
(12) United States Patent
Binns et al.

USOO656784OB1

(10) Patent No.: US 6,567,840 B1
(45) Date of Patent: May 20, 2003

(54) TASK SCHEDULING AND MESSAGE
PASSING

(75) Inventors: Pamela A. Binns, St. Paul, MN (US);
Stephen C. Vestal, St. Paul, MN (US)

(73) Assignee: Honeywell Inc., Morristown, NJ (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/312,592
(22) Filed: May 14, 1999

(51) Int. Cl." .. G06F 9/00

(52) U.S. Cl. 709/103; 709/100; 709/102;
709/107

(58) Field of Search 709/100, 101,
709/102, 103, 104, 105, 106, 107, 108

(56) References Cited

U.S. PATENT DOCUMENTS

3,648.253 A 3/1972 Mullery et al. 360/172.5
5,408,663 A 4/1995 Miller 395/650
5,560,032 A 9/1996 Nguyen et al. 395/800
5,566,177 A 10/1996 Bhandari et al. 370/85.5
5,630,096 A 5/1997 Zuravleff et al. 395/481

OTHER PUBLICATIONS

Hiroyuki Kaneko, John A. Stankovic: “Integrated Schedul
ing of Multimedia And Hard Real-Time Tasks”, Proceed
ings of the IEEE Real-Time Systems Symposiums, US,
New York, IEEE, vol. Symp. 17, Dec. 4, 1996, pp. 206–217,
XPO00659642, ISBN: 0-7803–3801–4, p. 206, Left-Hand
Column, Line 1-p. 207, Left-Hand Column, Last Line p.
209, Left-Hand Column, Line 15, Right-Hand Column,
Line 47.

Steve Vespal: “Metah Support for Real-Time Multi-Proces
sor Avionics” Proceedings of 5" Intl. Workshop on Parallel
and Distributed Real-Time Systems and 3' Workshop on
object-oriented real-time systems. Apr. 1-3 1997, pp.
11–23, XP002153417, Geneva, Switzerland, The whoe
document.
Sara R. Biyabani, John A. Stankovic, Krithi Ramamritham:
“The Integration of Deadline and Criticalness in Hard Real
Time Scheduling” Proceedings of the the RealTime Systems
Symposium, US, Washington, IEEE Comp. Soc. Press, vol.
Symp 9, Dec. 6. 1988, pp. XP000014046, The Whole
Document.
Binns, P., et al., “Precedence Constrained Fixed Priority
Scheduling with Solutions to Some Pratical Problems”,
Honeywell Technology Center; Submitted to RTSS 99,
(1999).
Chetto, M., et al., “A feasibility test for scheduling tasks in
a distributed hard real-time system.”, APII, vol. 24, Copy
right AFCET 1990, 239-252, (1990).
Johnson, M., “Boeing 777 Airplane Management System
Philosophy and Displays”, Honeywell, Inc. Air Transport
Systems, Phoenix, Arizona, USA, 8.

(List continued on next page.)
Primary Examiner Majid Banankhah
(57) ABSTRACT

Methods for modeling real-time periodic and aperiodic task
Scheduling and message passing within multitask Systems.
The methods utilize undelayed and single sample delayed
message connections among Software task objects and hard
ware objects. Task priorities are assigned inversely with
period or deadline, So that tasks with shorter periods or
deadlines have higher Scheduling priorities. Periods of high
criticality tasks are decomposed into Smaller pieces that are
Sequentially dispatched at higher rates where the initial
assignment of priority is inconsistent with task criticality.
The methods provide for deterministic communication
among periodic processes.

15 Claims, 11 Drawing Sheets

SINGLE SAMPLE DELAY

UNDELAYED

US 6,567,840 B1
Page 2

OTHER PUBLICATIONS

Lehoczky, J.P., “Fixed Priority Scheduling of Periodic Task
Sets with Arbitarary Deadlines", IEEE, 201-209, (1990).
Sprunt, B., et al., “Exploiting Unused Periodic Time for
Aperiodic Service Using the Extended Priority Exchange
Algorithm", IEEE, 251-258, (1988).
Audsley, N. C., et al., “Fixed Priority Pre-emptive Sched
uling: An Historical Perspective”, Real-Time Systems, 8,
1995 Kluwer Academic Publishers, Boston, 173–198,
(1995).
Bettati, R., et al., “End-to-End Scheduling to Meet Dead
lines in Distributed Systems”, Proceedings of the 12th
International Conference on Distributed Computing Sys
tems, 452–459, (Jun. 1992).
Binns, P., “Incremental Rate Monotonic Scheduling for
Improved Control System Performance”, Real-Time Appli
cations Symposium, 11 pgs., (Jun. 1997).
Binns, P., “Scheduling Slack in MetaH', Real-Time Systems
Symposium, Work in Progress Session, 4pgs., (Dec. 1996).
Gerber, R., et al., “Semantics-Based Compiler Transforma
tions for Enhanced Schedulability", IEEE, 232-242, (1993).
Gertz, M.W., et al., “A Human-Machine Interface to Sup
port Reconfigurable Software Assembly for Virtual Labora
tories”, IEEE Robotics and Automation Magazine, 4, 1-8,
(Dec. 1994).
Gillies, D. W., et al., “Scheduling Tasks with and/or Prece
dence Constraints”, SIAM J. Comput., 24, 1995 Society for
Industrial and Applied Mathematics, 787-810, (Aug. 1995).
Garcia, J. J., et al., “Optimized Priority ASSignment for
Tasks and Messages in Distributed Hard Real-Time Sys
tems", IEEE, 124-132, (1995).
Harbour, M. G., et al., “Fixed Priority Scheduling of Peri
odic Tasks with Varying Execution Priority”, IEEE,
116-128, (1991).
Lehoczky, J., et al., “The Rate Monotonic Scheduling Algo
rithm: Exact Characterization and Average Case Behavior”,
IEEE, 166–171, (1989).
Lehoczky, J. P., et al., “An Optimal Algorithm for Sched
uling Soft-Aperiodic Tasks in Fixed-Priority Preemptive
Systems", IEEE, 110–123, (1992).
Leung, J. Y., et al., “On the Complexity of Fixed-Priority
Scheduling of Periodic, Real-Time Tasks”, Performance
Evaluation 2, North-Holland Publishing Company,
237–250, (1982).
Liu, C. L., et al., “Scheduling Algorithms for Multiprogram
ming in a Hard-Real Time Environment”, Journal of the
Association for Computing Machinery, 20, 46-61, (Jan.
1973).

Luqi, “Real-Time Constraints in a Rapid Prototyping Lan
guage”, Computer Lang, 18, 77-103, (1993).
McConnell, D. J., et al., “Reengineering a Single Threaded
Embedded Missile Application Onto a Parallel Processing
Platform Using MetaH", IEEE, Proceedings of the 4th
WPDRTS, 57–64, (1996).
Mok, A. K., et al., “Synthesis of a Real-Time Message
Processing System with Data-driven Timing Constraints',
IEEE, 133-143, (1987).
Saksena, M., et al., “Design and Implementation of
Maruti-II”, in Principles of Real-Time Systems, Sang Son
Ed., Chapter 4, (1994).
Saksena, M., et al., “Guidelines for Automated Implemen
tation of Executable Object Oriented Models for Real-Time
Embedded Control Systems", IEEE, 240–251 (1997).
Sha, L., et al., “Priority Inheritance Protocols: An Approach
to Real-Time Synchronization', IEEE Transactions. On
Computers, 39, 1175–1185, (Sep. 1990).
Sha, L., et al., “Solutions for Some Practical Problems in
Prioritized Preemptive Scheduling", IEEE, 181-191,
(1986).
Spuri, M., et al., “How to Integrate Precedance Constraints
and Shared Resources in Real-Time Scheduling", IEEE
Transactions on Computers, 43, 1407-1412, (Dec. 1994).
Stoyenko, A.D., et al., “A Schedulability Analyzer for Real
Time Euclid", IEEE, 218–227, (1987).
Sun, J., et al., “Synchronization Protocols in Distributed
Real-Time Systems", IEEE, 38-45, (1996).
Vestal, S., “Fixed-Priority Sensitivity Analysis for Linear
Compute Time Models”, IEEE Transactions on Software
Engineering, 20, 308-317, (Apr., 1994).
Vestal, S., “MetaH Support for Real-Time Multi-Processor
Avionics”, Joint Workshop On Parallel and Distributed
Real-Time Systems, Geneva, Switzerland, 10 pgs., (Apr.
1997).
Vestal, S., “Mode Changes in a Real-Time Architecture
Description Language”, Second International Workshop On
Configurable Distributed Systems, 11 pgs., (Mar. 1994).
Vestal, S., et al., “Scheduling and Communication in
MetaH', Proceedings of the Real-Time Systems Symposium,
Raleigh-Durham, NC, 7 pgs., (Dec. 1993).
Xu, J., et al., “Scheduling Processes with Release Times,
Deadlines, Precedence, and Exclusion Relations”, IEEE
Transactions on Software Engineering, 16, 360-369, (Apr.,
1994).

