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ware objects. Task priorities are assigned inversely with 
period or deadline, So that tasks with shorter periods or 
deadlines have higher Scheduling priorities. Periods of high 
criticality tasks are decomposed into Smaller pieces that are 
Sequentially dispatched at higher rates where the initial 
assignment of priority is inconsistent with task criticality. 
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among periodic processes. 
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TASK SCHEDULING AND MESSAGE 
PASSING 

The Government may have rights in this invention pur 
Suant to Contract No. DAAHO1-97-C-R233, awarded by the 
Department of the Army. 

TECHNICAL FIELD 

The present invention relates generally to task Scheduling 
and message passing within task Systems, and in particular 
to modeling real-time periodic and aperiodic task Scheduling 
and message passing adapted to analyze the timing behavior 
within multitask Systems and to define electronic Systems 
and instructions for carrying out Such Scheduling and mes 
Sage passing. 
A portion of the disclosure of this patent document 

contains material which is Subject to copyright protection. 
The copyright owner has no objection to the facsimile 
reproduction by anyone of the patent disclosure, as it 
appears in the Patent and Trademark Office patent files or 
records, but otherwise reserves all copyright rights whatso 
ever. The following notice applies to the Software and data 
as described below and in the drawings hereto: CopyrightC) 
1999, Honeywell, Inc., All Rights Reserved. 

BACKGROUND 

Computer processes are often Subdivided into a variety of 
functions which may be executed as tasks in Serial and/or 
parallel fashion. These computer processes can be used to 
gather and act upon information, and to bring about Some 
result in response to the information. These functional task 
Systems find use in a variety of important environments. 
Examples may include monitor and control of an industrial 
process, Such as a power generation and distribution System, 
or monitor and control of complex equipment, Such as a 
commercial airliner. 

Classical control functions rely on data flows between 
periodically executed tasks, with the results of a task deliv 
ered at the next dispatch of that task. This behavior allows 
cyclic data dependencies among tasks, i.e., feed-back loops, 
and is consistent with the assumptions underlying the math 
ematical analysis of discrete time dynamic Systems. A mes 
Sage passing communication model is more Suitable for 
partitioned multiprocessor Systems than a shared memory 
communication model, especially Systems that are loosely 
coupled to maintain a high degree of hardware fault isola 
tion. 

In many mission critical Systems Software needs to be 
modularized using an appropriate functional breakdown, 
which often requires decomposing a traditional control task 
into multiple communicating Subtasks. This may require 
end-to-end ordering and Scheduling of certain Subtasks and 
messages. For example, in an avionics System, inertial 
measurement processing and autopiloting might be imple 
mented as Separate functions performed by Separate task 
Sets. There would be an end-to-end deadline from reading 
Sensor data to outputting actuator commands, and task and 
message order dependencies within this deadline. 

The increasing complexity of hardware makes it harder to 
accurately bound computation and communication times. 
Caches, for example, make it more difficult to accurately 
bound worst-case compute times, even for algorithms whose 
control flow is data-independent. Actual worst-case compute 
times may be Substantially less than bounds that can be 
easily established during development. Actual compute 
times may vary significantly acroSS different dispatches of 
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2 
the same task. Systems will be designed So that only the 
more critical functions are guaranteed with highest assur 
ance to be Schedullable under worst-case compute time 
bounds. Load Shredding of the leSS critical tasks will occur 
during any intervals of transient processor overload. 

High-assurance Systems have additional requirements. 
The dependency ordering of computations and 
communications, and the exact times of interactions with the 
external World, must produce deterministic outcomes. 
Uncertainties or variations in task compute times must not 
affect the values of designated control outputs. It is neces 
Sary to formally model and analyze the timing behavior of 
a System. Specifications, models, analyses and code all need 
to be well-structured, understandable, traceable and ame 
nable to multiple independent means of Verification. 

There is a need in the art for Solutions in modeling 
real-time periodic and aperiodic task Scheduling and mes 
Sage passing useful in integrated mission-critical Systems, or 
in Systems with high-rate applications and microcontrollers 
having constrained throughput and/or memory. 

SUMMARY 

The invention addresses deterministic communication 
between two periodic processes. It includes a communica 
tion model, a deadline reduction technique, a period trans 
formation technique and implementation efficiency buffer 
assignment rules. 

In one embodiment, the invention provides a method of 
generating an assigned Scheduling priority of a plurality of 
tasks in a multitask System. The method includes defining a 
first list of the plurality of tasks, wherein the first list of the 
plurality of tasks is Sorted with a task deadline as a primary 
key and a task criticality as a secondary key. The method 
further includes transforming the task deadline of each of the 
plurality of tasks that do not produce undelayed messages. 
The transformation occurs one at a time using a transfor 
mation Scenario beginning with the task having the least task 
deadline, thereby producing a transformed task deadline for 
each of the plurality of tasks. The method still further 
includes defining a Second list of the plurality of tasks, 
wherein the second list of the plurality of tasks is sorted with 
the transformed task deadline as the primary key and 
wherein each transformed task deadline of a task having a 
first task criticality is less than any transformed task deadline 
of a task having a task criticality less than the first task 
criticality. Scheduling priority is then assigned in the order 
of the Second list of the plurality of tasks, thereby producing 
the assigned Scheduling priority. In a further embodiment, 
the multitask System is a flight control System. 

In another embodiment, the invention provides a method 
of operating a multitask System. The method includes com 
municating among tasks, with each task having a priority 
and a criticality. Each task is a Sender and/or receiver of 
undelayed messages and/or Single Sample delay messages. 
The method further includes assigning a priority to each 
Sender task Sending undelayed messages Such that the pri 
ority of the Sender task is higher than the priority of any 
downstream receiver task. The method further includes 
assigning a priority to each Sender task that does not send 
undelayed messages, where each Such task having a first 
criticality has a priority greater than any Such task having a 
criticality lower than the first criticality. The method still 
further includes executing each of the tasks on a processor 
according to their assigned priorities. In yet another 
embodiment, the multitask System is a flight control System. 

In a further embodiment, the invention provides a multi 
task System. The multitask System includes a processor and 
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a plurality of tasks operating on the processor. Each task is 
of a periodic or aperiodic task type. Each task has associated 
with it at least one I/O buffer. Communications with each 
I/O buffer is adapted to either undelayed messages or Single 
Sample delay messages. An executive task having a periodic 
dispatcher, an event handler and a Service component is 
utilized for controlling dispatching of tasks and communi 
cations among the I/O buffers. The periodic dispatcher 
manages dispatching of periodic tasks and their Single 
Sample delay communications. The event handler manages 
dispatching of aperiodic tasks and their Single Sample delay 
message communications. The Service component manages 
task completions and all undelayed message communica 
tions. In a still further embodiment, the multitask system is 
a flight control System. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1A is a schematic of a flight control system for use 
in accordance with an embodiment of the invention. 

FIG. 1B is a schematic of a redundant flight control 
System for use in accordance with an embodiment of the 
invention. 

FIG. 1C is a block diagram of a multitask system in 
accordance with an embodiment of the invention. 

FIG. 2 is an execution timeline of a task in accordance 
with an embodiment of the invention. 

FIG. 3 is a Schematic of connection types for message 
passing in accordance with an embodiment of the invention 
illustrated with task objects. 

FIG. 4 is a Schematic of a hardware object in accordance 
with an embodiment of the invention. 

FIG. 5 is a Schematic of end-to-end computations and 
communications in accordance with an embodiment of the 
invention. 

