup
ports distributed computing systems by providing policy
translators for the various enforcement mechanisms in the
distributed system. Modeling workflow in system 10 is
simple, because the underlying concepts of workflow are
consistent with the RBAC model. However, implementing
workflow is more complicated. RBAC policies are primarily
class-based, but workflow policies are very much instance
based.
As discussed above, each model 20 policy layer can be

fashioned by a different person. In one embodiment, system
10 uses a role-based access control (RBAC) modeling
environment. The environment consists of a policy model
and a software tool for defining and managing the model. In
one such embodiment, the Software tool is implemented in
Java with a model-view-controller architecture.
As discussed above, model 20 is multilayered (see, e.g.,

FIGS. 3, 4 and 6). In one embodiment, each layer defines a
set of roles that become policy building blocks for all layers
dependent on that layer. The bottom policy layer defines the

10

15

25

30

35

40

45

50

55

60

65

14
most primitive access control policy. This policy layer is
typically application specific and is defined in terms of the
access control mechanisms that manage the applications
resources. The second through penultimate layers use the
roles defined at other layers to create even more abstract
roles that simplify policy management. There can be an
arbitrary number of layers; new layers can be introduced as
required. Roles defined in the top layer are assigned to users.

Each policy layer can be fashioned by a different designer.
Application designers define the bottom layer because they
understand best what their resources are and how access to
these resources should be constrained. Several designers
may contribute to a single layer (e.g., there may be several
applications represented in the bottom layer).

System administrators define the top layer since they
know who their users are. Intermediate layers may be
designed by a number of people. As noted above, an
application Suite designer may group the roles of participat
ing applications into roles for the Suite. A system integrator
may create more abstract roles based on the Suite roles.

It is important to note that layers in model 20 may not be
strictly one above the other. A particular layer may, for
instance, build on roles defined in any layer below it, not just
the layer immediately below it.

For example, the local system administrator is not
restricted to roles defined in the penultimate layer. Roles
assigned to users can be culled from any layer as needed.
As noted above, model 20 uses the metaphor of a key to

simplify policy management. A key corresponds to a role.
Within each layer, keys are collected into key chains for
easier handling. Keys cannot be exported directly to higher
layers, but they can be incorporated into a key chain with
only one key. In one embodiment, key chains can also
contain other key chains. Such an approach supports role
hierarchies.

In one embodiment, model 20 is capable of associating a
constraint with each key chain. The constraints place addi
tional restrictions on the use of the key chain. For example,
a key chain may allow access to patient medical records, but
constraints may prevent the holder of the key chain from
accessing any records for which the holder is not the primary
care physician. FIG. 14 illustrates how keys and key chains
are used to build semantic layers 36 in RBAC model 20.
By building semantic layers with keys and key chains,

system 10 enables the use of a graphic user interface Such as
GUI 22. In one embodiment, GUI 22 includes a viewer for
each layer of the model. As noted above, while the middle
layers of the model are identical structurally, they may differ
semantically depending on the designer, so a different
viewer is Supported in each case. The tool manages the
export and import of keys between layers and directs the
policy translators to convert the policy rules of model 20 into
the enforcement languages of the underlying policy enforce
ment mechanisms. In one embodiment, GUI 22 is very
modular; new viewers and policy translators can be added
easily.

Consider a simple example of a hospital data system that
is composed of two applications: a CORBA application used
by the medical staff to record and share patient information
and a COM billing application. The hospital purchased these
applications from a third party integrator. The systems
RBAC policy is modeled in system 10 as three layers, which
are illustrated in FIG. 15.

In the bottom layer, the designers of the CORBA appli
cation and the COM application define their application
policies independently. For CORBA and COM-based appli
cations, system 10 gathers a list of Supported operations, or

US 7,308,702 B1
15

methods, automatically from the applications interface defi
nition language (IDL) files. In one embodiment, each appli
cation designer uses GUI 22 to group these methods into
convenient sets called handles and then to assign handles to
keys. A key designates that the holder has permission to
execute the associated methods. Since CORBA and COM
are object based, controlling access to an objects methods
is sufficient for controlling access to the object itself.

To define the application security policy, the application
designer uses GUI 22 to collect keys into key chains and
marks the key chains for export to higher model layers. By
marking key chains for export, the application developer
creates policy building blocks for other layers to build upon.
It is similar to creating a software interface. In one embodi
ment, anything not explicitly included in the interface is not
available for use outside the layer.