U.S. Patent May 20, 2003 Sheet 1 of 11 US 6,567,840 B1

1 OO \
11 O 1 O5 125

FLIGHT
SENSOR CONTROL ACTUATOR

F.G. 1A

PRIMARY
FLIGHT
CONTROL

COMPARATOR SENSOR ACTUATOR

BACKUP
FLIGHT
CONTROL

F.G. 1 B

U.S. Patent May 20, 2003 Sheet 2 of 11 US 6,567,840 B1

1 OO N

EXECUT VE

15O

FG 1 C

U.S. Patent May 20, 2003 Sheet 3 of 11 US 6,567,840 B1

PREEMPTED COMPUTING

125s S
W. W.

t START out.
DSPATCH DEADLINE

FG. 2

TIME

SINGLE SAMPLE DELAY

F G O 3 UNDELAYED

HARD WARE OBJECT

U.S. Patent May 20, 2003 Sheet 4 of 11 US 6,567,840 B1

s

LO

U.S. Patent May 20, 2003 Sheet 5 of 11 US 6,567,840 B1

EXECUTIVE

PERIODC EVENT SERVICE
DISPATCHER HANDLER COMPONENT

61O 62O 650

F.G. 6

EXECUT VE

FIG 7

U.S. Patent May 20, 2003 Sheet 6 of 11 US 6,567,840 B1

81 O

HARD WARE
INTERRUPT

NCREMENT
CYCLE COUNTER

ANY
TASKS

SCHEDULED
TO BE DISPATCHED

THIS CYCLE

S = SET OF
ALL TASKES TO BE

DISPATCHED

89 O

is 11 O

FG. 8

U.S. Patent May 20, 2003 Sheet 7 of 11 US 6,567,840 B1

91 O

HARDWARE INTERRUPT

ASSIGN EXEC INPUT
BUFFERS TO TASK INPUT

BUFFERS

DSPATCH A PERIODC
TASK

FG. 9

89 O

- is 11 O

1 O1 O

TASK COMPLETION

1 O2O

REMOVE TASK FROM
READY QUEUE

89 O

1 O3O
TASKS 11 O -a-

ASSIGN OUTPUT TO EXEC
OR RECEIVER BUFFER

F.G. 1 O

U.S. Patent May 20, 2003 Sheet 8 of 11 US 6,567,840 B1

111 O 114O

GENERATE LIST GENERATE LIST
UNDELAYED OTHER

1115 1145

SET INTERNAL SORT BY
DEADLINE USER-SPECIFIED

117O DEADLINE

SORT BY INTERNAL 1155
DEADLINE 115O

SORT BY EO
1175 USER-SPEC USER-SPEC

SET INTERNAL CRT PLNES
CRITICALITY O

1130-1. 1135 116 O
SORT BY

INTERNALYE. NERN SET INTERNAL
D'LINES CRT CRT & D'LINES

? TO USER-SPEC
NO CRIT & D'LINES

1165

MERGE SORTED
LSTS

117O

TRANSFORM
MERGED LIST

F.G. 11

U.S. Patent May 20, 2003 Sheet 9 of 11 US 6,567,840 B1

F. ORIGINAL PERIOD
ORIGINAL DEADLINE

TRANSFORMED
PERIOD

SCENARIO 1)

|

TRANSFORMED
DEADLINE

TRANSFORMED PERIOD

- TRANSFORMED DEADLINE

SCENARIO 2)

TRANSFORMED PERIOD
= ORIGINAL PERIOD

SCENARIO 3)

TRANSFORMED
DEADLINE

F.G. 12

US 6,567,840 B1

7 |

Sheet 11 of 11 May 20, 2003 U.S. Patent

èHOSSIEOO?Ho

US 6,567,840 B1
1

TASK SCHEDULING AND MESSAGE
PASSING

The Government may have rights in this invention pur
Suant to Contract No. DAAHO1-97-C-R233, awarded by the
Department of the Army.

TECHNICAL FIELD

The present invention relates generally to task Scheduling
and message passing within task Systems, and in particular
to modeling real-time periodic and aperiodic task Scheduling
and message passing adapted to analyze the timing behavior
within multitask Systems and to define electronic Systems
and instructions for carrying out Such Scheduling and mes
Sage passing.
A portion of the disclosure of this patent document

contains material which is Subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent disclosure, as it
appears in the Patent and Trademark Office patent files or
records, but otherwise reserves all copyright rights whatso
ever. The following notice applies to the Software and data
as described below and in the drawings hereto: CopyrightC)
1999, Honeywell, Inc., All Rights Reserved.

BACKGROUND

Computer processes are often Subdivided into a variety of
functions which may be executed as tasks in Serial and/or
parallel fashion. These computer processes can be used to
gather and act upon information, and to bring about Some
result in response to the information. These functional task
Systems find use in a variety of important environments.
Examples may include monitor and control of an industrial
process, Such as a power generation and distribution System,
or monitor and control of complex equipment, Such as a
commercial airliner.

Classical control functions rely on data flows between
periodically executed tasks, with the results of a task deliv
ered at the next dispatch of that task. This behavior allows
cyclic data dependencies among tasks, i.e., feed-back loops,
and is consistent with the assumptions underlying the math
ematical analysis of discrete time dynamic Systems. A mes
Sage passing communication model is more Suitable for
partitioned multiprocessor Systems than a shared memory
communication model, especially Systems that are loosely
coupled to maintain a high degree of hardware fault isola
tion.

In many mission critical Systems Software needs to be
modularized using an appropriate functional breakdown,
which often requires decomposing a traditional control task
into multiple communicating Subtasks. This may require
end-to-end ordering and Scheduling of certain Subtasks and
messages. For example, in an avionics System, inertial
measurement processing and autopiloting might be imple
mented as Separate functions performed by Separate task
Sets. There would be an end-to-end deadline from reading
Sensor data to outputting actuator commands, and task and
message order dependencies within this deadline.

The increasing complexity of hardware makes it harder to
accurately bound computation and communication times.
Caches, for example, make it more difficult to accurately
bound worst-case compute times, even for algorithms whose
control flow is data-independent. Actual worst-case compute
times may be Substantially less than bounds that can be
easily established during development. Actual compute
times may vary significantly acroSS different dispatches of

15

25

35

40

45

50

55

60

65

2
the same task. Systems will be designed So that only the
more critical functions are guaranteed with highest assur
ance to be Schedullable under worst-case compute time
bounds. Load Shredding of the leSS critical tasks will occur
during any intervals of transient processor overload.

High-assurance Systems have additional requirements.
The dependency ordering of computations and
communications, and the exact times of interactions with the
external World, must produce deterministic outcomes.
Uncertainties or variations in task compute times must not
affect the values of designated control outputs. It is neces
Sary to formally model and analyze the timing behavior of
a System. Specifications, models, analyses and code all need
to be well-structured, understandable, traceable and ame
nable to multiple independent means of Verification.

There is a need in the art for Solutions in modeling
real-time periodic and aperiodic task Scheduling and mes
Sage passing useful in integrated mission-critical Systems, or
in Systems with high-rate applications and microcontrollers
having constrained throughput and/or memory.

SUMMARY

The invention addresses deterministic communication
between two periodic processes. It includes a communica
tion model, a deadline reduction technique, a period trans
formation technique and implementation efficiency buffer
assignment rules.

In one embodiment, the invention provides a method of
generating an assigned Scheduling priority of a plurality of
tasks in a multitask System. The method includes defining a
first list of the plurality of tasks, wherein the first list of the
plurality of tasks is Sorted with a task deadline as a primary
key and a task criticality as a secondary key. The method
further includes transforming the task deadline of each of the
plurality of tasks that do not produce undelayed messages.
The transformation occurs one at a time using a transfor
mation Scenario beginning with the task having the least task
deadline, thereby producing a transformed task deadline for
each of the plurality of tasks. The method still further
includes defining a Second list of the plurality of tasks,
wherein the second list of the plurality of tasks is sorted with
the transformed task deadline as the primary key and
wherein each transformed task deadline of a task having a
first task criticality is less than any transformed task deadline
of a task having a task criticality less than the first task
criticality. Scheduling priority is then assigned in the order
of the Second list of the plurality of tasks, thereby producing
the assigned Scheduling priority. In a further embodiment,
the multitask System is a flight control System.