FIG. 6 is a Schematic of a task executive in accordance 
with an embodiment of the invention. 

FIG. 7 is a schematic illustrating executive buffers in 
accordance with an embodiment of the invention. 

FIG. 8 is a process flowchart of a dispatcher task in 
accordance with an embodiment of the invention. 

FIG. 9 is a process flowchart of an event handler in 
accordance with an embodiment of the invention. 

FIG. 10 is a process flowchart of a service component in 
accordance with an embodiment of the invention. 

FIG. 11 is a process flowchart of task list generation in 
accordance with an embodiment of the invention. 

FIG. 12 is an illustration of example transformation 
Scenarios for use in accordance with embodiments of the 
invention. 

FIG. 13 is a process flowchart of task transformation in 
accordance with an embodiment of the invention. 

FIG. 14 is a block diagram of an electronic system in 
accordance with an embodiment of the invention. 

DESCRIPTION OF THE EMBODIMENTS 

In the following detailed description of the preferred 
embodiments, reference is made to the accompanying draw 
ings which form a part hereof, and in which is shown by way 
of illustration specific embodiments in which the inventions 
may be practiced. These embodiments are described in 
Sufficient detail to enable those skilled in the art to practice 
the invention, and it is to be understood that other embodi 
ments may be utilized and that proceSS or mechanical 
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4 
changes may be made without departing from the Scope of 
the present invention. The following detailed description is, 
therefore, not to be taken in a limiting Sense, and the Scope 
of the present invention is defined only by the appended 
claims. 

FIG. 1A is a schematic of a flight control system 100. 
Flight control task 105 is executed at some periodic rate. 
Flight control task 105 receives sensor data (S) 115 from 
sensor 110, computes a function f with sensor data 115 and 
State data 130 computed in a previous dispatch (X) as 
inputs, and writes an output (X) 120 to an actuator 125. 
This may be written as X=f(X, S). Sensor data 115 
should be transferred substantially without delay to flight 
control task 105, and flight control task 105 must not start 
executing until it has received the sensor data 115. This 
undelayed transfer is represented with a double-headed 

OW. 

Actuator output 120 computed from sensor data 115 read 
at time t should be written at exactly t+A with minimaljitter, 
where A and the task period are determined and Specified by 
a control engineer based on System requirements. Often, A 
is a deadline that occurs before the next dispatch of the flight 
control task. The state information (X) 130 computed at the 
m" dispatch of the task must be received at the (m+1)" 
dispatch of the task. This delayed data flow is represented by 
the feedback connection from the flight control task to itself. 
The feedback data from the flight control task to itself can 
also be transferred with some fixed and invariable delay, 
e.g., the period of that task. These latter two transferS are 
termed single sample delay (SSD) connections. 

If data is sent from a periodic task A to a periodic task B 
(possibly having different rates), and if the i' dispatch of B 
receives data from the j" dispatch of A in any schedulable 
run, it must do So in every Schedulable run to Satisfy 
feedback control determinacy requirements. This is true for 
undelayed as well as SSD connections. 

FIG. 1B shows a variation of a flight control system 100 
having redundancy. Flight control system 100 further 
includes a primary flight control task 105A, a Secondary 
flight control task 105B and a comparator task 135 to select 
the output (120A or 120B) used to control the system. The 
end-to-end deadline A between reading the Sensor input 115 
and writing the actuator output 120 applies to the execution 
of all three tasks (105A, 105B and 135) and to the interme 
diate data transfer between the two flight control tasks 105A 
and 105B and the comparator task 135. The data transfer 
from the flight control tasks 105A and 105B to the com 
parator task 135 must be substantially undelayed, and a 
Scheduling precedence constraint exists between the two 
flight control tasks 105A and 105B and the comparator task 
135. 

In one embodiment of the invention, the System provides 
preemptive fixed priority Scheduling of periodic and aperi 
odic tasks and assignments between message buffer vari 
ables. Priorities are assigned inversely with period or 
deadline, So that tasks with Shorter periods or deadlines have 
higher Scheduling priorities. If the initial priority assignment 
is inconsistent with task criticalities then the periods and/or 
deadlines of high-criticality tasks are transformed, i.e., the 
tasks are decomposed into Smaller pieces that are Sequen 
tially dispatched at higher rates. For aperiodic Scheduling, 
the embodiment uses both deferrable server and period 
enforcement algorithms. In another embodiment, the System 
provides a real-time slack Scheduler. 
An exact characterization algorithm extended to provide 

sensitivity analysis information is utilized for schedulability 
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analysis. The example embodiment has been implemented 
in a MetaFI toolset that automatically generates and analyzes 
formal Schedulability, reliability, and partitioning models of 
a System; and automatically composes the System, building 
images for each System processor, using generated Sched 
uling and communication code. The MetaH toolset is devel 
oped and distributed by Honeywell, Inc., Minneapolis, 
Minn., USA. Other Computer-Aided Software Engineering 
(CASE) tools may be used with the various embodiments of 
the invention. 

With reference to FIG. 1C, task system 100 is a multitask 
System having at least two Schedullable application tasks 
110. The scheduling of application tasks 110 within task 
System 100, as well as the communications of application 
tasks 110, is controlled by an executive task 150. Each task 
110 in the task system 100 is repeatedly dispatched, either at 
Some fixed rate for periodic tasks or in response to Some 
event, i.e., Software-generated, interrupt or other event, for 
aperiodic tasks. A task 110 resides, or is performed by, only 
one processor 120. 

FIG. 2 shows the task execution timeline of a task 110 
following each dispatch and the terms defined herein for 
Selected instants and intervals of time. The term “task 
instance” refers to a specific dispatch of a task 110 and the 
asSociated Sequence of following activities and Scheduling 
points. Between each dispatch of a task 110 and the follow 
ing deadline, a task must perform a certain amount of work, 
receiving a certain amount of compute time from the pro 
ceSSor. However, the processor may also spend Some time 
working on other tasks 110 between dispatch and 
completion, during which intervals a task 110 is said to be 
preempted by other tasks 110. An important observation to 
make is that task dispatches, i.e., when a task 110 is placed 
in a prioritized ready queue, and deadlines, i.e., Some 
System-defined deadline or other constraint for completion 
of the task, occur at deterministic times for periodic taskS. 
However, task Start time, i.e., when computing of the task 
begins, and complete times, i.e., when computing of the task 
is complete, may vary depending on Scheduling and com 
pute time requirements. 

TaskS 110 are characterized using four primary param 
eters. The class of a task is either periodic, i.e., regularly 
Scheduled for dispatch, or aperiodic, i.e., dispatched in 
response to Some non-Scheduled event. The period of a task 
is the interval between dispatches of a periodic task, or the 
minimum interval between event arrivals for an aperiodic 
task. The compute time of a task is the upper bound on the 
amount of processor time required for an instance of that 
task to complete after each dispatch. In practice, the degree 
of assurance that the actual compute time will not exceed 
this value varies depending on the task. 

The criticality of a task in one embodiment is an integer 
value used to control Scheduling behavior when processors 
are overloaded, i.e., where Some Subset of tasks is unschedul 
lable. While Such a numerical ranking System is convenient 
for implementation, other ranking Systems may be utilized. 
The schedulability of a task is affected only by tasks on the 
Same processor having a criticality equal or greater to its 
own criticality. Lower criticality tasks may exceed their 
Stated compute times, or, for aperiodic tasks, may be dis 
patched at a higher rate than their Stated periods, without 
causing a higher criticality task to miss a deadline. 