For our simple example, the CORBA-based, patient infor
mation application designer exports two key chains: a CAR
EGIVER key chain 50 for creating and modifying patient
records and a CONSULTING key chain 52 for only viewing
patient records. The COM-based billing application designer
also exports two key chains: an ACCOUNTANT key chain
54 for generating billing data and an AUDITOR key chain
56 for only viewing billing data. These four key chains
represent application-specific roles that are available as
building blocks for higher layer policies. In the middle layer,
an application Suite integrator imports the four key chains
from the application layer. Once a key chain is exported, it
is considered an atomic entity, So it is considered a key by
all higher layers. The application Suite integrator is charged
with defining a policy that spans all applications in the Suite.
In this example, the application Suite builds three key chains
for export: the ADMIN key chain 58 that contains the
CONSULTING key 60 and the ACCOUNTANT key 62, a
PROVIDER key chain 64 that contains the CAREGIVER
key 66, and a REVIEWER key chain 68 that contains the
CONSULTING key 60 and the AUDITOR key 70.
PROVIDER key chain 64 includes a constraint 72 that the

holder must be a primary care provider for the patient whose
records are being accessed. At the top layer, the three key
chains 58, 64 and 68 exported from the middle layer
(ADMIN, PROVIDER and REVIEWER) are available as
simple keys. In one embodiment, the four key chains 50, 52.
54 and 56 exported from the bottom layer (CAREGIVER,
CONSULTING, ACCOUNTANT and AUDITOR) are also
available in the event that ADMIN, PROVIDER and
REVIEWER are not sufficient, but they are not immediately
visible.

While the hospital is tied to a regional information
network, it employs a small staff that must wear many hats.
The system administrator uses system 10 to create three key
chains to assign to users: the DOCTOR key chain 74
contains only the PROVIDER key 76, the INSURANCE
key chain 78 contains only the REVIEWER key 80, and the
CLERK key chain 82 contains only the ADMIN key 84.

In one embodiment, constraints applied to any keys
contained in a key chain apply to the key chain also. For
example, a user in the DOCTOR role can only modify
patient records for which the user is the primary care
physician. Once the hospital’s security policy is defined, the
system administrator directs Napoleon to translate the policy
for the CORBA and COM object managers. These object
managers enforce the policy for their respective objects. In
other words, as users attempt to access patient records or
billing data, the object managers ensure that the users have
the appropriate role and that stated constraints are satisfied.

10

15

25

30

35

40

45

50

55

60

65

16
A workflow is “the computerized facilitation or automa

tion of a business process, in whole or part.” Workflow
technology is a promising solution for protecting business
assets, because it controls not only who has access to what
but when that access occurs. Workflow can be represented as
a directed graph with one entry. Each node in the graph is a
workflow activity, or step; the edges determine the order in
which steps must occur. One or more objects to be accessed
are associated with each step (e.g., “check request'), as are
the operation or operations to be performed (e.g., “approve
check request” and the performer (“MANAGER).

Riddle W. Riddle, “Fundamental process modeling con
cepts”. Workshop on Workflow and Process Automation in
Information Systems, National Science Foundation, May
1996 identifies the fundamental concepts of workflow and
describes the relationships between them. According to
Riddle, a “step” is a unit of work. It may require several
resources to complete. Associated with the step are those
resources and the role required to perform it.
A “work product is an artifact created or modified by

steps. Steps use and produce work products. A “role”
represents the accesses that are required to perform a step.
A “workflow condition' is a predicate that must be satisfied
during step performance. It is often expressed as entry and
exit conditions on the step, that is, the step can begin when
and can end when the conditions are true. A "performer is
a person or tool with the skills necessary to complete the
step. A role may require special skills and therefore a
specific performer. Finally, a “method is an approach for
carrying out a step. A step can be performed using one of
several methods. The performer can do these methods.

Several of these concepts, such as roles, methods and
performers, are also fundamental concepts for RBAC. Even
the concept of work products is familiar; it is just a different
name for the resources to be accessed. Only steps and
workflow conditions are really new. FIG. 16 illustrates
Riddle's concepts using a role-based perspective, rather than
a more traditional step-based view.
From this perspective, steps 100 are like sub-roles. That

is, steps define a group of accesses that are specific to a task.
Workflow conditions determine when the sub-roles are
active. A role 102, then, is a collection of steps 100 and their
associated workflow conditions.