In another embodiment, the invention provides a method
of operating a multitask System. The method includes com
municating among tasks, with each task having a priority
and a criticality. Each task is a Sender and/or receiver of
undelayed messages and/or Single Sample delay messages.
The method further includes assigning a priority to each
Sender task Sending undelayed messages Such that the pri
ority of the Sender task is higher than the priority of any
downstream receiver task. The method further includes
assigning a priority to each Sender task that does not send
undelayed messages, where each Such task having a first
criticality has a priority greater than any Such task having a
criticality lower than the first criticality. The method still
further includes executing each of the tasks on a processor
according to their assigned priorities. In yet another
embodiment, the multitask System is a flight control System.

In a further embodiment, the invention provides a multi
task System. The multitask System includes a processor and

US 6,567,840 B1
3

a plurality of tasks operating on the processor. Each task is
of a periodic or aperiodic task type. Each task has associated
with it at least one I/O buffer. Communications with each
I/O buffer is adapted to either undelayed messages or Single
Sample delay messages. An executive task having a periodic
dispatcher, an event handler and a Service component is
utilized for controlling dispatching of tasks and communi
cations among the I/O buffers. The periodic dispatcher
manages dispatching of periodic tasks and their Single
Sample delay communications. The event handler manages
dispatching of aperiodic tasks and their Single Sample delay
message communications. The Service component manages
task completions and all undelayed message communica
tions. In a still further embodiment, the multitask system is
a flight control System.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic of a flight control system for use
in accordance with an embodiment of the invention.

FIG. 1B is a schematic of a redundant flight control
System for use in accordance with an embodiment of the
invention.

FIG. 1C is a block diagram of a multitask system in
accordance with an embodiment of the invention.

FIG. 2 is an execution timeline of a task in accordance
with an embodiment of the invention.

FIG. 3 is a Schematic of connection types for message
passing in accordance with an embodiment of the invention
illustrated with task objects.

FIG. 4 is a Schematic of a hardware object in accordance
with an embodiment of the invention.

FIG. 5 is a Schematic of end-to-end computations and
communications in accordance with an embodiment of the
invention.

FIG. 6 is a Schematic of a task executive in accordance
with an embodiment of the invention.

FIG. 7 is a schematic illustrating executive buffers in
accordance with an embodiment of the invention.

FIG. 8 is a process flowchart of a dispatcher task in
accordance with an embodiment of the invention.

FIG. 9 is a process flowchart of an event handler in
accordance with an embodiment of the invention.

FIG. 10 is a process flowchart of a service component in
accordance with an embodiment of the invention.

FIG. 11 is a process flowchart of task list generation in
accordance with an embodiment of the invention.

FIG. 12 is an illustration of example transformation
Scenarios for use in accordance with embodiments of the
invention.

FIG. 13 is a process flowchart of task transformation in
accordance with an embodiment of the invention.

FIG. 14 is a block diagram of an electronic system in
accordance with an embodiment of the invention.

DESCRIPTION OF THE EMBODIMENTS

In the following detailed description of the preferred
embodiments, reference is made to the accompanying draw
ings which form a part hereof, and in which is shown by way
of illustration specific embodiments in which the inventions
may be practiced. These embodiments are described in
Sufficient detail to enable those skilled in the art to practice
the invention, and it is to be understood that other embodi
ments may be utilized and that proceSS or mechanical

15

25

35

40

45

50

55

60

65

4
changes may be made without departing from the Scope of
the present invention. The following detailed description is,
therefore, not to be taken in a limiting Sense, and the Scope
of the present invention is defined only by the appended
claims.

FIG. 1A is a schematic of a flight control system 100.
Flight control task 105 is executed at some periodic rate.
Flight control task 105 receives sensor data (S) 115 from
sensor 110, computes a function f with sensor data 115 and
State data 130 computed in a previous dispatch (X) as
inputs, and writes an output (X) 120 to an actuator 125.
This may be written as X=f(X, S). Sensor data 115
should be transferred substantially without delay to flight
control task 105, and flight control task 105 must not start
executing until it has received the sensor data 115. This
undelayed transfer is represented with a double-headed

OW.

Actuator output 120 computed from sensor data 115 read
at time t should be written at exactly t+A with minimaljitter,
where A and the task period are determined and Specified by
a control engineer based on System requirements. Often, A
is a deadline that occurs before the next dispatch of the flight
control task. The state information (X) 130 computed at the
m" dispatch of the task must be received at the (m+1)"
dispatch of the task. This delayed data flow is represented by
the feedback connection from the flight control task to itself.
The feedback data from the flight control task to itself can
also be transferred with some fixed and invariable delay,
e.g., the period of that task. These latter two transferS are
termed single sample delay (SSD) connections.

If data is sent from a periodic task A to a periodic task B
(possibly having different rates), and if the i' dispatch of B
receives data from the j" dispatch of A in any schedulable
run, it must do So in every Schedulable run to Satisfy
feedback control determinacy requirements. This is true for
undelayed as well as SSD connections.

FIG. 1B shows a variation of a flight control system 100
having redundancy. Flight control system 100 further
includes a primary flight control task 105A, a Secondary
flight control task 105B and a comparator task 135 to select
the output (120A or 120B) used to control the system. The
end-to-end deadline A between reading the Sensor input 115
and writing the actuator output 120 applies to the execution
of all three tasks (105A, 105B and 135) and to the interme
diate data transfer between the two flight control tasks 105A
and 105B and the comparator task 135. The data transfer
from the flight control tasks 105A and 105B to the com
parator task 135 must be substantially undelayed, and a
Scheduling precedence constraint exists between the two
flight control tasks 105A and 105B and the comparator task
135.

In one embodiment of the invention, the System provides
preemptive fixed priority Scheduling of periodic and aperi
odic tasks and assignments between message buffer vari
ables. Priorities are assigned inversely with period or
deadline, So that tasks with Shorter periods or deadlines have
higher Scheduling priorities. If the initial priority assignment
is inconsistent with task criticalities then the periods and/or
deadlines of high-criticality tasks are transformed, i.e., the
tasks are decomposed into Smaller pieces that are Sequen
tially dispatched at higher rates. For aperiodic Scheduling,
the embodiment uses both deferrable server and period
enforcement algorithms. In another embodiment, the System
provides a real-time slack Scheduler.
An exact characterization algorithm extended to provide

sensitivity analysis information is utilized for schedulability

US 6,567,840 B1
S

analysis. The example embodiment has been implemented
in a MetaFI toolset that automatically generates and analyzes
formal Schedulability, reliability, and partitioning models of
a System; and automatically composes the System, building
images for each System processor, using generated Sched
uling and communication code. The MetaH toolset is devel
oped and distributed by Honeywell, Inc., Minneapolis,
Minn., USA. Other Computer-Aided Software Engineering
(CASE) tools may be used with the various embodiments of
the invention.

With reference to FIG. 1C, task system 100 is a multitask
System having at least two Schedullable application tasks
110. The scheduling of application tasks 110 within task
System 100, as well as the communications of application
tasks 110, is controlled by an executive task 150. Each task
110 in the task system 100 is repeatedly dispatched, either at
Some fixed rate for periodic tasks or in response to Some
event, i.e., Software-generated, interrupt or other event, for
aperiodic tasks. A task 110 resides, or is performed by, only
one processor 120.

FIG. 2 shows the task execution timeline of a task 110
following each dispatch and the terms defined herein for
Selected instants and intervals of time. The term “task
instance” refers to a specific dispatch of a task 110 and the
asSociated Sequence of following activities and Scheduling
points. Between each dispatch of a task 110 and the follow
ing deadline, a task must perform a certain amount of work,
receiving a certain amount of compute time from the pro
ceSSor. However, the processor may also spend Some time
working on other tasks 110 between dispatch and
completion, during which intervals a task 110 is said to be
preempted by other tasks 110. An important observation to
make is that task dispatches, i.e., when a task 110 is placed
in a prioritized ready queue, and deadlines, i.e., Some
System-defined deadline or other constraint for completion
of the task, occur at deterministic times for periodic taskS.
However, task Start time, i.e., when computing of the task
begins, and complete times, i.e., when computing of the task
is complete, may vary depending on Scheduling and com
pute time requirements.

TaskS 110 are characterized using four primary param
eters. The class of a task is either periodic, i.e., regularly
Scheduled for dispatch, or aperiodic, i.e., dispatched in
response to Some non-Scheduled event. The period of a task
is the interval between dispatches of a periodic task, or the
minimum interval between event arrivals for an aperiodic
task. The compute time of a task is the upper bound on the
amount of processor time required for an instance of that
task to complete after each dispatch. In practice, the degree
of assurance that the actual compute time will not exceed
this value varies depending on the task.