In one embodiment, messages are values that are trans 
ferred from output buffer variables in sender tasks to input 
buffer variables in receiver tasks according to a specified Set 
of connections. In the MetaFI Specification language, each 

15 

25 

35 

40 

45 

50 

55 

60 

65 

6 
task may have one or more input or output ports that 
designate buffer variable declarations in the task Source 
code, and connections can be made between compatibly 
typed ports as illustrated in FIG. 3. As depicted in FIG. 3, 
task 110 has a single sample delay output buffer 310 and an 
undelayed input buffer 340. Task 110 has a single sample 
delay input buffer 320 and an undelayed output buffer 330. 
Tasks 110 and 110 may have additional or other input and 
output buffers. 

Single sample delay output buffer 310 provides its mes 
Sage value to Single Sample delay input buffer 320. Unde 
layed output buffer 330 provides its message value to 
undelayed input buffer 340. 

Incoming messages are placed in the input buffers of a 
receiver task by the time it starts, and outgoing messages are 
presumed available in the output buffers of a task when it 
completes. In the absence of any other constraints on task 
Scheduling in a Schedulable System, incoming messages 
should be available at task dispatch, and outgoing messages 
may not be available until the task deadline. A task is a 
Sender when Sending a message value from its output buffer, 
and a receiver when receiving a message value at its input 
buffer. 

In the example embodiment, there are two types of 
message connections. The first is a single Sample delay 
connection. The Second is an undelayed message connec 
tion. 

A Single Sample delay connection causes the value 
received by a task instance to be the one available at the most 
recent Sender deadline that preceded, or occurred at the same 
instant as, the receiver dispatch. In one embodiment, an 
exception occurs when the Sender is an aperiodic task, Such 
that the message value is obtained at the complete time 
rather than the deadline of the sender. 

Hardware objects are allowed to have ports, e.g., device 
control registerS mapped into memory Space. AS shown in 
FIG. 4, hardware object 400 may have one or more hardware 
input ports 410 and one or more hardware output ports 420. 
Transfers to or from hardware ports occur at the deadline of 
the Sender task or dispatch of the receiver task instance, 
respectively. AS noted above for aperiodic tasks, the trans 
fers to a hardware port from an aperiodic task may occur at 
the task's complete time. Hardware objects provide message 
values to tasks, e.g., keyboard entry of data or data from a 
machine-readable medium, as well as accept message values 
from tasks, e.g., for display to an end-user or to control 
industrial equipment. Similar to tasks, a hardware object is 
a Sender when Sending a message value from its output port, 
and a receiver when receiving a message value at its input 
port. 
Any task or device that outputs and does not input 

undelayed messages is termed a Source. Any task or device 
that inputs and does not output undelayed messages is 
termed a sink. Any task or device that outputs undelayed 
messages is termed a producer. A Source, by definition, is a 
producer. Any task or device that inputs undelayed messages 
is termed a consumer. A sink, by definition, is a consumer. 

Since deadlines and dispatches occur at deterministic 
times for periodic tasks, this results in a strictly deterministic 
data dependence among periodic tasks. That is, if the j' 
instance of a task receives data from the i' instance of 
another task in any Schedullable run of the System, it will do 
so in all schedulable runs of the system. FIG. 5 shows an 
example of undelayed message passing between periodic 
tasks, where A has undelayed connections to B and C, and 
B has an undelayed connection to C. In FIG. 5, the 1 
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instance of task C receives input from the 1* instances of 
tasks A and B, while the 2" instance of task Creceives input 
from the 3" instance of task A and the 1* instance of task 
B. This dependency among periodic tasks with undelayed 
message passing will repeat in every Schedulable run of the 
task System. The exception allowed in the case of an 
aperiodic Sender is deemed an acceptable loSS of determin 
ism because aperiodic dispatch times are themselves non 
deterministic in Some Sense, and this allows a simpler 
implementation. 
An undelayed connection establishes a precedence con 

Straint as well as a data dependency between task instances. 
The Sender is executed to completion, the message is 
transferred, and then the receiver will be allowed to start. In 
one embodiment, task system 100 has the following con 
Straints on undelayed message connections in what is termed 
the pairwise Synchronous dispatch model. 

1. The Set of undelayed message connections and asso 
ciated tasks must form a directed acyclic graph. 

2. Every pair of periodic tasks that communicates by an 
undelayed connection must have harmonic periods, i.e., 
the period of one must be an integer multiple of the 
period of the other. Note that transitivity causes all 
tasks in an undelayed chain to be harmonic, but not in 
parallel branches of a tree. Consider, for example, 
parallel branches of undelayed chains A->>B->>C and 
A->>B->>C, where the periods of A, B, C and C are 
5 ms, 10 ms, 20 ms and 30 ms, respectively. 

3. The Sender of an undelayed message is allowed to have 
a lower criticality than the receiver only if the sender 
has enforced compute time and minimum event inter 
arrival times. 

An undelayed data transfer occurs between two periodic 
task instances only when they were dispatched at the same 
time, i.e., pairwise Synchronous dispatch. in the pairwise 
Synchronous dispatch model, the Sender executes to comple 
tion first, and the receiver Start is delayed until after the 
message is transferred. An overall end-to-end chain of 
computations and undelayed message communications has 
the deadline of the final receiver task. Referring again to 
FIG. 5, where A has undelayed connections to B and C, and 
B has an undelayed connection to C, note there is no 
requirement that Senders have a higher dispatch rate than 
receivers. In the example of FIG. 5, Cover samples the data 
received from B. 

If either the Sender or the receiver task is aperiodic, the 
ordering constraint and message transfer applies to the next 
instance of the receiver task that is dispatched at or follow 
ing the dispatch of the Sender task. This allows, for example, 
aperiodic tasks to pass data and dispatch Successor aperiodic 
tasks to form trees of coordinating task instances. 

If an undelayed connection comes from a hardware output 
port, the message value is transferred at the dispatch of the 
receiver task. If an undelayed connection goes to a hardware 
input port, the value is transferred at the completion of the 
Sender task. Note that undelayed connections to hardware 
ports are not temporally deterministic. Accordingly, they 
may exhibit jitter due to compute time and Scheduling 
variability. 

In one embodiment, executive task 150 schedules tasks 
using a preemptive fixed priority discipline. Executive task 
150 is responsible for managing task priorities, dispatching 
tasks (placing them on a prioritized ready queue), Suspend 
ing tasks (removing them from the ready queue), and 
moving data between task buffer variables. Executive task 
150, with reference to FIG. 6, includes three components: 

1. a periodic dispatcher task 610 that is the highest priority 
task in the task System 100 and manages periodic 
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8 
dispatches of taskS 110 and their Single Sample delay 
communications, 

2. an event handler 620 that manages aperiodic dispatches 
of tasks 110 and their single sample delay 
communications, 

3. a Service component 630 that manages task comple 
tions and all undelayed communications of taskS 110. 