Workflows are enforced by a workflow management
system (WMS). The user interacts with the WMS to gain
access to resources controlled by the workflow. Automated
workflow technology has evolved significantly since it was
introduced thirty years ago for office automation systems.
Early workflow systems did not acknowledge the variety of
ways that humans perform a task. So researchers focused on
better modeling techniques, and today workflow research is
more interdisciplinary: a combination of computer Science
and Social Science. The WMS must encompass non-com
puter activities such as meetings, handle unexpected con
tingencies, and allow new workflows to be constructed from
existing workflows. Workflow process models must be rec
onciled with the rich variety of activities and behaviors that
comprise “real work'. In short, workflow management is a
complex activity, and we want to leverage existing technol
ogy as much as possible.

Workflow management can be simplified considerably by
adopting an RBAC model. Many role-based models, how
ever, fail to include the role authorization constraints that are
required for workflow. Since system 10 is capable of defin
ing and applying role constraints, it is a good candidate for
workflow policy management.

US 7,308,702 B1
17

In one embodiment, as is shown in FIG. 17, a workflow
enforcement system 200 includes a system 10 connected to
a workflow management system 202. System 10 is a policy
management tool. While it may be tempting to extend
system 10 with workflow management features, the com
plexity of workflow management would overwhelm it.
Instead, system 10 is used as the policy management engine
for a WMS 202. System 10 is used simply to specify and
enforce certain aspects of the workflow policy.

In one embodiment, workflow in system 200 is defined in
WMS 202 and imported into system 10. In one such
embodiment, workflow is imported as a collection of steps.
It is not necessary to import the workflow conditions asso
ciated with each step, although Such conditions could be
modeled in system 10.

In one embodiment, workflow is modeled as a new layer
in system 10. The new layer looks structurally like the other
layers; that is, it has keys and key chains with associated
constraints. The difference is in how the layer is built and
interpreted. The new layer is called “the workflow layer”
and a new designer, the workflow administrator, is respon
sible for its design.

In one embodiment, the workflow administrator begins by
assessing the keys that are available for the workflow. The
workflow often will require certain operations to be per
formed. If those operations are not represented in the avail
able keys, the workflow administrator must create new keys.
Once the necessary keys are imported, the workflow admin
istrator collects the keys required for each step into a key
chain that represents the step. The collection of key chains
defined in this layer map one to one to the collection of steps
in the workflow. The workflow administrator marks each
step for export to the next layer, where they are assigned to
the roles that will perform them. Several steps may be
performed by the same role.

To illustrate this process, let us return to the hospital
scenario described above. Suppose the system administrator,
who also happens to be the workflow administrator, wants to
specify the simple workflow illustrated in FIG. 18. This
workflow states that whenever a DOCTOR updates a
patient’s medical record with treatment information, the
CLERK must prepare a bill for the treatment. The bill must
then be reviewed by the INSURANCE representative, who
may authorize partial payment. Finally, the CLERK bills the
patient for the remaining balance.

This workflow ensures that all bills are reviewed by the
insurance representative before they are mailed to the
patients, and it ensures that no insurance payment is autho
rized without a bill.

FIG. 19 illustrates how a new workflow layer within
model 300 is constructed. The bottom and second layers are
constructed as before. Then the workflow administrator
(who may be the system administrator) imports the keys
(PROVIDER 76, ADMIN 84 and REVIEWER 80) neces
sary to perform the workflow from the second layer. (If these
keys are insufficient to adequately describe the workflow, the
workflow administrator could revisit the lower layers and
construct additional keys.)

Keys 76, 80 and 84 are collected according to the steps
that require them. Step 1 requires only PROVIDER key 76.
Steps 2 and 4 require ADMIN key 84, so ADMIN key 84
appears on two separate key chains (302 and 304). If
different operations are required between the two steps, we
could introduce constraints on one or both of the key chains
302 or 304. Finally, step 3 requires only REVIEWER key
80.