The criticality of a task in one embodiment is an integer
value used to control Scheduling behavior when processors
are overloaded, i.e., where Some Subset of tasks is unschedul
lable. While Such a numerical ranking System is convenient
for implementation, other ranking Systems may be utilized.
The schedulability of a task is affected only by tasks on the
Same processor having a criticality equal or greater to its
own criticality. Lower criticality tasks may exceed their
Stated compute times, or, for aperiodic tasks, may be dis
patched at a higher rate than their Stated periods, without
causing a higher criticality task to miss a deadline.

In one embodiment, messages are values that are trans
ferred from output buffer variables in sender tasks to input
buffer variables in receiver tasks according to a specified Set
of connections. In the MetaFI Specification language, each

15

25

35

40

45

50

55

60

65

6
task may have one or more input or output ports that
designate buffer variable declarations in the task Source
code, and connections can be made between compatibly
typed ports as illustrated in FIG. 3. As depicted in FIG. 3,
task 110 has a single sample delay output buffer 310 and an
undelayed input buffer 340. Task 110 has a single sample
delay input buffer 320 and an undelayed output buffer 330.
Tasks 110 and 110 may have additional or other input and
output buffers.

Single sample delay output buffer 310 provides its mes
Sage value to Single Sample delay input buffer 320. Unde
layed output buffer 330 provides its message value to
undelayed input buffer 340.

Incoming messages are placed in the input buffers of a
receiver task by the time it starts, and outgoing messages are
presumed available in the output buffers of a task when it
completes. In the absence of any other constraints on task
Scheduling in a Schedulable System, incoming messages
should be available at task dispatch, and outgoing messages
may not be available until the task deadline. A task is a
Sender when Sending a message value from its output buffer,
and a receiver when receiving a message value at its input
buffer.

In the example embodiment, there are two types of
message connections. The first is a single Sample delay
connection. The Second is an undelayed message connec
tion.

A Single Sample delay connection causes the value
received by a task instance to be the one available at the most
recent Sender deadline that preceded, or occurred at the same
instant as, the receiver dispatch. In one embodiment, an
exception occurs when the Sender is an aperiodic task, Such
that the message value is obtained at the complete time
rather than the deadline of the sender.

Hardware objects are allowed to have ports, e.g., device
control registerS mapped into memory Space. AS shown in
FIG. 4, hardware object 400 may have one or more hardware
input ports 410 and one or more hardware output ports 420.
Transfers to or from hardware ports occur at the deadline of
the Sender task or dispatch of the receiver task instance,
respectively. AS noted above for aperiodic tasks, the trans
fers to a hardware port from an aperiodic task may occur at
the task's complete time. Hardware objects provide message
values to tasks, e.g., keyboard entry of data or data from a
machine-readable medium, as well as accept message values
from tasks, e.g., for display to an end-user or to control
industrial equipment. Similar to tasks, a hardware object is
a Sender when Sending a message value from its output port,
and a receiver when receiving a message value at its input
port.
Any task or device that outputs and does not input

undelayed messages is termed a Source. Any task or device
that inputs and does not output undelayed messages is
termed a sink. Any task or device that outputs undelayed
messages is termed a producer. A Source, by definition, is a
producer. Any task or device that inputs undelayed messages
is termed a consumer. A sink, by definition, is a consumer.

Since deadlines and dispatches occur at deterministic
times for periodic tasks, this results in a strictly deterministic
data dependence among periodic tasks. That is, if the j'
instance of a task receives data from the i' instance of
another task in any Schedullable run of the System, it will do
so in all schedulable runs of the system. FIG. 5 shows an
example of undelayed message passing between periodic
tasks, where A has undelayed connections to B and C, and
B has an undelayed connection to C. In FIG. 5, the 1

US 6,567,840 B1
7

instance of task C receives input from the 1* instances of
tasks A and B, while the 2" instance of task Creceives input
from the 3" instance of task A and the 1* instance of task
B. This dependency among periodic tasks with undelayed
message passing will repeat in every Schedulable run of the
task System. The exception allowed in the case of an
aperiodic Sender is deemed an acceptable loSS of determin
ism because aperiodic dispatch times are themselves non
deterministic in Some Sense, and this allows a simpler
implementation.
An undelayed connection establishes a precedence con

Straint as well as a data dependency between task instances.
The Sender is executed to completion, the message is
transferred, and then the receiver will be allowed to start. In
one embodiment, task system 100 has the following con
Straints on undelayed message connections in what is termed
the pairwise Synchronous dispatch model.

1. The Set of undelayed message connections and asso
ciated tasks must form a directed acyclic graph.

2. Every pair of periodic tasks that communicates by an
undelayed connection must have harmonic periods, i.e.,
the period of one must be an integer multiple of the
period of the other. Note that transitivity causes all
tasks in an undelayed chain to be harmonic, but not in
parallel branches of a tree. Consider, for example,
parallel branches of undelayed chains A->>B->>C and
A->>B->>C, where the periods of A, B, C and C are
5 ms, 10 ms, 20 ms and 30 ms, respectively.

3. The Sender of an undelayed message is allowed to have
a lower criticality than the receiver only if the sender
has enforced compute time and minimum event inter
arrival times.

An undelayed data transfer occurs between two periodic
task instances only when they were dispatched at the same
time, i.e., pairwise Synchronous dispatch. in the pairwise
Synchronous dispatch model, the Sender executes to comple
tion first, and the receiver Start is delayed until after the
message is transferred. An overall end-to-end chain of
computations and undelayed message communications has
the deadline of the final receiver task. Referring again to
FIG. 5, where A has undelayed connections to B and C, and
B has an undelayed connection to C, note there is no
requirement that Senders have a higher dispatch rate than
receivers. In the example of FIG. 5, Cover samples the data
received from B.

If either the Sender or the receiver task is aperiodic, the
ordering constraint and message transfer applies to the next
instance of the receiver task that is dispatched at or follow
ing the dispatch of the Sender task. This allows, for example,
aperiodic tasks to pass data and dispatch Successor aperiodic
tasks to form trees of coordinating task instances.

If an undelayed connection comes from a hardware output
port, the message value is transferred at the dispatch of the
receiver task. If an undelayed connection goes to a hardware
input port, the value is transferred at the completion of the
Sender task. Note that undelayed connections to hardware
ports are not temporally deterministic. Accordingly, they
may exhibit jitter due to compute time and Scheduling
variability.

In one embodiment, executive task 150 schedules tasks
using a preemptive fixed priority discipline. Executive task
150 is responsible for managing task priorities, dispatching
tasks (placing them on a prioritized ready queue), Suspend
ing tasks (removing them from the ready queue), and
moving data between task buffer variables. Executive task
150, with reference to FIG. 6, includes three components:

1. a periodic dispatcher task 610 that is the highest priority
task in the task System 100 and manages periodic

15

25

35

40

45

50

55

60

65

8
dispatches of taskS 110 and their Single Sample delay
communications,

2. an event handler 620 that manages aperiodic dispatches
of tasks 110 and their single sample delay
communications,

3. a Service component 630 that manages task comple
tions and all undelayed communications of taskS 110.

These three components may be automatically generated
from a Metal Specification of tasks and their message and
event connections.
Message passing is implemented by assignments between

task buffer variables. In many cases an executive buffer
variable may be allocated and used within the executive task
150, e.g., connections between non-harmonic or aperiodic
tasks. In general, movement of message data is implemented
as an assignment from a Sender's buffer variable to an
executive buffer variable followed by an assignment from
the executive buffer variable to the receiver's buffer vari
able. For example, in FIG. 7, sender task 1101 passes its
message value from an output buffer 710 to a shadow output
buffer 720, an executive buffer. Shadow output buffer 720 in
turn passes the message value to shadow input buffer 730,
another executive buffer. Shadow input buffer 730 passes the
message value to an input buffer 740 of receiver task 110.
The two assignments, i.e., from Sender to executive and
executive to receiver, may occur at different Scheduling
points, e.g., the first at the deadline of a Sender periodic task
110 and the Second at the dispatch of a receiver periodic
task 110. In one embodiment, the intermediate assignment
of a message value to an executive buffer variable could be
optimized away for connections between harmonic periodic
tasks whose deadlines equal their periods, Such that Sender
task 110 passes its message value directly to receiver task
110, as shown with dashed line 750. In this case, the
executive buffers are eliminated. In another embodiment, the
shadow output buffer and the shadow input buffer are the
Same executive buffer, for convenience termed a shadow
input buffer.
The dispatcher task 610 performs single sample delay

message passing between periodic tasks and performs peri
odic task dispatching. The dispatcher task 610 is typically
implemented as the handler of a periodic hardware clock
interrupt that occurs nearly simultaneously on all processors.
The interrupt rate should be selected so that every dispatch
and deadline is an integer multiple of the interrupt period,
e.g., the greatest common divisor of the periods and dead
lines that appear in the System Specification.
At each interrupt, a cycle counter is incremented by 1

(modulo Some large value that is a common multiple of all
periods). The periodic actions that are to occur at each
interrupt are determined by whether or not the cycle counter
is evenly divisible by the periodicity of an action.