These three components may be automatically generated 
from a Metal Specification of tasks and their message and 
event connections. 
Message passing is implemented by assignments between 

task buffer variables. In many cases an executive buffer 
variable may be allocated and used within the executive task 
150, e.g., connections between non-harmonic or aperiodic 
tasks. In general, movement of message data is implemented 
as an assignment from a Sender's buffer variable to an 
executive buffer variable followed by an assignment from 
the executive buffer variable to the receiver's buffer vari 
able. For example, in FIG. 7, sender task 1101 passes its 
message value from an output buffer 710 to a shadow output 
buffer 720, an executive buffer. Shadow output buffer 720 in 
turn passes the message value to shadow input buffer 730, 
another executive buffer. Shadow input buffer 730 passes the 
message value to an input buffer 740 of receiver task 110. 
The two assignments, i.e., from Sender to executive and 
executive to receiver, may occur at different Scheduling 
points, e.g., the first at the deadline of a Sender periodic task 
110 and the Second at the dispatch of a receiver periodic 
task 110. In one embodiment, the intermediate assignment 
of a message value to an executive buffer variable could be 
optimized away for connections between harmonic periodic 
tasks whose deadlines equal their periods, Such that Sender 
task 110 passes its message value directly to receiver task 
110, as shown with dashed line 750. In this case, the 
executive buffers are eliminated. In another embodiment, the 
shadow output buffer and the shadow input buffer are the 
Same executive buffer, for convenience termed a shadow 
input buffer. 
The dispatcher task 610 performs single sample delay 

message passing between periodic tasks and performs peri 
odic task dispatching. The dispatcher task 610 is typically 
implemented as the handler of a periodic hardware clock 
interrupt that occurs nearly simultaneously on all processors. 
The interrupt rate should be selected so that every dispatch 
and deadline is an integer multiple of the interrupt period, 
e.g., the greatest common divisor of the periods and dead 
lines that appear in the System Specification. 
At each interrupt, a cycle counter is incremented by 1 

(modulo Some large value that is a common multiple of all 
periods). The periodic actions that are to occur at each 
interrupt are determined by whether or not the cycle counter 
is evenly divisible by the periodicity of an action. 

In one embodiment, a process flow of dispatcher task 610 
can be described with reference to FIG.8. FIG. 8 is a process 
flowchart having action boxes 810, 820, 840 and 850, as 
well as decision box 830. In action box 810, dispatcher task 
610 is made ready to run at the periodic interrupt, Such as a 
hardware clock interrupt. Upon receiving the periodic 
interrupt, the cycle counter is incremented in action box 820. 
Decision box 830 determines if any tasks scheduled are to be 
dispatched this cycle, i.e., where the cycle evenly divides the 
quantity of the task period divided by the periodic interrupt. 
If tasks are to be dispatched in decision box 830, action box 
840 determines the set (S) of all tasks to be dispatched. 
Buffer-to-buffer message assignments are made in action 
box 850 for those periodic tasks meeting the criteria of 
decision box 830, and those tasks are dispatched. Control is 
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then returned to the tasks interrupted by the periodic inter 
rupt. Dispatch of the periodic tasks can be visualized as 
adding the task to a ready queue 890. With reference to FIG. 
8, the following example is provided: 

let task 1 (T) have period T = 10 ms: 
let task 2 (T) have period T = 20 ms: 
let task 3 (Ts) have period T = 40 ms; and 
let hardware global clock periodic interrupt = 10 ms 
initialize cycle = 0 
case cycle mod 4 is 

when 0 = s.sdel comm(T1, T2, Ts); disp(T1, T2, Ts) 
when 1 ssdel comm(T); disp(T) 
when 2 s ssdel comm(T1, T2); disp(T, T1, T2) 
when 3 = s.sdel comm(T,); disp(T) 

end case 
where: 

ssdel comm(T) means copy all T output buffers to executive input 
buffers and copy executive output buffers to all t input buffers; 
and 

disp(T) means dispatch task i. 

The event handler 620 is executed whenever external 
interrupts or internal Software-generated events occur. MeS 
Sage values to be received at the dispatch of aperiodic tasks 
are assigned to their input buffer variables and the tasks are 
dispatched. 

FIG. 9 is a process flowchart of one embodiment of event 
handler 620. FIG. 9 includes actions boxes 910, 920 and 
930. In action box 910, event handler 620 is executed in 
response to a Software-generated event or external interrupt. 
Upon receiving the interrupt in action box 910, event 
handler 620 assigns message values to their task input 
buffers in action box 920. The aperiodic task or tasks 
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associated with the interrupt in 910 are dispatched in action 
box 930. Control is then returned to the highest priority 
ready task. AS with dispatch task 610, dispatching an ape 
riodic task includes adding the aperiodic task to the ready 
queue 890. 
The service component 630 is executed when a task 

instance completes. The completing task is removed from 
the ready queue 890. Output values produced by the com 
pleting task are assigned to corresponding executive or 
receiver task buffer variables according to rules we present 
below. These assignments are conditional, depending on 
information recorded at the dispatch of every task that may 
receive undelayed messages. At each dispatch of a periodic 
task that may receive undelayed input from another periodic 
task, the cycle at which that task is dispatched is recorded. 
At the dispatch of each aperiodic task that may receive 
undelayed input from another task, the Scheduling State of 
each Sender task (awaiting dispatch, or dispatched but not 
yet completed) is recorded. 

FIG. 10 is a process flowchart of one embodiment of 
service component 630. FIG. 10 includes actions boxes 
1010, 1020 and 1030. In action box 1010, service compo 
nent 630 is executed when a task completes. Upon comple 
tion of a task or tasks resulting in action box 1010, service 
component 630 removes the completing task or tasks from 
ready queue 890. Output from the completing task or tasks 
is assigned to an executive or receiver buffer in action box 
1030. Control then goes to the highest priority task in the 
ready queue. ASSignment of output in action box 1030 can 
be further described with reference to Table 1. 

TABLE 1. 

Message Passing Timing 

Connection 
Type Description 

PR.in <- PS.Out Copy PS.out to PR.in.buffer at time Cso. At time D = Dso 
copy PR.in.buffer to port PR.in 

DR.in <- PS.Out At time Lso copy PS.out to DR.in. 
AR.in <- PS.Out At time Lsc copy PS.Out to AR.in.buffer. At time Dro copy 

AR. in buffer to AR.in. 

PR.in <- DS.out. The device writes to DS.out. At time Disco DS.out is copied to 
port PR.in. 

PR.in <- AS.out. At time Cso copy AS.Out to PR.in.buffer. At time Ds copy 
PR.in.buffer to port PR.in. 

AR.in <- AS.Out At time Cso copy AS.Out to AR.in.buffer. At time Dro copy 
PR.in.buffer to port AR.in. 

DR.in <- AS.Out At time Cso copy AS.Out to the device's input port. 
AR.in <- DS.out. The device writes to AR.in.buffer. At time Disco, AR.in.buffer is 

DR. in <<- PS.ou 
AR.in <<- PS.ou 

PR.in <<- DS.ou 

PR. in <<- AS.ou. 

AR.in <<- AS.Ou 

copied to port AR.in. 
If Dsp = Drop PS.Out is copied to PR.in.buffer at time Cso. At 
time Sr., PR.in.buffer is input to port PR.in. 
At time Cs. PS.Out is copied to port DR.in. 
At time Cs. PS.Out is copied to AR.in.buffer. At time Sr. 
AR.in.buffer is copied to AR.in. 
The device writes to PR.in.buffer. At time Ss PR.in.buffer is 
copied to port PR.in. 
At time Cso AS.Out is copied to PR.in.buffer. At time St. 
PR.in.buffer is copied to PR.in. 
At time Csco, A.S.Out is coped to AR.in.buffer. At time Sr. 
AR.in.buffer is copied to AR.in. 
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TABLE 1-continued 

Message Passing Timing 

Connection 
Type Description 

DR.in <<- AS.Out At time Csco, A.S.Out is copied to port DR.in. 