5

10

15

25

30

35

40

45

50

55

60

65

18
The workflow administrator marks these four steps for

export to system administrator level 310, where they are
assigned to the roles (DOCTOR 74, CLERK82 and INSUR
ANCE 78) that will perform them. In the case of a role that
can perform multiple steps (for example, CLERK), con
straints are used to determine the appropriate step.
The main difference between a system 10 model without

workflow and a system 10 model with workflow is that the
latter divides roles into sub-roles by task. A system 10 model
simply describes sets of sets, so the division is natural.
However, as we will discuss next, there are huge differences
in how these models are enforced.

System 10 is designed to provide central policy manage
ment with distributed policy enforcement. Once the policy is
defined, it is “pushed out” to the various enforcement
mechanisms in the distributed system. If the policy changes,
the new version is pushed out. System 10 makes no access
decisions itself.

Workflow management, on the other hand, requires some
central policy enforcement. First, there can be many
instances of a workflow active simultaneously. The accesses
permitted a specific user may vary depending on the
instance. Each access request must be bound to the appro
priate instance, and that binding must occur in the WMS.

Second, for each workflow instance only one step (the
current step) is active at any time. From an access control
perspective, the permissions associated with the current step
are granted only when the step begins and are revoked
immediately after the step concludes. Each instance of a
workflow may have a different current step at any point in
time. The WMS must track the current step for each work
flow instance in order to determine appropriate accesses.
Our initial investigation focused on ways to enforce work

flow entirely within the local enforcement mechanisms. To
satisfy workflow’s central enforcement needs, it was thought
that a workflow object would track the current step for each
instance of a workflow. That is, system 10 would create the
workflow object and bind it to the resources it controls. For
each access request, the local enforcement mechanism
would examine the corresponding workflow object and
verify that the request is approved for the current step. If the
request is approved, the local policy ("pushed out as usual
by system 10) would be enforced for that resource. The local
enforcement mechanism would update the workflow
objects indicator of current step as required.

There are several disadvantages with this approach. First,
system 10 must be modified considerably to create and
distribute workflow objects. Second, each access request
requires an additional permission check to the workflow
object, which may be expensive. Third, the enforcement
mechanisms must be trusted to update the current step
correctly. An enforcement mechanism could circumvent the
workflow policy with malicious updates. Fourth, this
approach would duplicate much of the workflow manage
ment processing already handled by WMS 202. Clearly this
approach is very invasive, so we refocused our efforts on a
solution that leaves system 10 and the local enforcement
mechanisms relatively unchanged.

Policy enforcement can be partitioned into three layers,
from lowest to highest: controlling access to resources,
controlling access to steps and application-specific enforce
ment. A useful split occurs in the middle, or step, layer. Steps
are a natural primitive for workflow designers. A WMS is
specialized to create steps, determine their proper order and
control execution of work flow instances according to that
order. These operations are unique to workflow technology.
However, access for a particular role to the resources asso

US 7,308,702 B1
19

ciated with a particular step can be controlled by mecha
nisms that are commonly available in non-workflow
domains.
Our Solution exploits these partitions by assigning the step

layer and the application-specific layer to WMS 202 and by 5
assigning the resource layer to system 10. Workflows, their
steps and workflow conditions are specified within WMS
202. The steps are then exported to system 10, where
resources and roles are bound to them. During workflow
execution, WMS 202 manages workflow instances and 10
directs system 10 to grant and revoke access, as appropriate,
to specific steps. Workflow conditions are enforced by WMS
202 because they determine when the access grantings and
revocations should occur.
A high-level design of our solution is illustrated in FIG. 15

19. This design illustrates two modes: policy specification
mode and workflow execution mode. Operations for policy
specification mode are noted in italics, while operations for
workflow execution mode are noted in ordinary text. A
classical workflow management system will isolate these 20
modes into two modules: a specification module, which
enables administrators to specify the workflow, and an
execution module, which assists in coordinating and per
forming the procedures and activities. Traditionally the
specification module is used only in pre-execution; however, 25
researchers are recognizing the need for the two modules to
co-evolve to handle dynamic change and exception han
dling.
The best way to explain the architecture is with a simple

scenario for creating and executing a workflow. 30
The workflow designer begins by specifying an access

control policy that will apply to all instances of the work
flow. The designer creates the workflow and its steps using
the specification tools in WMS 202. This information is then
exported to system 10, where the binding of resources and 35
roles to steps (as described above) occurs. System 10 has
already gathered a list of available object classes from the
IDL files of its object managers. This list is also provided to
WMS 202 for creating workflow instances as described
below. When this process is complete, the designer has 40
created an access control policy for a particular class of
workflow. This policy names the roles required, it identifies
the steps that each role may take and the class of resources
that can be accessed at each step.