In one embodiment, a process flow of dispatcher task 610
can be described with reference to FIG.8. FIG. 8 is a process
flowchart having action boxes 810, 820, 840 and 850, as
well as decision box 830. In action box 810, dispatcher task
610 is made ready to run at the periodic interrupt, Such as a
hardware clock interrupt. Upon receiving the periodic
interrupt, the cycle counter is incremented in action box 820.
Decision box 830 determines if any tasks scheduled are to be
dispatched this cycle, i.e., where the cycle evenly divides the
quantity of the task period divided by the periodic interrupt.
If tasks are to be dispatched in decision box 830, action box
840 determines the set (S) of all tasks to be dispatched.
Buffer-to-buffer message assignments are made in action
box 850 for those periodic tasks meeting the criteria of
decision box 830, and those tasks are dispatched. Control is

US 6,567,840 B1

then returned to the tasks interrupted by the periodic inter
rupt. Dispatch of the periodic tasks can be visualized as
adding the task to a ready queue 890. With reference to FIG.
8, the following example is provided:

let task 1 (T) have period T = 10 ms:
let task 2 (T) have period T = 20 ms:
let task 3 (Ts) have period T = 40 ms; and
let hardware global clock periodic interrupt = 10 ms
initialize cycle = 0
case cycle mod 4 is

when 0 = s.sdel comm(T1, T2, Ts); disp(T1, T2, Ts)
when 1 ssdel comm(T); disp(T)
when 2 s ssdel comm(T1, T2); disp(T, T1, T2)
when 3 = s.sdel comm(T,); disp(T)

end case
where:

ssdel comm(T) means copy all T output buffers to executive input
buffers and copy executive output buffers to all t input buffers;
and

disp(T) means dispatch task i.

The event handler 620 is executed whenever external
interrupts or internal Software-generated events occur. MeS
Sage values to be received at the dispatch of aperiodic tasks
are assigned to their input buffer variables and the tasks are
dispatched.

FIG. 9 is a process flowchart of one embodiment of event
handler 620. FIG. 9 includes actions boxes 910, 920 and
930. In action box 910, event handler 620 is executed in
response to a Software-generated event or external interrupt.
Upon receiving the interrupt in action box 910, event
handler 620 assigns message values to their task input
buffers in action box 920. The aperiodic task or tasks

15

25

10
associated with the interrupt in 910 are dispatched in action
box 930. Control is then returned to the highest priority
ready task. AS with dispatch task 610, dispatching an ape
riodic task includes adding the aperiodic task to the ready
queue 890.
The service component 630 is executed when a task

instance completes. The completing task is removed from
the ready queue 890. Output values produced by the com
pleting task are assigned to corresponding executive or
receiver task buffer variables according to rules we present
below. These assignments are conditional, depending on
information recorded at the dispatch of every task that may
receive undelayed messages. At each dispatch of a periodic
task that may receive undelayed input from another periodic
task, the cycle at which that task is dispatched is recorded.
At the dispatch of each aperiodic task that may receive
undelayed input from another task, the Scheduling State of
each Sender task (awaiting dispatch, or dispatched but not
yet completed) is recorded.

FIG. 10 is a process flowchart of one embodiment of
service component 630. FIG. 10 includes actions boxes
1010, 1020 and 1030. In action box 1010, service compo
nent 630 is executed when a task completes. Upon comple
tion of a task or tasks resulting in action box 1010, service
component 630 removes the completing task or tasks from
ready queue 890. Output from the completing task or tasks
is assigned to an executive or receiver buffer in action box
1030. Control then goes to the highest priority task in the
ready queue. ASSignment of output in action box 1030 can
be further described with reference to Table 1.

TABLE 1.

Message Passing Timing

Connection
Type Description

PR.in <- PS.Out Copy PS.out to PR.in.buffer at time Cso. At time D = Dso
copy PR.in.buffer to port PR.in

DR.in <- PS.Out At time Lso copy PS.out to DR.in.
AR.in <- PS.Out At time Lsc copy PS.Out to AR.in.buffer. At time Dro copy

AR. in buffer to AR.in.

PR.in <- DS.out. The device writes to DS.out. At time Disco DS.out is copied to
port PR.in.

PR.in <- AS.out. At time Cso copy AS.Out to PR.in.buffer. At time Ds copy
PR.in.buffer to port PR.in.

AR.in <- AS.Out At time Cso copy AS.Out to AR.in.buffer. At time Dro copy
PR.in.buffer to port AR.in.

DR.in <- AS.Out At time Cso copy AS.Out to the device's input port.
AR.in <- DS.out. The device writes to AR.in.buffer. At time Disco, AR.in.buffer is

DR. in <<- PS.ou
AR.in <<- PS.ou

PR.in <<- DS.ou

PR. in <<- AS.ou.

AR.in <<- AS.Ou

copied to port AR.in.
If Dsp = Drop PS.Out is copied to PR.in.buffer at time Cso. At
time Sr., PR.in.buffer is input to port PR.in.
At time Cs. PS.Out is copied to port DR.in.
At time Cs. PS.Out is copied to AR.in.buffer. At time Sr.
AR.in.buffer is copied to AR.in.
The device writes to PR.in.buffer. At time Ss PR.in.buffer is
copied to port PR.in.
At time Cso AS.Out is copied to PR.in.buffer. At time St.
PR.in.buffer is copied to PR.in.
At time Csco, A.S.Out is coped to AR.in.buffer. At time Sr.
AR.in.buffer is copied to AR.in.

US 6,567,840 B1
11

TABLE 1-continued

Message Passing Timing

Connection
Type Description

DR.in <<- AS.Out At time Csco, A.S.Out is copied to port DR.in.

12

AR.in <<- DS.out. At time Sso, AR.in is assigned the current value of DS.out.
where: <<- = Undelayed Message Passing
<- = Single Sample Delayed Message Passing
XR.in = Input buffer for task X, where X = P (periodic), A (aperiodic) or D (device)
XR.in.buffer = Shadow Input buffer for task X, where X = P, A or D
XS.Out = Output buffer for task X, where X = P, A or D
PR = Periodic Receiver
PS = Periodic Sender
AR = Aperiodic Receiver
AS = Aperiodic Sender
DR = Device Receiver
DS = Device Sender

Ds = The next dispatch of the sender task
Dso = The last dispatch of the sender task
D = The next dispatch of the receiver task
Drop = The last dispatch of the receiver task
Src = The next start time of the receiver task
Cs = The next completion time of the sender task
Lso = The next deadline of the sender task

In one embodiment, a priority assignment algorithm
assigns a higher priority to the Sender of an undelayed
message than to any of its downstream receivers. Down
Stream receivers include any task directly receiving the
undelayed message, as well as all receiving tasks in an
acyclic graph rooted at the Sender of the undelayed message.
This guarantees that any task whose buffers are written at the
completion of another task, i.e., any task receiving unde
layed values from another task, has remained preempted
from the time of its dispatch to the time of the assignment
and thus does not start until after the assignment.
Whenever possible, a task with high criticality but long

period is transformed So that a deadline monotonic priority
assignment can be used. In one embodiment, period trans
formation is a form of controlled time-slicing. The compute
time of the transformed task is divided by Some integer value
to arrive at a time slice for that task. A dispatch of the
transformed task is converted into a dispatch followed by a
Series of periodic resumptions. Each dispatch and resump
tion grants a time slice, and after exhausting each time Slice
a transformed task is Suspended until its next resumption.
The overall effect is to make a low rate task look like a high
rate task with Smaller compute time, and thus higher priority.