12 

AR.in <<- DS.out. At time Sso, AR.in is assigned the current value of DS.out. 
where: <<- = Undelayed Message Passing 
<- = Single Sample Delayed Message Passing 
XR.in = Input buffer for task X, where X = P (periodic), A (aperiodic) or D (device) 
XR.in.buffer = Shadow Input buffer for task X, where X = P, A or D 
XS.Out = Output buffer for task X, where X = P, A or D 
PR = Periodic Receiver 
PS = Periodic Sender 
AR = Aperiodic Receiver 
AS = Aperiodic Sender 
DR = Device Receiver 
DS = Device Sender 

Ds = The next dispatch of the sender task 
Dso = The last dispatch of the sender task 
D = The next dispatch of the receiver task 
Drop = The last dispatch of the receiver task 
Src = The next start time of the receiver task 
Cs = The next completion time of the sender task 
Lso = The next deadline of the sender task 

In one embodiment, a priority assignment algorithm 
assigns a higher priority to the Sender of an undelayed 
message than to any of its downstream receivers. Down 
Stream receivers include any task directly receiving the 
undelayed message, as well as all receiving tasks in an 
acyclic graph rooted at the Sender of the undelayed message. 
This guarantees that any task whose buffers are written at the 
completion of another task, i.e., any task receiving unde 
layed values from another task, has remained preempted 
from the time of its dispatch to the time of the assignment 
and thus does not start until after the assignment. 
Whenever possible, a task with high criticality but long 

period is transformed So that a deadline monotonic priority 
assignment can be used. In one embodiment, period trans 
formation is a form of controlled time-slicing. The compute 
time of the transformed task is divided by Some integer value 
to arrive at a time slice for that task. A dispatch of the 
transformed task is converted into a dispatch followed by a 
Series of periodic resumptions. Each dispatch and resump 
tion grants a time slice, and after exhausting each time Slice 
a transformed task is Suspended until its next resumption. 
The overall effect is to make a low rate task look like a high 
rate task with Smaller compute time, and thus higher priority. 

For period transformation of periodic tasks, the dispatches 
and resumptions are simply inserted into the proper cases of 
the dispatcher case Statement (Q1 is then constrained to be 
a multiple of all transformed periods). Period transformation 
of aperiodic tasks depends on the Scheduling protocol used. 
Period transformation can be easily applied using the defer 
rable Server protocol, Since this protocol is essentially con 
trolled time-slicing Slaved to the dispatcher frequency. In 
one embodiment, period enforcement is approximated by 
defining the reenabling of a task as the next dispatcher task 
dispatch, and an analogous approximate period transforma 
tion might also be performed. Slack Scheduling can also be 
adapted to take criticality into account. 
The MetaH toolset generates data tables and code for the 

dispatcher task 610, event handler 620 and service compo 
nent 630. It further generates and analyzes a real-time 
schedulability model of the task system 100. 
The undelayed message connections and tasks are 

checked to make Sure they contain no cycles. Task deadlines 
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are then reduced as needed So that the deadline of every 
Sender of an undelayed message is Strictly less than the 
deadline of all its receivers. A Subsequent deadline 
monotonic priority assignment phase, which assigns higher 
priorities to shorter deadlines, assigns a higher priority to the 
Sender of an undelayed message than to the receiver. This 
insures that the receiver remains preempted and does not 
Start until after the Sender completes whenever the condi 
tions for undelayed transfer are Satisfied. 

In greater detail, the Set of undelayed message connec 
tions is first checked for cycles. Task deadlines are then 
reduced as needed So that the deadline of every Sender of an 
undelayed message is strictly less than the deadline of all its 
receivers. A Subsequent deadline-monotonic priority assign 
ment phase, which assigns higher priorities to Shorter 
deadlines, will assign a higher priority to the Sender of an 
undelayed message than to its receivers. This insures that the 
receiver remains preempted and does not start until after the 
Sender completes whenever the conditions for undelayed 
transfer are Satisfied. 
More formally, the Set of all undelayed messages is 

represented as a reachability matrix R with R(i,j)=1 if t->>t, 
and zero otherwise. Construct R“(i,j)=1 if there is an unde 
layed connection path from t, to t, of length exactly k, and 
Zero otherwise. Cycles, which are not permitted, exist if for 
any 1 silksn., R(i,j)=1, where n, is the number of tasks 
with undelayed connections. 

Next construct a distance matrix D from the set {R} by 
D(i,j) max{kR'(i,j)=1}. In words, D(i,j) is the maximum 
length undelayed message connection path from t, to t, 
There may be multiple paths, in which case set D(i,j)=0 
(rather than oo). The deadline of each task t is then adjusted 
to be the minimum of its user-specific deadline and the 
deadlines of all tasks that can be reached from T. To insure 
distinct deadlines and priority assignments, these deadlines 
are then decreased by me, where m is the maximum con 
nection depth between an undelayed message Sender and all 
of the leafs in the undelayed connection directed acyclic 
graph (DAG) rooted at that Sender, and e is a time quantum 
preferably Several orders of magnitude Smaller than the 
number of tasks times the deadline quantum, i.e., the dis 
patcher task rate. For example, e may be 1 nanoSecond with 
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the expectation that deadlines will be multiples of a dis 
patcher task period measured in milliseconds. The term 
internal deadlines is defined to refer to these adjusted 
deadlines. In mathematical notation, Let I(i)={k: D(i.k)>0}. 
I(i) is the index set of all tasks that T, can reach via an 
undelayed message chain. Then for each i, tdeadline= 
mino t.deadline, t.deadline (i.k)e. 

Conflicts can arise between the user-specified criticalities 
for two tasks and the priority assignments implied by 
undelayed connections and their corresponding internal 
deadlines. For example, if there is an undelayed connection 
from A to B then A must have a higher priority than B to 
properly implement the precedence constraint, but B could 
have a higher user-specified criticality than A. A conflict test 
is given by t'criticality>t criticality and j e I(i). Such 
conflicts are allowed provided that compute time limits (and, 
for aperiodic tasks, period enforcement) are specified for the 
Sender, otherwise it is an error. Internal deadlines (and 
priorities) are assigned in accordance with undelayed con 
nection precedence constraints rather than in accordance 
with user-specified criticality attributes when there is Such a 
conflict. User-specified criticality values are adjusted 
upward as needed to remove acceptable conflicts. The term 
internal criticalities is defined to refer to these adjusted 
criticality values. 
AS an example, lett, be a task that sends an undelayed 

message. Let R be the Set of all tasks that eventually receive 
input from T., directly or through intermediate taskS via a 
Sequence of undelayed messages. R, contains the nodes of 
the DAG of receiver tasks rooted at t, and is easily 
constructed using a transitive closure of all tasks and their 
message connections. Since T, must complete before any 
task in R, can begin, the internal criticality of T, is adjusted 
to be the minimum of its user-specified criticality and the 
internal criticalities of tasks in R. 

The list of tasks that Send or receive undelayed messages 
is then Sorted by ascending internal deadlines. If multiple 
tasks have equal deadlines, then that Sublist is Sorted by 
ascending criticality. The result is a Sorted list with internal 
deadline as primary key and internal criticality as Secondary 
key, where internal deadlines and internal criticalities are 
both consistent with each other and ascending. 