The policy is, however, incomplete. It does not have 45
enough information to control a workflow instance. For
example, it does not name individual objects. The objects
that may be accessed will depend on the current step of a
workflow instance. Therefore, system 10 holds onto the
policy for now; that is, it does not “push out the policy for 50
the enforcement engines.

Creating a workflow instance will be discussed next. At
this point, system 10 is loaded with a set of access control
policies for workflow classes. A workflow instance gets
created when some event occurs to trigger it. For example, 55
a user requests a check reimbursement form, or a notification
appears in a users in-box. When Such an event occurs,
WMS 202 determines the appropriate workflow for the
event and creates a new instance of that workflow. The
workflow instance is stored locally at WMS 202. The 60
instance names the specific objects that may be accessed and
the specific users that may access them.
When a workflow instance is created in WMS 202, it must

also be created in system 10. In one embodiment, WMS 202
provides system 10 with the necessary information to instan- 65
tiate the appropriate workflows class access control policy,
which means providing constraints such as “if object is

20
named foo.txt that will be added to the instance copy in
system 10. The instance policy names (via constraints) the
specific objects that can be accessed. If all specific objects
are not known when the instance is created, WMS 202 may
provide additional constraints for that instance later.

In Summary, the workflow instance definition in system
10 looks like the class definition except that it also contains
the constraints that name specific objects.

Executing the workflow instance will be discussed next.
The execution phase highlights the simplicity of this solu
tion. WMS 202 controls the execution of the workflow
instance. It determines the proper sequence of steps (e.g.,
what branches are executed), and it knows which steps are
active. It decides when a step should start (become active)
and when it is completed (and thus become inactive). WMS
202 does what it implies: it manages the workflow. How
ever, it relies on system 10 to manage the access control
policy. As the workflow executes, WMS 202 directs system
10 to grant access to the active steps and revoke access to
inactive steps. No policy is translated for the object man
agers unless directed by WMS 202.

For example, suppose that step 1 of workflow instance P
is active. Once step 1 is complete, WMS 202 directs system
10 as follows:
Revoke access to step 1 in instance P, then grant access to

step 2 in instance P.
Note that system 10 runs in tandem with WMS 202. With

regard to policy translation, the only change in System 10's
behavior is that it now “pushes out the policy a step at a
time rather than all at once.

CONCLUSION

The use of semantic layers within RBAC model 20
simplifies the structure and allows the model to clearly
divide the process of creating security policy among several
different users. One of the benefits of model 20 as defined
above is the encapsulation of application specific security
mechanisms into a unified environment. GUI 22 and the
key/key chain paradigm provide a flexible approach for
manipulating a security policy across a heterogeneous popu
lation of security mechanisms. System 10 greatly simplifies
the task of policy creation and maintenance for the over
worked systems administrator.

In addition, System 10 provides a method for adding and
removing applications with minimal impact on other seman
tic layers, or on the local system administration layer. In a
manner similar to the OSI TCP/IP model, clearly defined
semantic boundaries can be used to create plug-and-play
system security.
We have described a workflow management architecture

that incorporates system 10 for workflow policy manage
ment. The architecture exploits the natural partitions in
workflow policy management by assigning workflow spe
cific tasks to the WMS and workflow-generic tasks to system
10. This approach lets each tool do what it does best. System
10 offers many benefits to workflow management, including
simplified policy management and Support for heteroge
neous, distributed computing systems.