For period transformation of periodic tasks, the dispatches
and resumptions are simply inserted into the proper cases of
the dispatcher case Statement (Q1 is then constrained to be
a multiple of all transformed periods). Period transformation
of aperiodic tasks depends on the Scheduling protocol used.
Period transformation can be easily applied using the defer
rable Server protocol, Since this protocol is essentially con
trolled time-slicing Slaved to the dispatcher frequency. In
one embodiment, period enforcement is approximated by
defining the reenabling of a task as the next dispatcher task
dispatch, and an analogous approximate period transforma
tion might also be performed. Slack Scheduling can also be
adapted to take criticality into account.
The MetaH toolset generates data tables and code for the

dispatcher task 610, event handler 620 and service compo
nent 630. It further generates and analyzes a real-time
schedulability model of the task system 100.
The undelayed message connections and tasks are

checked to make Sure they contain no cycles. Task deadlines

25

35

40

45

50

55

60

65

are then reduced as needed So that the deadline of every
Sender of an undelayed message is Strictly less than the
deadline of all its receivers. A Subsequent deadline
monotonic priority assignment phase, which assigns higher
priorities to shorter deadlines, assigns a higher priority to the
Sender of an undelayed message than to the receiver. This
insures that the receiver remains preempted and does not
Start until after the Sender completes whenever the condi
tions for undelayed transfer are Satisfied.

In greater detail, the Set of undelayed message connec
tions is first checked for cycles. Task deadlines are then
reduced as needed So that the deadline of every Sender of an
undelayed message is strictly less than the deadline of all its
receivers. A Subsequent deadline-monotonic priority assign
ment phase, which assigns higher priorities to Shorter
deadlines, will assign a higher priority to the Sender of an
undelayed message than to its receivers. This insures that the
receiver remains preempted and does not start until after the
Sender completes whenever the conditions for undelayed
transfer are Satisfied.
More formally, the Set of all undelayed messages is

represented as a reachability matrix R with R(i,j)=1 if t->>t,
and zero otherwise. Construct R“(i,j)=1 if there is an unde
layed connection path from t, to t, of length exactly k, and
Zero otherwise. Cycles, which are not permitted, exist if for
any 1 silksn., R(i,j)=1, where n, is the number of tasks
with undelayed connections.

Next construct a distance matrix D from the set {R} by
D(i,j) max{kR'(i,j)=1}. In words, D(i,j) is the maximum
length undelayed message connection path from t, to t,
There may be multiple paths, in which case set D(i,j)=0
(rather than oo). The deadline of each task t is then adjusted
to be the minimum of its user-specific deadline and the
deadlines of all tasks that can be reached from T. To insure
distinct deadlines and priority assignments, these deadlines
are then decreased by me, where m is the maximum con
nection depth between an undelayed message Sender and all
of the leafs in the undelayed connection directed acyclic
graph (DAG) rooted at that Sender, and e is a time quantum
preferably Several orders of magnitude Smaller than the
number of tasks times the deadline quantum, i.e., the dis
patcher task rate. For example, e may be 1 nanoSecond with

US 6,567,840 B1
13

the expectation that deadlines will be multiples of a dis
patcher task period measured in milliseconds. The term
internal deadlines is defined to refer to these adjusted
deadlines. In mathematical notation, Let I(i)={k: D(i.k)>0}.
I(i) is the index set of all tasks that T, can reach via an
undelayed message chain. Then for each i, tdeadline=
mino t.deadline, t.deadline (i.k)e.

Conflicts can arise between the user-specified criticalities
for two tasks and the priority assignments implied by
undelayed connections and their corresponding internal
deadlines. For example, if there is an undelayed connection
from A to B then A must have a higher priority than B to
properly implement the precedence constraint, but B could
have a higher user-specified criticality than A. A conflict test
is given by t'criticality>t criticality and j e I(i). Such
conflicts are allowed provided that compute time limits (and,
for aperiodic tasks, period enforcement) are specified for the
Sender, otherwise it is an error. Internal deadlines (and
priorities) are assigned in accordance with undelayed con
nection precedence constraints rather than in accordance
with user-specified criticality attributes when there is Such a
conflict. User-specified criticality values are adjusted
upward as needed to remove acceptable conflicts. The term
internal criticalities is defined to refer to these adjusted
criticality values.
AS an example, lett, be a task that sends an undelayed

message. Let R be the Set of all tasks that eventually receive
input from T., directly or through intermediate taskS via a
Sequence of undelayed messages. R, contains the nodes of
the DAG of receiver tasks rooted at t, and is easily
constructed using a transitive closure of all tasks and their
message connections. Since T, must complete before any
task in R, can begin, the internal criticality of T, is adjusted
to be the minimum of its user-specified criticality and the
internal criticalities of tasks in R.

The list of tasks that Send or receive undelayed messages
is then Sorted by ascending internal deadlines. If multiple
tasks have equal deadlines, then that Sublist is Sorted by
ascending criticality. The result is a Sorted list with internal
deadline as primary key and internal criticality as Secondary
key, where internal deadlines and internal criticalities are
both consistent with each other and ascending.

The list of remaining tasks (those that neither send nor
receive undelayed messages) is now merged with this list in
Sorted order, using user-specified deadline as the primary
key and user-specified criticality as Secondary key. Incon
Sistencies among criticality rankings and deadline rankings
is permissible in this list. These inconsistencies will be
removed later using period transformation. Internal criticali
ties and internal deadlines are Set to the user-specified
criticalities and user-specified deadlines, respectively.

The merged list of tasks is Sorted using internal deadline
as the primary key and internal criticality as the Secondary
key. The next Step is to transform the periods and deadlines
of the tasks So that both criticalities and deadlines are in
monotonic order. That is, all tasks having a first criticality
have deadlines that are less than any task having a lower
criticality.

FIG. 11 is a process flowchart of one embodiment of the
foregoing task list generation. In FIG. 11, the list of tasks
that Send or receive undelayed messages and the list of
remaining tasks are generated in parallel. However, there is
no requirement for Such parallel implementation.

FIG. 11 includes action boxes 110, 1115, 1120, 1125,
1135, 1140, 1145, 1155, 1160, 1165 and 1170, as well as
decision boxes 1130 and 1150. Generation of the list of tasks
that Send or receive undelayed messages for each processor

15

25

35

40

45

50

55

60

65

14
begins at action box 1110. Internal deadlines are set in action
box 1115 such that the deadline of every sender task is
strictly less than the deadline of all its receivers. The list is
then sorted by internal deadline in action box 1115. Internal
criticalities are set in action box 1125 to remove conflicts.
Decision box 1130 determines if multiple tasks in the sorted
list have equal internal deadlines. If yes, the portion or
portions of the list having equal deadlines are Sorted by
internal criticality in action box 1135. If there are no portions
of the list having equal internal deadlines in decision box
1130, or following sorting by internal criticality in action
box 1135, control is transferred to action box 1165.

Generation of the list of tasks that do not Send nor receive
undelayed messages for each processor begins at action box
1140. The list generated in action box 1140 is sorted by
user-specified deadline in action box 1145. Decision box
1150 determines if multiple tasks in the sorted list have equal
user-specified deadlines. If yes, the portion or portions of the
list having equal user-specified deadlines are Sorted by
user-specified criticality in action box 1155. If there are no
portions of the list having equal user-specified deadlines in
decision box 1150, or following sorting by user-specified
criticality in action box 1155, control is transferred to action
box 1160 where internal criticalities and deadlines are set to
the user-specified criticalities and deadlines, respectively.

Action box 1165 merges the sorted list of tasks that send
or receive undelayed messages with the Sorted list of tasks
that do not send nor receive undelayed messages. The
merged list is Sorted with internal deadline as the primary
key and internal criticality as the Secondary key. The merged
list is then subjected to transformation in action box 1170 to
generate the priority Sorted list.
A task is transformed by dividing its period and compute

time by Some positive integer, thus converting it, in this
example via controlled run-time time slicing, into a task with
Smaller period and deadline and consequently higher prior
ity.
The transformation algorithm operates on tasks one at a

time, Starting with the task having least deadline. The list of
tasks can be viewed as a concatenation of Sublists HELpU
where p is the task currently being transformed, H is the
Sublist of tasks having criticality higher than that of p, E is
the Sublist of tasks having criticality equal to that of p, L is
the Sublist of tasks having criticality less than that of p, and
U is the untransformed portion of the list. The goal is to find
an integer divisor of the period (and compute time) of p, i.e.,
a transform factor, that allows the list to be rewritten as
HEpELU where the tasks in E and E. have criticalities
equal to that of p, the tasks in E have no deadlines greater
than that of p, and the tasks in E have no deadlines less than
that of p.

Several factors complicate the solution to this problem. It
is possible to construct examples having no feasible integer
Solution, where transforming p by transform factor i yields
a transformed period too large, but transforming p by
transform factor i+1 yields a transformed period too Small.
For example, consider the criticality ordering AcBC with
the period of A and C equal to 2 but the period of B equal
to 3. Using the transform factor of 1 yields a transformed
period too large, while using the transform factor of 2 yields
a transformed period too Small.
A transformed task may need to complete by a preperiod

deadline. Thus, transformation of the deadline analogous to
the transformation of period may be appropriate.