The list of remaining tasks (those that neither send nor 
receive undelayed messages) is now merged with this list in 
Sorted order, using user-specified deadline as the primary 
key and user-specified criticality as Secondary key. Incon 
Sistencies among criticality rankings and deadline rankings 
is permissible in this list. These inconsistencies will be 
removed later using period transformation. Internal criticali 
ties and internal deadlines are Set to the user-specified 
criticalities and user-specified deadlines, respectively. 

The merged list of tasks is Sorted using internal deadline 
as the primary key and internal criticality as the Secondary 
key. The next Step is to transform the periods and deadlines 
of the tasks So that both criticalities and deadlines are in 
monotonic order. That is, all tasks having a first criticality 
have deadlines that are less than any task having a lower 
criticality. 

FIG. 11 is a process flowchart of one embodiment of the 
foregoing task list generation. In FIG. 11, the list of tasks 
that Send or receive undelayed messages and the list of 
remaining tasks are generated in parallel. However, there is 
no requirement for Such parallel implementation. 

FIG. 11 includes action boxes 110, 1115, 1120, 1125, 
1135, 1140, 1145, 1155, 1160, 1165 and 1170, as well as 
decision boxes 1130 and 1150. Generation of the list of tasks 
that Send or receive undelayed messages for each processor 
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begins at action box 1110. Internal deadlines are set in action 
box 1115 such that the deadline of every sender task is 
strictly less than the deadline of all its receivers. The list is 
then sorted by internal deadline in action box 1115. Internal 
criticalities are set in action box 1125 to remove conflicts. 
Decision box 1130 determines if multiple tasks in the sorted 
list have equal internal deadlines. If yes, the portion or 
portions of the list having equal deadlines are Sorted by 
internal criticality in action box 1135. If there are no portions 
of the list having equal internal deadlines in decision box 
1130, or following sorting by internal criticality in action 
box 1135, control is transferred to action box 1165. 

Generation of the list of tasks that do not Send nor receive 
undelayed messages for each processor begins at action box 
1140. The list generated in action box 1140 is sorted by 
user-specified deadline in action box 1145. Decision box 
1150 determines if multiple tasks in the sorted list have equal 
user-specified deadlines. If yes, the portion or portions of the 
list having equal user-specified deadlines are Sorted by 
user-specified criticality in action box 1155. If there are no 
portions of the list having equal user-specified deadlines in 
decision box 1150, or following sorting by user-specified 
criticality in action box 1155, control is transferred to action 
box 1160 where internal criticalities and deadlines are set to 
the user-specified criticalities and deadlines, respectively. 

Action box 1165 merges the sorted list of tasks that send 
or receive undelayed messages with the Sorted list of tasks 
that do not send nor receive undelayed messages. The 
merged list is Sorted with internal deadline as the primary 
key and internal criticality as the Secondary key. The merged 
list is then subjected to transformation in action box 1170 to 
generate the priority Sorted list. 
A task is transformed by dividing its period and compute 

time by Some positive integer, thus converting it, in this 
example via controlled run-time time slicing, into a task with 
Smaller period and deadline and consequently higher prior 
ity. 
The transformation algorithm operates on tasks one at a 

time, Starting with the task having least deadline. The list of 
tasks can be viewed as a concatenation of Sublists HELpU 
where p is the task currently being transformed, H is the 
Sublist of tasks having criticality higher than that of p, E is 
the Sublist of tasks having criticality equal to that of p, L is 
the Sublist of tasks having criticality less than that of p, and 
U is the untransformed portion of the list. The goal is to find 
an integer divisor of the period (and compute time) of p, i.e., 
a transform factor, that allows the list to be rewritten as 
HEpELU where the tasks in E and E. have criticalities 
equal to that of p, the tasks in E have no deadlines greater 
than that of p, and the tasks in E have no deadlines less than 
that of p. 

Several factors complicate the solution to this problem. It 
is possible to construct examples having no feasible integer 
Solution, where transforming p by transform factor i yields 
a transformed period too large, but transforming p by 
transform factor i+1 yields a transformed period too Small. 
For example, consider the criticality ordering AcBC with 
the period of A and C equal to 2 but the period of B equal 
to 3. Using the transform factor of 1 yields a transformed 
period too large, while using the transform factor of 2 yields 
a transformed period too Small. 
A transformed task may need to complete by a preperiod 

deadline. Thus, transformation of the deadline analogous to 
the transformation of period may be appropriate. 

Transformation introduces context Swap overheads. In 
one embodiment, these context Swap Overheads are mini 
mized. Furthermore, transformed periods and deadlines are 
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preferably multiples of the clock interrupt period. Finally, 
the Sender of an undelayed message cannot be transformed, 
as this might create intervals in which the receiver could 
Start before the Sender had completed. Accordingly, unde 
layed message Senders have their deadlines calculated prior 
to any period transformations. 

FIG. 12 shows three Scenarios for transforming a task So 
that it will receive its Stated amount of compute time by its 
stated deadline. The first portion of FIG. 12 shows the 
original task period and deadline. Scenario 1 of FIG. 12 is 
to transform both the period and the deadline, where the 
transformed deadline is a preperiod deadline with respect to 
the transformed period and is Selected So that the trans 
formed deadline of the final resume occurs at the original 
deadline. This scenario is preferred when the transformed 
deadline is a Substantial fraction of the transformed period. 
Scenario 2 transforms the task So its original deadline is a 
multiple of the transformed period. The transformed dead 
line equals the transformed period, and the transformed 
compute time is Such that the task will complete after Some 
number of transformed periods that is no greater than the 
original deadline. Scenario 2 is preferred over Scenario 1 
when Scenario 1 would produce a transformed deadline that 
is a Small fraction of the transformed period. Both Scenarios 
are the same when the original deadline and original period 
are equal. Scenario 3 is to Simply reduce the deadline as 
needed, i.e., just increase the priority as needed to Satisfy the 
criticality requirement without transforming the Scheduling 
of the task. Scenario 3 is utilized when transforming Senders 
of undelayed messages and in cases where no integer 
transform factor is feasible. 

In one embodiment, a Search is performed over the range 
of feasible integer transform factors, i.e., those that would 
move task p into the sublist E. For each feasible transform 
factor, both Scenario 1 and Scenario 2 are evaluated. Sce 
nario 3 may also be evaluated for all integer transform 
factors from 1 through the largest transform factor that does 
not put p ahead of E, which has the effect of evaluating 
combinations of Scenario 3 with Scenarios 1 and 2. 

In one embodiment, a cost function is used to Select one 
Scenario over another, Such that cost is minimized. In 
another embodiment, the cost function is the utilization 
required for context Swaps, i.e., removal and replacement of 
the Stack and registers, plus a factor that empirically 
accounts for the decrease in Schedulability due to preperiod 
deadlines. In a further embodiment, the cost function is the 
transform factor (which may be 1) times: 

S T - D, 
---- 
T T 

where S is the context Swap time, T, is the transformed 
period, and D, is the transformed deadline. In one 
embodiment, Selection of a Scenario is made to minimize the 
cost function. 