System 10's flexible model lets workflow be introduced at
any layer. The support for distributed systems lets a work
flows control extend beyond the local system or local
network. For instance, a business's divisions may be flung
far across the Internet; workflows may span several divi
sions or even several companies (supplier, distributor, etc.).
Also, a workflow may need to control resources under the
purview of legacy enforcement mechanisms as well as

US 7,308,702 B1
21

resources managed by newer standards like CORBA. In fact,
the WMS does not have to know how the resources under its
control are managed. System 10 acts as a “universal adapter”
between the WMS and the policy enforcement mechanisms.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement which is calculated to
achieve the same purpose may be substituted for the specific
embodiment shown. This application is intended to cover
any adaptations or variations of the present invention. There
fore, it is intended that this invention be limited only by the
claims and the equivalents thereof.
What is claimed is:
1. In a system having a computer and one or more security

mechanisms, a computer-implemented method of defining
and enforcing a security policy, the method comprising:

encapsulating security mechanism application specific
information for each security mechanism, wherein
encapsulating includes forming a key for each security
mechanism using an application layer;

combining keys to form key chains;
encapsulating key chains as keys and passing the key

chain keys to another semantic layer;
defining the security policy, wherein defining includes

forming key chains from keys and associating users
with key chains;

importing a key from the semantic layer to a local policy
layer;

executing, within a computer, translation software,
wherein the translation software translates the security
policy and exports the translated security policy to the
security mechanisms; and

enforcing the security policy via the security mechanisms.
2. The method of claim 1 wherein the security mecha

nisms are located on one or more distributed computer
networks.

3. The method of claim 1 wherein the security mecha
nisms are heterogeneous.

4. The method of claim 1, wherein defining the security
policy further includes drilling down into a next lower
semantic layer to form a new key chain.

5. The method of claim 1 wherein the security policy is
defined using a graphical user interface.

6. An article comprising a computer readable medium
having instructions thereon, wherein the instructions, when
executed in a computer, create a system for executing the
method of claim 1.

7. A computer-based security system for a computer
network, the computer-based security system comprising:

a computer;
a plurality of security mechanisms;
a plurality of semantic layers within a model implemented
on the computer network, wherein the two or more of
the semantic layers include keys combinable into key
chains, the key chains are able to be encapsulated as
key chain keys, and the key chain keys are exportable
to another semantic layer, wherein the model also
includes an application layer to encapsulate a security
mechanism into a key and a local policy layer to
associate a user to a key wherein each key encapsulates
security mechanism application specific information
for a security mechanism;

a user interface for defining a security policy as a function
of keys received from a lower semantic layer; and

a translator, implemented on the computer, for translating
the security policy to the security mechanisms.

10

15

25

30

35

40

45

50

55

60

65

22
8. The system according to claim 7 wherein the user

interface is a graphical user interface.
9. The system according to claim 7 wherein the security

policy is a role-based access control model.
10. The system of claim 7 wherein the semantic layers

form a poset.
11. The system of claim 7 wherein the user interface

includes means for drilling down into a lower semantic layer
to form a new key chain.

12. A computer-based security system for a computer
network, the computer-based security system comprising:

a computer;
a model implemented on the computer network, the

model comprising semantic layers for defining different
security policies and constraints for each type of user,
wherein the model comprises a static application policy
layer, two or more semantic policy layers, and a
dynamic local policy layer,

a tool for manipulating the model, wherein the tool is
configured to:
encapsulate security mechanism application specific

information for each security mechanism, wherein
encapsulating includes forming a key for each Secu
rity mechanism;

combine keys to form key chains;
encapsulate key chains as key chain keys within two or
more semantic layers;

pass the key chain keys to other semantic layers;
form user key chains from the key chain keys; and
associate users with the user key chains; and

a translator, implemented on the computer, for translating
security policies from the model to security mecha
nisms in one or more computer resources.

13. The system of claim 12 wherein the model represents
a set of access rights for a computer resource as a key and
the model represents a set of keys as a key chain.

14. A computer-implemented method of defining a secu
rity policy, the method comprising:

defining an application policy layer and a plurality of
semantic policy layers, including a first semantic policy
layer and a second semantic layer,

encapsulating a set of access rights for a computer
resource as a key:

combining keys to form one or more key chains within the
application policy layer,

executing Software within a computer to export key
chains in the application policy layer as a key;

importing at least one key from the application policy
layer into the first semantic policy layer;

combining one or more keys in the first semantic policy
layer to form a key chain;

exporting key chains in the first semantic policy layer as
keys;

importing at least one key into the second semantic policy
layer;

combining one or more keys in the second semantic
policy layer to form a key chain;

exporting key chains in the second semantic policy layer
as keys;

importing at least one key from the second semantic
policy layer to a local policy layer;

combining one or more keys in the local policy layer to
form one or more local policy key chains; and

assigning users to local policy key chains in the local
policy layer.

