
US 20080228812A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0228812 A1

Oglesby et al. (43) Pub. Date: Sep. 18, 2008

ublication Classification (54) METHOD AND SYSTEM FOR Publication Classificati
METAMODELING USING DYNAMIC (51) Int. Cl
ONTOLOGY OBJECTS G06F 7/30 (2006.01)

(75) Inventors: Pavid Y. Oglesby Brooklyn Center, s2 usic... 707/103 R; 707/E17.001 MN (US); Jon P. Schewe, Maple
Grove, MN (US); Eric Engstrom,
Shoreview, MN (US); Kirk A. (57) ABSTRACT
Schloegel, Independence, MN (US);
Hazel S. Shackleton, Minneapolis,
MN (US)

A system and method for providing ontology objects for use
in a metamodeling environment is disclosed herein. The
method comprises (a) providing a framework for creating a
metamodel, wherein the metamodel comprises one or more Correspondence Address: s p

HONEYWELL INTERNATIONAL INC. entities, relationships, and semantics and the framework
101 COLUMBIA ROAD, PO BOX 224.5 accepts input from a user to create the entities, relationships,
MORRISTOWN, NJ 07962-224.5 (US) and semantics, (b) generating ontology objects, wherein the

ontology objects comprise source code for one or more
(73) Assignee: HONEYWELL classes, and wherein each class corresponds to one of the

INTERNATIONAL INC., entities; and (c) compiling the source code. Further, the
Morristown, NJ (US) method may comprise detecting that a change has been made

to the metamodel, updating the ontology objects to reflect the
(21) Appl. No.: 11/686,835 change to the metamodel, wherein updating the ontology

objects comprises generating new source code for one or
(22) Filed: Mar. 15, 2007 more classes; and compiling the new Source code.

SOO

/ CREAEETAFODE WITH
ENTITIES, RELATIONSHIPS,

AND SEANCS
SO2

(
EXTEND ONOLOGY BY
DEFININGADOONAL
SERVANTICS USING
ONTOLOGY OBJECTS

WHEN 'ETAODES
CREATED, GENERATE
ONTOLOGY OBJECTS 504

VODFYEAODE
506

ODEFCATION
CALLS FOR UPDATE

TO ONOLOGY
OBJECTS?

UPDATE ONTOLOGY
OBJECTS (I.E. UPDATE

50 SEWANTICS)

Patent Application Publication Sep. 18, 2008 Sheet 1 of 7 US 2008/0228812 A1

OWNERS

License Plate Number String

O8

List Person::getAIPlateNumbers() {
List all plates is new List();
for-each (metaNode V in executeNodeIViethod (this, "get vehicles')) {

String pn F getProperty(v, "License Plate Number");
all plates.add(pn);
}

return all plates;

Patent Application Publication Sep. 18, 2008 Sheet 2 of 7 US 2008/0228812 A1

O2 104.

OWNERS

License Plate Number String

ONTOLOGY OBJECTS

202 Vehicle

206

204 OWNERSperson list
LicensERATE URBEristing. VEHICLESIvehicle list

AETHODS

Vehicle
210

addOwner(Person),
removeowner(Person), addVehicle(Vehicle),

getOwners(), removeVehicle(Vehicle),
setlicenseplateNumber(String),

getLicenseplateNumber()
getVehicles()

F.G. 2

Patent Application Publication Sep. 18, 2008 Sheet 3 of 7 US 2008/0228812 A1

List Person::getAll PlateNumbers() {
List all plates F new List();
for-each (Vehicle V in getVehicles()) {

String pn Fy.getLicenseplateNumber();
all plates.add (pn);

return all plates;

Patent Application Publication Sep. 18, 2008 Sheet 4 of 7 US 2008/0228812 A1

400

/ CREATE VEAVODEL WITH
402 ENTITIES, RELATIONSHIPS,

AND SEVANTICS

WHEN CREATED,
GENERATE ONTOLOGY

OBJECTS 404

CREATE INSTANCE WODE
USING ONTOLOGY

4O6 OBJECTS

FG, 4.