FIG. 13 is a process flowchart of one embodiment of task 
transformation, performed for each task in the merged list of 
tasks. In action box 1310, feasible integer transform factors 
are determined. Feasible transform factors include the low 
est integer divisor of the period of p that allows the Sublist 
HELpU to be rewritten as HEpELU where the tasks in E 
and E. have criticalities equal to that of p, the tasks in E 
have no deadlines greater than that of p, and the tasks in E 
have no deadlines less than that of p, i.e., minimum feasible 
transform factor or TF, the largest integer divisor of the 
period of p that allows the Sublist HELpU to be rewritten as 
HEpELU where the tasks in E and E. have criticalities 
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16 
equal to that of p, the tasks in E have no deadlines greater 
than that of p, and the tasks in E have no deadlines less than 
that of p, i.e., maximum feasible transform factor or TF 
In action box 1320, the task has its period and deadline 
transformed in a first Scenario for each transform factor from 
TF to TF, where the transformed deadline is a prep 
eriod deadline with respect to the transformed period and is 
Selected So that the transformed deadline of the final resume 
occurs at the original deadline. In action box 1330, the task 
is transformed in a Second Scenario for each transform factor 
from TF to TF Such that its original deadline is a main fix 

multiple of the transformed period. The transformed dead 
line equals the transformed period, and the transformed 
compute time is Such that the task will complete after Some 
number of transformed periods that is no greater than the 
original deadline. In action box 1340, the deadline of the 
task is transformed in a third Scenario, reducing the deadline 
to increase the priority as needed to Satisfy the criticality 
requirement without transforming the Scheduling of the task. 
After all Scenarios are evaluated over their respective range 
of transform factors, cost is evaluated in action box 1350 for 
each transform factor of each scenario. In action box 1360, 
the Scenario and transform factor having the lowest cost 
value is Selected to transform the task. The task is trans 
formed in action box 1370. 

After all tasks have been transformed, priorities are 
assigned in the order in which tasks appear in the final list. 
The ordered priorities of the transformed tasks represents an 
assigned Scheduling priority. The assigned Scheduling pri 
ority is utilized by the executive for ordered execution of the 
tasks on a processor within the multitask System. 
AS one example, in an implementation of the invention 

using the MetaH toolset, the MetaH toolset generates a 
linear Schedulability model, one in which each task may be 
described as a Sequence of task components. Each task 
component may be shared by other tasks and may block 
other tasks. In general, actions that are performed by the 
executive task 150 on behalf of a particular task 110, such 
as message passing, are modeled as components of that task 
and blocking times for other tasks of higher priority. Com 
pute times for generated executive components are produced 
by the MetaH tool using attributes of the target hardware, 
e.g., buffer assignment times are estimated by the linear 
function A+A* b, where b is the number of bytes being 
assigned and A, A are intercept and slope attributes defined 
in the Meta|H processor or bus specification. The mapping 
between Specification, implementation, and model is thus 
more detailed than a simple list of tasks and their param 
eters. Analysis is performed using an extension of an exact 
characterization algorithm that allows tasks to be decom 
posed into components and provides compute-time Sensi 
tivity analysis information. 
The various embodiments of the invention will not always 

produce a user-specified deadline monotonic priority assign 
ment. Many schedulability analysis methods well known to 
those skilled in the art work with any priority assignment 
without assumptions or Special constraints on the relation 
ship between priorities and deadlines, periods, or minimum 
interarrival rates and can be used with the approach of the 
embodiments. 
The Solution of the various embodiments remains valid 

for tasks that use real-time Semaphores, providing the Sema 
phore protocol does not allow the processor to execute at a 
priority lower than any task that is awaiting a Semaphore. 
This condition is necessary to insure that preempted receiv 
ers of undelayed messages cannot start when a Sender blockS 
on a Semaphore. This is true of the ceiling priority and all the 
priority inheritance Semaphore protocols. 
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The various embodiments of the invention further support 
dynamic reconfiguration, or mode changes. In one 
embodiment, mode changes are restricted to hyperperiod 
boundaries. Transition modes are introduced for each user 
Specified mode change, and the dispatcher may perform 
proceSS Starts and stops and slightly different patterns of 
message passing in a transition mode. Metal hierarchical 
mode specifications makes it possible for modes to share 
Subsets of tasks and connections in complex ways. The 
algorithms thus presented are performed for the union of all 
modes in a System, followed by a post-processing phase to 
reduce the number of priority levels required. 

Selecting clock interrupt rates may be an issue in distrib 
uted real-time Systems. Temporally deterministic message 
release times may be needed to assure hard end-to-end 
deadlines. Clock interrupt periods may be desired that not 
only divide the user-specified periods and deadlines, but also 
provide convenient transformed periods and convenient 
network message release times. 

The various methods of the invention provide a model 
adapted to analyze the timing behavior of a task System, and 
in particular, modular mission-critical Software Systems, 
high-rate applications and microcontrollers. Use of Such 
models permits off-line analysis and configuration to tailor 
an executive for each System, rather than relying on a 
generic executive, which allows a simpler, Smaller and faster 
executive. Such models further assist the formulation of 
well-structured specifications for task Systems, which may 
permit the creation of more structured and traceable code 
underlying the task System. 

While the example embodiments describe multiprocessor 
task Systems communicating on a single bus, the invention 
is not limited to single-bus systems. While it is preferred that 
multiple processors be connected by relatively high-Speed, 
low-latency buSSes for efficient transfer of Single Sample 
delay messages, distributed Systems may be utilized where 
Scheduling approaches allow for a single Sample delay 
message to be released with a specified deadline on the 
network, and where communication take place concurrently 
with processor execution. 

Models produced using various embodiments of the 
invention can be used to define electronic Systems to carry 
out the Scheduling and message passing activities of the 
multitask Systems. The electronic Systems described make 
use of a variety of electronic equipment having processors 
utilizing instructions in machine-readable form to carry out 
the methods described herein. FIG. 14 depicts a block 
diagram of a processor 1410 coupled to a machine-readable 
medium 1420. Processor 1410 may be further coupled to bus 
1430 for communication to other processors. Machine 
readable medium 1420 may include fixed devices coupled to 
processor 1410, Such as internal magnetic medium or pro 
grammable memory device. Machine-readable medium 
1420 may further include removable devices coupled to 
processor 1410, Such as removable magnetic medium or 
programming cartridge. Machine-readable medium 1420 
contains instructions Stored thereon, in machine-readable 
format, capable of causing processor 1410 to carry out the 
methods described herein. 
Conclusion 
Methods are disclosed useful in modeling real-time peri 

odic and aperiodic task Scheduling and message passing 
within multitask Systems. Models produced using methods 
of the invention are adapted to analyze the timing behavior 
within Such multitask systems. The methods utilize unde 
layed and Single Sample delayed message connections 
among Software task objects and hardware objects. Task 
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priorities are assigned inversely with period or deadline, So 
that tasks with Shorter periods or deadlines have higher 
Scheduling priorities. Periods of high-criticality tasks are 
decomposed into Smaller pieces that are Sequentially dis 
patched at higher rates where the initial assignment of 
priority is inconsistent with task criticality. System models 
define electronic Systems and instructions for carrying out 
the Scheduling and message passing of the multitask System. 

Although specific embodiments have been illustrated and 
described herein, it will be appreciated by those of ordinary 
skill in the art that any arrangement which is calculated to 
achieve the same purpose may be Substituted for the Specific 
embodiments shown. Many adaptations of the invention will 
be apparent to those of ordinary skill in the art. Accordingly, 
this application is intended to cover any adaptations or 
variations of the invention. It is manifestly intended that this 
invention be limited only by the following claims and 
equivalents thereof. 
What is claimed is: 
1. A method of generating an assigned Scheduling priority 

of a plurality of tasks in a multitask System, comprising: 
defining a first list of the plurality of tasks, wherein the 

first list of the plurality of tasks is sorted with a task 
deadline as a primary key and a task criticality as a 
Secondary key; 

transforming the task deadline of each of the plurality of 
tasks one at a time using a transformation Scenario, 
beginning with the task having the least task deadline, 
thereby producing a transformed task deadline for each 
of the plurality of tasks, 

defining a Second list of the plurality of tasks, wherein the 
second list of the plurality of tasks is sorted with the 
transformed task deadline as the primary key, further 
wherein each transformed task deadline of a task hav 
ing a first task criticality is less than any transformed 
task deadline of a task having a task criticality less than 
the first task criticality; and 

assigning Scheduling priority in an order of the Second list 
of the plurality of tasks, thereby producing the assigned 
Scheduling priority. 