US 7,308,702 B1
23

15. The method of claim 14 wherein combining one or
more keys to form a key chain includes combining a key
chain with the one or more keys to form another key chain.

16. The method of claim 14 wherein combining one or
more keys in the first semantic layer includes combining a
key chain with the one or more keys to form another key
chain.

17. The method of claim 14 wherein combining one or
more keys to form a key chain includes associating a
constraint with the key chain, wherein the constraint must be
satisfied before access to a computer resource governed by
the key chain is granted.

18. The method of claim 14 wherein encapsulating
includes grouping methods into handles and handles into
keys.

19. The method of claim 18 wherein each key chain
includes handles for different computer resources.

20. The method of claim 14 wherein combining one or
more keys to form a key chain includes marking the key
chain as abstract, wherein key chains marked as abstract are
not exported to other layers.

21. The method of claim 14 further comprising combining
one or more keys and key chains in the local policy layer to
form a new key chain in the local policy layer.

22. An article comprising a computer readable medium
having instructions thereon, wherein the instructions, when
executed in a computer, create a system for executing the
method of claim 14.

23. A computer-implemented method of defining a secu
rity policy, the method comprising:

defining an application policy layer and a semantic policy
layer;

encapsulating a set of access rights for a computer
resource as a key:

combining keys to form one or more key chains within the
application policy layer,

executing software within a computer to export key
chains in the application policy layer as a key;

importing at least one key from the application policy
layer into the semantic policy layer,

combining one or more keys in the semantic policy layer
to form a key chain;

exporting key chains in the semantic policy layer as keys;
importing at least one key from the semantic policy layer

to a local policy layer;
combining one or more keys in the local policy layer to

form one or more local policy key chains; and
assigning users to local policy key chains in the local

policy layer.
24. The method of claim 23 wherein combining one or

more keys in the semantic policy layer to form a key chain
includes combining a key chain with the one or more keys
to form another key chain.

25. The method of claim 23 wherein combining one or
more keys in the local policy layer to form a key chain
includes combining a key chain with the one or more keys
to form another key chain.

26. The method of claim 23 wherein combining one or
more keys in the semantic policy layer to form a key chain

10

15

25

30

35

40

45

50

55

24
includes associating a constraint with the key chain, wherein
the constraint must be satisfied before access to a computer
resource governed by the key chain is granted.

27. The method of claim 23 wherein combining one or
more keys in the local policy layer to form a key chain
includes associating a constraint with the key chain, wherein
the constraint must be satisfied before access to a computer
resource governed by the key chain is granted.

28. The method of claim 23 wherein encapsulating
includes grouping methods into handles and handles into
keys.

29. The method of claim 28 wherein each key chain
includes handles for different computer resources.

30. The method of claim 23 wherein combining one or
more keys to form a key chain includes marking the key
chain as abstract, wherein key chains marked as abstract are
not exported to other layers.

31. The method of claim 23 further comprising combining
one or more keys and key chains in the local policy layer to
form a new key chain in the local policy layer.

32. An article comprising a computer readable medium
having instructions thereon, wherein the instructions, when
executed in a computer, create a system for executing the
method of claim 23.

33. A computer-implemented method of modifying a
security policy, the method comprising:

defining an application policy layer and a semantic policy
layer;

encapsulating a set of access rights for a computer
resource as a key:

combining keys to form one or more key chains within the
application policy layer,

executing Software within a computer to export key
chains in the application policy layer as a key;

importing at least one key from the application policy
layer into the semantic policy layer,

combining one or more keys in the semantic policy layer
to form a key chain;

exporting key chains in the semantic policy layer as keys;
importing at least one key from the semantic policy layer

to a local policy layer,
combining one or more keys in the local policy layer to

form one or more local policy key chains;
assigning users to local policy key chains in the local

policy layer;
constructing a role hierarchy by Sorting the key chains

into a partial ordering based on set containment;
displaying the partial ordering as a role hierarchy graph;

and
adding and deleting keys from the role hierarchy graph.
34. An article comprising a computer readable medium

having instructions thereon, wherein the instructions, when
executed in a computer, create a system for executing the
method of claim 33.