Transformation introduces context Swap overheads. In
one embodiment, these context Swap Overheads are mini
mized. Furthermore, transformed periods and deadlines are

US 6,567,840 B1
15

preferably multiples of the clock interrupt period. Finally,
the Sender of an undelayed message cannot be transformed,
as this might create intervals in which the receiver could
Start before the Sender had completed. Accordingly, unde
layed message Senders have their deadlines calculated prior
to any period transformations.

FIG. 12 shows three Scenarios for transforming a task So
that it will receive its Stated amount of compute time by its
stated deadline. The first portion of FIG. 12 shows the
original task period and deadline. Scenario 1 of FIG. 12 is
to transform both the period and the deadline, where the
transformed deadline is a preperiod deadline with respect to
the transformed period and is Selected So that the trans
formed deadline of the final resume occurs at the original
deadline. This scenario is preferred when the transformed
deadline is a Substantial fraction of the transformed period.
Scenario 2 transforms the task So its original deadline is a
multiple of the transformed period. The transformed dead
line equals the transformed period, and the transformed
compute time is Such that the task will complete after Some
number of transformed periods that is no greater than the
original deadline. Scenario 2 is preferred over Scenario 1
when Scenario 1 would produce a transformed deadline that
is a Small fraction of the transformed period. Both Scenarios
are the same when the original deadline and original period
are equal. Scenario 3 is to Simply reduce the deadline as
needed, i.e., just increase the priority as needed to Satisfy the
criticality requirement without transforming the Scheduling
of the task. Scenario 3 is utilized when transforming Senders
of undelayed messages and in cases where no integer
transform factor is feasible.

In one embodiment, a Search is performed over the range
of feasible integer transform factors, i.e., those that would
move task p into the sublist E. For each feasible transform
factor, both Scenario 1 and Scenario 2 are evaluated. Sce
nario 3 may also be evaluated for all integer transform
factors from 1 through the largest transform factor that does
not put p ahead of E, which has the effect of evaluating
combinations of Scenario 3 with Scenarios 1 and 2.

In one embodiment, a cost function is used to Select one
Scenario over another, Such that cost is minimized. In
another embodiment, the cost function is the utilization
required for context Swaps, i.e., removal and replacement of
the Stack and registers, plus a factor that empirically
accounts for the decrease in Schedulability due to preperiod
deadlines. In a further embodiment, the cost function is the
transform factor (which may be 1) times:

S T - D,

T T

where S is the context Swap time, T, is the transformed
period, and D, is the transformed deadline. In one
embodiment, Selection of a Scenario is made to minimize the
cost function.

FIG. 13 is a process flowchart of one embodiment of task
transformation, performed for each task in the merged list of
tasks. In action box 1310, feasible integer transform factors
are determined. Feasible transform factors include the low
est integer divisor of the period of p that allows the Sublist
HELpU to be rewritten as HEpELU where the tasks in E
and E. have criticalities equal to that of p, the tasks in E
have no deadlines greater than that of p, and the tasks in E
have no deadlines less than that of p, i.e., minimum feasible
transform factor or TF, the largest integer divisor of the
period of p that allows the Sublist HELpU to be rewritten as
HEpELU where the tasks in E and E. have criticalities

15

25

35

40

45

50

55

60

65

16
equal to that of p, the tasks in E have no deadlines greater
than that of p, and the tasks in E have no deadlines less than
that of p, i.e., maximum feasible transform factor or TF
In action box 1320, the task has its period and deadline
transformed in a first Scenario for each transform factor from
TF to TF, where the transformed deadline is a prep
eriod deadline with respect to the transformed period and is
Selected So that the transformed deadline of the final resume
occurs at the original deadline. In action box 1330, the task
is transformed in a Second Scenario for each transform factor
from TF to TF Such that its original deadline is a main fix

multiple of the transformed period. The transformed dead
line equals the transformed period, and the transformed
compute time is Such that the task will complete after Some
number of transformed periods that is no greater than the
original deadline. In action box 1340, the deadline of the
task is transformed in a third Scenario, reducing the deadline
to increase the priority as needed to Satisfy the criticality
requirement without transforming the Scheduling of the task.
After all Scenarios are evaluated over their respective range
of transform factors, cost is evaluated in action box 1350 for
each transform factor of each scenario. In action box 1360,
the Scenario and transform factor having the lowest cost
value is Selected to transform the task. The task is trans
formed in action box 1370.

After all tasks have been transformed, priorities are
assigned in the order in which tasks appear in the final list.
The ordered priorities of the transformed tasks represents an
assigned Scheduling priority. The assigned Scheduling pri
ority is utilized by the executive for ordered execution of the
tasks on a processor within the multitask System.
AS one example, in an implementation of the invention

using the MetaH toolset, the MetaH toolset generates a
linear Schedulability model, one in which each task may be
described as a Sequence of task components. Each task
component may be shared by other tasks and may block
other tasks. In general, actions that are performed by the
executive task 150 on behalf of a particular task 110, such
as message passing, are modeled as components of that task
and blocking times for other tasks of higher priority. Com
pute times for generated executive components are produced
by the MetaH tool using attributes of the target hardware,
e.g., buffer assignment times are estimated by the linear
function A+A* b, where b is the number of bytes being
assigned and A, A are intercept and slope attributes defined
in the Meta|H processor or bus specification. The mapping
between Specification, implementation, and model is thus
more detailed than a simple list of tasks and their param
eters. Analysis is performed using an extension of an exact
characterization algorithm that allows tasks to be decom
posed into components and provides compute-time Sensi
tivity analysis information.
The various embodiments of the invention will not always

produce a user-specified deadline monotonic priority assign
ment. Many schedulability analysis methods well known to
those skilled in the art work with any priority assignment
without assumptions or Special constraints on the relation
ship between priorities and deadlines, periods, or minimum
interarrival rates and can be used with the approach of the
embodiments.
The Solution of the various embodiments remains valid

for tasks that use real-time Semaphores, providing the Sema
phore protocol does not allow the processor to execute at a
priority lower than any task that is awaiting a Semaphore.
This condition is necessary to insure that preempted receiv
ers of undelayed messages cannot start when a Sender blockS
on a Semaphore. This is true of the ceiling priority and all the
priority inheritance Semaphore protocols.

US 6,567,840 B1
17

The various embodiments of the invention further support
dynamic reconfiguration, or mode changes. In one
embodiment, mode changes are restricted to hyperperiod
boundaries. Transition modes are introduced for each user
Specified mode change, and the dispatcher may perform
proceSS Starts and stops and slightly different patterns of
message passing in a transition mode. Metal hierarchical
mode specifications makes it possible for modes to share
Subsets of tasks and connections in complex ways. The
algorithms thus presented are performed for the union of all
modes in a System, followed by a post-processing phase to
reduce the number of priority levels required.

Selecting clock interrupt rates may be an issue in distrib
uted real-time Systems. Temporally deterministic message
release times may be needed to assure hard end-to-end
deadlines. Clock interrupt periods may be desired that not
only divide the user-specified periods and deadlines, but also
provide convenient transformed periods and convenient
network message release times.

The various methods of the invention provide a model
adapted to analyze the timing behavior of a task System, and
in particular, modular mission-critical Software Systems,
high-rate applications and microcontrollers. Use of Such
models permits off-line analysis and configuration to tailor
an executive for each System, rather than relying on a
generic executive, which allows a simpler, Smaller and faster
executive. Such models further assist the formulation of
well-structured specifications for task Systems, which may
permit the creation of more structured and traceable code
underlying the task System.

While the example embodiments describe multiprocessor
task Systems communicating on a single bus, the invention
is not limited to single-bus systems. While it is preferred that
multiple processors be connected by relatively high-Speed,
low-latency buSSes for efficient transfer of Single Sample
delay messages, distributed Systems may be utilized where
Scheduling approaches allow for a single Sample delay
message to be released with a specified deadline on the
network, and where communication take place concurrently
with processor execution.