2. The method of claim 1, wherein the transformed task 
deadline of at least one of the plurality of tasks equals the 
task deadline of that at least one of the plurality of tasks. 

3. The method of claim 1, wherein the transformation 
Scenario is Selected from the group consisting of: 

transforming both a task period and the task deadline of 
a task by dividing the task period by a transformation 
factor, thereby producing the transformed task deadline 
and a transformed task period, wherein the transformed 
task deadline is a preperiod deadline with respect to the 
transformed task period, and wherein the transformed 
task deadline of a final resume of the task occurs at the 
original task deadline; 

transforming both the task period and the task deadline of 
the task by dividing the task period by a transformation 
factor, thereby producing the transformed task deadline 
and the transformed task period, wherein the original 
task deadline of the task is a multiple of the transformed 
period of the task and wherein the transformed task 
deadline equals the transformed task period; and 

transforming the task deadline of the task by dividing the 
task deadline by a transformation factor, thereby pro 
ducing the transformed task deadline, wherein the 
transformed task deadline of the task is less than any 
transformed task deadline of other previously 
transformed tasks having lower task criticality. 
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4. The method of claim 3, wherein the transformation 
Scenario is evaluated at a plurality of transformation factors. 

5. The method of claim 3, wherein transforming the task 
deadline further comprises evaluating a cost function to 
Select the transformation Scenario. 

6. The method of claim 5, wherein the cost function is the 
transformation factor times the quantity: 

where: 
S is a context Swap time 
T, is the transformed task period 
D, is the transformed task deadline. 
7. The method of claim 1, wherein transforming the task 

deadline further comprises evaluating a cost function to 
Select the transformation Scenario from a plurality of poS 
Sible transformation Scenarios. 

8. The method of claim 1, wherein transforming the task 
deadline further comprises evaluating the transformation 
Scenario using at least two transformation factors and evalu 
ating a cost function to Select one of the at least two 
transformation factors for the transformation Scenario. 

9. The method of claim 1, wherein defining a first list of 
the plurality of tasks further comprises: 

defining a first Sublist of at least one task of the plurality 
of tasks involved in Sending or relying on undelayed 
messages, wherein the first Sublist is Sorted with an 
internal task deadline as a primary key and an internal 
task criticality as a Secondary key; 

defining a Second Sublist of remaining tasks of the plu 
rality of tasks, wherein the second Sublist is sorted with 
a user-specified task deadline as a primary key and a 
user-specified task criticality as a Secondary key; and 

merging the first Sublist and the Second Sublist, thereby 
producing the first list of the plurality of taskS. 

10. The method of claim 1, wherein the multitask system 
is a flight control System. 

11. A machine-readable medium having instruction Stored 
thereon capable of causing a processor to carry out a 
method, the method comprising: 

defining a first list of a plurality of tasks, wherein the first 
list of the plurality of tasks is sorted with a task 
deadline as a primary key and a task criticality as a 
Secondary key; 

transforming the task deadline of each of the plurality of 
tasks one at a time using a transformation Scenario, 
beginning with the task having the least task deadline, 
thereby producing a transformed task deadline for each 
of the plurality of tasks, 

defining a Second list of the plurality of tasks, wherein the 
second list of the plurality of tasks is sorted with the 
transformed task deadline as the primary key, further 
wherein each transformed task deadline of a task hav 
ing a first task criticality is less than any transformed 
task deadline of a task having a task criticality leSS than 
the first task criticality; and 

assigning Scheduling priority in an order of the Second list 
of the plurality of tasks, thereby producing an assigned 
Scheduling priority. 

12. A machine-readable medium having instruction Stored 
thereon capable of causing a processor to carry out a 
method, the method comprising: 

defining a first list of a plurality of tasks, wherein the first 
list of the plurality of tasks is sorted with a task 
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deadline as a primary key and a task criticality as a 
Secondary key; 

transforming the task deadline of each of the plurality of 
tasks one at a time using a transformation Scenario, 
beginning with the task having the least task deadline, 
thereby producing a transformed task deadline for each 
of the plurality of tasks, wherein the transformation 
Scenario is Selected from the group consisting of: 
transforming both a task period and the task deadline of 

a task by dividing the task period by a transformation 
factor, thereby producing the transformed task dead 
line and a transformed task period, wherein the 
transformed task deadline is a preperiod deadline 
with respect to the transformed task period, and 
wherein the transformed task deadline of a final 
resume of the task occurs at the original task dead 
line; 

transforming both the task period and the task deadline 
of the task by dividing the task period by a trans 
formation factor, thereby producing the transformed 
task deadline and the transformed task period, 
wherein the original task deadline of the task is a 
multiple of the transformed period of the task and 
wherein the transformed task deadline equals the 
transformed task period; and 

transforming the task deadline of the task by dividing 
the task deadline by a transformation factor, thereby 
producing the transformed task deadline, wherein the 
transformed task deadline of the task is less than any 
transformed task deadline of other previously 
transformed tasks having lower task criticality; and 

defining a Second list of the plurality of tasks, wherein the 
second list of the plurality of tasks is sorted with the 
transformed task deadline as the primary key, further 
wherein each transformed task deadline of a task hav 
ing a first task criticality is less than any transformed 
task deadline of a task having a task criticality less than 
the first task criticality; and 

assigning Scheduling priority in an order of the Second list 
of the plurality of tasks, thereby producing an assigned 
Scheduling priority. 

13. A method of operating a multitask System having a 
processor, comprising: 

communicating among a plurality of tasks having a pri 
ority and a criticality, wherein each of the plurality of 
tasks has a communication function Selected from the 
group consisting of Sender and receiver, and wherein 
each communication function is adapted for message 
types Selected from the group consisting of undelayed 
messages and Single Sample delay messages; 

assigning a higher priority to any Sender task Sending 
undelayed messages than any downstream receiver 
task, 

assigning priority to other Sender taskS Such that each task 
of the plurality of tasks having a first criticality further 
has a priority greater than any of the plurality of tasks 
having a criticality lower than the first criticality; and 

executing each of the plurality of tasks on the processor 
according to their assigned priorities. 

14. The method of claim 13, wherein the multitask system 
is a flight control System. 

15. A machine-readable medium having instruction Stored 
thereon capable of causing a processor to carry out a 
method, the method comprising: 

communicating among a plurality of tasks having a pri 
ority and a criticality, wherein each of the plurality of 
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tasks has a communication function Selected from the assigning priority to other Sender taskS Such that each task 
group consisting of Sender and receiver, and wherein of the plurality of tasks having a first criticality further 
each communication function is adapted for message has a priority greater than any of the plurality of tasks 
types Selected from the group consisting of undelayed having a criticality lower than the first criticality; and 
messages and Single Sample delay messages; 5 executing each of the plurality of tasks on the processor 

assigning a higher priority to any Sender task Sending according to their assigned priorities. 
undelayed messages than any downstream receiver 
task, k . . . . 