Patent Application Publication Sep. 18, 2008 Sheet 5 of 7 US 2008/0228812 A1

500

CREATE VIETAVODEL WITH /
so IENTITIES, RELATIONSHIPS,

AND SEVANTICS

EXTEND ONTOLOGY BY
DEFINING ADDITIONAL
SEWANTICS USING
ONTOLOGY OBJECTS

WHEN WETAVODE IS
CREATED, GENERATE

504 ONTOLOGY OBJECTS

VODIFICATION
CALLS FOR UPDATE
TO ONTOLOGY
OBJECTS?

UPDATE ONTOLOGY
OBJECTS (I.E. UPDATE

510 SEMANTICS)

Patent Application Publication Sep. 18, 2008 Sheet 6 of 7 US 2008/0228812 A1

VETAODEL

602 Person Vehicle

608

606 VEHICLESvehicle list OWNER person

INSTANCE MODEL

618 ---
PORSCHE

604 PPPP

VEHICLES:PORSCHE,
YUGO

OWNER:BOB

620

YUGO

OWNER:BOB

F.G. 6A

Patent Application Publication Sep. 18, 2008 Sheet 7 of 7 US 2008/0228812 A1

VETANODEL

ONTOLOGY OBJECTS

602

608

606 VEHICLESvehicle list OWNERS person list

NSTANCE WODEL

616
Year- 618 orror

BOB PORSCHE
604 MMWWMMXamaa Na2-3-m Max

VEHICLES:PORSCHE, OWNER:BOB
YUGO

620

YUGO

OWNER:BOB

US 2008/0228812 A1

METHOD AND SYSTEM FOR
METAMODELING USING DYNAMIC

ONTOLOGY OBJECTS

BACKGROUND OF THE INVENTION

0001 1. Field of the Invention
0002 The present invention relates to the field of meta
modeling and, more specifically, to dynamic ontology objects
that can be used to describe the semantics of a metamodel.
0003 2. Description of the Related Art
0004 Metamodeling environments allow modelers to
simulate complex scenarios with high-level modeling tools.
Metamodeling environments provide the user with the basic
tools with which the user can create a metamodel. The user
defined metamodel, which may also be referred to as an
ontology, can then be processed by the metamodeling envi
ronment to generate an interface that can be used to create
various instance models. Often, metamodeling environments
provide a visual language, allowing modelers to create
detailed models, without requiring low-level knowledge of
the underlying classes that make up the model.
0005 Existing metamodeling environments typically may
be used to create domain-specific modeling tools. A domain is
the particular area where a model can be used to solve prob
lems or model Scenarios. For example, metamodeling tools
may provide an environment for conveniently defining the
entities, relationships between those entities, and the behav
ior of those entities and relationships that make up an ontol
ogy. Thus, by defining the ontology, the user has created a
domain-specific language. The metamodeling environment
can then create tools that can be used to create models which
comply with the domain-specific language, and which may be
referred to as instance models.
0006 Metamodels include syntax and semantics. The syn
tax defines the legal entities or components of a model,
including their defined properties, as well as the legal rela
tionships between those entities. The semantics specify the
interpretation or behavior of the entities and relationships of
a metamodel. Put another way, the syntax is the basic building
blocks and the rules for construction, while the semantics are
the rules for interpretation. Metamodeling environments gen
erally allow the user to define the syntax (e.g. properties,
relationships, etc.) for a metamodel. In general, defining the
semantics of a metamodel requires some degree of program
ming. Currently, this code must use the data structures of the
modeling tool that underlie its models. These data structures
are not standard and must be learned by any user wishing to
create a metamodel. This constitutes a barrier to user-created
modeling tools. The objective of metamodeling is to allow
end-users to create their own languages and Supporting tools.
To this end, the semantics should be defined in terms of the
language being created rather than require the user to learn a
new application programming interface (API).
0007. The metamodel, comprising the user-defined syntax
and semantics, is compiled or interpreted to create a domain
specific modeling language and Supporting tools. In turn, this
language can be used to create domain-specific instance mod
els.
0008 Unfortunately, changes to a metamodel may have
the effect of substituting a new code base, in place of the
original one. Therefore, instance models based upon the
original domain-specific model may be invalid, as they are
tied to the structure of the original metamodel. Therefore, the
modeler may be forced to recreate instance models whenever