Models produced using various embodiments of the
invention can be used to define electronic Systems to carry
out the Scheduling and message passing activities of the
multitask Systems. The electronic Systems described make
use of a variety of electronic equipment having processors
utilizing instructions in machine-readable form to carry out
the methods described herein. FIG. 14 depicts a block
diagram of a processor 1410 coupled to a machine-readable
medium 1420. Processor 1410 may be further coupled to bus
1430 for communication to other processors. Machine
readable medium 1420 may include fixed devices coupled to
processor 1410, Such as internal magnetic medium or pro
grammable memory device. Machine-readable medium
1420 may further include removable devices coupled to
processor 1410, Such as removable magnetic medium or
programming cartridge. Machine-readable medium 1420
contains instructions Stored thereon, in machine-readable
format, capable of causing processor 1410 to carry out the
methods described herein.
Conclusion
Methods are disclosed useful in modeling real-time peri

odic and aperiodic task Scheduling and message passing
within multitask Systems. Models produced using methods
of the invention are adapted to analyze the timing behavior
within Such multitask systems. The methods utilize unde
layed and Single Sample delayed message connections
among Software task objects and hardware objects. Task

5

15

25

35

40

45

50

55

60

65

18
priorities are assigned inversely with period or deadline, So
that tasks with Shorter periods or deadlines have higher
Scheduling priorities. Periods of high-criticality tasks are
decomposed into Smaller pieces that are Sequentially dis
patched at higher rates where the initial assignment of
priority is inconsistent with task criticality. System models
define electronic Systems and instructions for carrying out
the Scheduling and message passing of the multitask System.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement which is calculated to
achieve the same purpose may be Substituted for the Specific
embodiments shown. Many adaptations of the invention will
be apparent to those of ordinary skill in the art. Accordingly,
this application is intended to cover any adaptations or
variations of the invention. It is manifestly intended that this
invention be limited only by the following claims and
equivalents thereof.
What is claimed is:
1. A method of generating an assigned Scheduling priority

of a plurality of tasks in a multitask System, comprising:
defining a first list of the plurality of tasks, wherein the

first list of the plurality of tasks is sorted with a task
deadline as a primary key and a task criticality as a
Secondary key;

transforming the task deadline of each of the plurality of
tasks one at a time using a transformation Scenario,
beginning with the task having the least task deadline,
thereby producing a transformed task deadline for each
of the plurality of tasks,

defining a Second list of the plurality of tasks, wherein the
second list of the plurality of tasks is sorted with the
transformed task deadline as the primary key, further
wherein each transformed task deadline of a task hav
ing a first task criticality is less than any transformed
task deadline of a task having a task criticality less than
the first task criticality; and

assigning Scheduling priority in an order of the Second list
of the plurality of tasks, thereby producing the assigned
Scheduling priority.

2. The method of claim 1, wherein the transformed task
deadline of at least one of the plurality of tasks equals the
task deadline of that at least one of the plurality of tasks.

3. The method of claim 1, wherein the transformation
Scenario is Selected from the group consisting of:

transforming both a task period and the task deadline of
a task by dividing the task period by a transformation
factor, thereby producing the transformed task deadline
and a transformed task period, wherein the transformed
task deadline is a preperiod deadline with respect to the
transformed task period, and wherein the transformed
task deadline of a final resume of the task occurs at the
original task deadline;

transforming both the task period and the task deadline of
the task by dividing the task period by a transformation
factor, thereby producing the transformed task deadline
and the transformed task period, wherein the original
task deadline of the task is a multiple of the transformed
period of the task and wherein the transformed task
deadline equals the transformed task period; and

transforming the task deadline of the task by dividing the
task deadline by a transformation factor, thereby pro
ducing the transformed task deadline, wherein the
transformed task deadline of the task is less than any
transformed task deadline of other previously
transformed tasks having lower task criticality.

US 6,567,840 B1
19

4. The method of claim 3, wherein the transformation
Scenario is evaluated at a plurality of transformation factors.

5. The method of claim 3, wherein transforming the task
deadline further comprises evaluating a cost function to
Select the transformation Scenario.

6. The method of claim 5, wherein the cost function is the
transformation factor times the quantity:

where:
S is a context Swap time
T, is the transformed task period
D, is the transformed task deadline.
7. The method of claim 1, wherein transforming the task

deadline further comprises evaluating a cost function to
Select the transformation Scenario from a plurality of poS
Sible transformation Scenarios.

8. The method of claim 1, wherein transforming the task
deadline further comprises evaluating the transformation
Scenario using at least two transformation factors and evalu
ating a cost function to Select one of the at least two
transformation factors for the transformation Scenario.

9. The method of claim 1, wherein defining a first list of
the plurality of tasks further comprises:

defining a first Sublist of at least one task of the plurality
of tasks involved in Sending or relying on undelayed
messages, wherein the first Sublist is Sorted with an
internal task deadline as a primary key and an internal
task criticality as a Secondary key;

defining a Second Sublist of remaining tasks of the plu
rality of tasks, wherein the second Sublist is sorted with
a user-specified task deadline as a primary key and a
user-specified task criticality as a Secondary key; and

merging the first Sublist and the Second Sublist, thereby
producing the first list of the plurality of taskS.

10. The method of claim 1, wherein the multitask system
is a flight control System.

11. A machine-readable medium having instruction Stored
thereon capable of causing a processor to carry out a
method, the method comprising:

defining a first list of a plurality of tasks, wherein the first
list of the plurality of tasks is sorted with a task
deadline as a primary key and a task criticality as a
Secondary key;

transforming the task deadline of each of the plurality of
tasks one at a time using a transformation Scenario,
beginning with the task having the least task deadline,
thereby producing a transformed task deadline for each
of the plurality of tasks,

defining a Second list of the plurality of tasks, wherein the
second list of the plurality of tasks is sorted with the
transformed task deadline as the primary key, further
wherein each transformed task deadline of a task hav
ing a first task criticality is less than any transformed
task deadline of a task having a task criticality leSS than
the first task criticality; and

assigning Scheduling priority in an order of the Second list
of the plurality of tasks, thereby producing an assigned
Scheduling priority.

12. A machine-readable medium having instruction Stored
thereon capable of causing a processor to carry out a
method, the method comprising:

defining a first list of a plurality of tasks, wherein the first
list of the plurality of tasks is sorted with a task

1O

15

25

35

40

45

50

55

60

65

20
deadline as a primary key and a task criticality as a
Secondary key;

transforming the task deadline of each of the plurality of
tasks one at a time using a transformation Scenario,
beginning with the task having the least task deadline,
thereby producing a transformed task deadline for each
of the plurality of tasks, wherein the transformation
Scenario is Selected from the group consisting of:
transforming both a task period and the task deadline of

a task by dividing the task period by a transformation
factor, thereby producing the transformed task dead
line and a transformed task period, wherein the
transformed task deadline is a preperiod deadline
with respect to the transformed task period, and
wherein the transformed task deadline of a final
resume of the task occurs at the original task dead
line;

transforming both the task period and the task deadline
of the task by dividing the task period by a trans
formation factor, thereby producing the transformed
task deadline and the transformed task period,
wherein the original task deadline of the task is a
multiple of the transformed period of the task and
wherein the transformed task deadline equals the
transformed task period; and

transforming the task deadline of the task by dividing
the task deadline by a transformation factor, thereby
producing the transformed task deadline, wherein the
transformed task deadline of the task is less than any
transformed task deadline of other previously
transformed tasks having lower task criticality; and

defining a Second list of the plurality of tasks, wherein the
second list of the plurality of tasks is sorted with the
transformed task deadline as the primary key, further
wherein each transformed task deadline of a task hav
ing a first task criticality is less than any transformed
task deadline of a task having a task criticality less than
the first task criticality; and

assigning Scheduling priority in an order of the Second list
of the plurality of tasks, thereby producing an assigned
Scheduling priority.

13. A method of operating a multitask System having a
processor, comprising:

communicating among a plurality of tasks having a pri
ority and a criticality, wherein each of the plurality of
tasks has a communication function Selected from the
group consisting of Sender and receiver, and wherein
each communication function is adapted for message
types Selected from the group consisting of undelayed
messages and Single Sample delay messages;

assigning a higher priority to any Sender task Sending
undelayed messages than any downstream receiver
task,

assigning priority to other Sender taskS Such that each task
of the plurality of tasks having a first criticality further
has a priority greater than any of the plurality of tasks
having a criticality lower than the first criticality; and

executing each of the plurality of tasks on the processor
according to their assigned priorities.

14. The method of claim 13, wherein the multitask system
is a flight control System.

15. A machine-readable medium having instruction Stored
thereon capable of causing a processor to carry out a
method, the method comprising:

communicating among a plurality of tasks having a pri
ority and a criticality, wherein each of the plurality of

US 6,567,840 B1
21 22

tasks has a communication function Selected from the assigning priority to other Sender taskS Such that each task
group consisting of Sender and receiver, and wherein of the plurality of tasks having a first criticality further
each communication function is adapted for message has a priority greater than any of the plurality of tasks
types Selected from the group consisting of undelayed having a criticality lower than the first criticality; and
messages and Single Sample delay messages; 5 executing each of the plurality of tasks on the processor

assigning a higher priority to any Sender task Sending according to their assigned priorities.
undelayed messages than any downstream receiver
task, k