Sep. 18, 2008

changes are made to the underlying metamodel. Alterna
tively, the modeler may be forced to create an import tool and
import the instance models into the new metamodel.

SUMMARY OF THE INVENTION

0009. Accordingly, a method and metamodeling environ
ment using ontology objects are disclosed herein. Ontology
objects are sets of software interfaces and implementations of
these interfaces that mirror the ontology of a metamodel and
provide foundational Semantic Support to users (e.g., Support
for the creation of instance models). In addition, they can be
used to create code generators, analysis routines, even exter
nal programs that query and interact with instance models
expressed in the domain. Most importantly, ontology objects
are available to the metamodelerto define the semantics of the
metamodel. Instead of coding against a set of unfamiliar
libraries, the semantics can be defined using the entities of the
ontology itself.
0010. In one aspect, a method for creating an instance
model is disclosed. The method comprises (a) creating a
metamodel, wherein the metamodel comprises domain-spe
cific entities, relationships between the entities, and a descrip
tion of the domain semantics, (b) accessing ontology objects,
wherein the ontology objects are generated as the metamodel
is created, and wherein the ontology objects correspond to the
entities and capture their properties and relationships, and (c)
creating the instance model using the ontology objects. The
method may further comprise modifying the metamodel and
regenerating as necessary the corresponding ontology
objects.
0011. In another aspect, a method for providing ontology
objects for use in a modeling environment is disclosed. The
method comprises (a) providing a framework for creating a
metamodel, wherein the metamodel comprises one or more
entities, relationships and domain semantics, and the frame
work accepts input from a user to create the entities and
relationships, (b) dynamically generating ontology objects,
wherein the ontology objects comprise source code for one or
more classes, and wherein each class corresponds to one of
the entities; (c) Supporting the specification of semantics
using ontology objects; and (d) compiling the Source code.
Further, the method may comprise detecting that a change has
been made to the metamodel, updating the ontology objects to
reflect the change to the metamodel, wherein updating the
ontology objects comprises generating new Source code for
one or more classes; updating user specified semantics that
reference the changed ontology objects constructs, wherein
updating the semantics comprises modifying object refer
ences and method calls; and compiling the new Source code.
0012. The metamodeling environment may include an
interface for creating and modifying at least one metamodel,
wherein the metamodel comprises a plurality of entities, one
or more relationships between the entities, and domain
semantics. The interface may accept user input to define the
plurality of entities, the relationships between the entities,
and the domain semantics. The metamodeling environment
may also include program logic that is executable to dynami
cally maintain a plurality of ontology objects, wherein the
ontology objects correspond to the defined entities and the
relationships between the entities. Further, the metamodeling
environment may include an interface that calls methods on
the ontology objects to create one or more instance models. In
Some embodiments the interface may be a graphical user

US 2008/0228812 A1

interface (GUI) or an application programming interface
(API) against which other programs may be written.
0013 The ontology objects may comprise a plurality of
object-oriented classes in a programming language Such as
C++ or Java. Each class may correspond to an entity from the
user-defined metamodel. Each entity may be defined as hav
ing a plurality of properties, and instance model data may
capture the values of these properties for all instances. Ontol
ogy object classes may include at least one method. The
methods may be called to create, delete, and modify instance
model data. In one embodiment, the instance model data is
comprised of instances of the ontology objects classes. In
another embodiment, the instance model data is comprised of
data in a data structure. In yet another embodiment, the
instance model data is comprised of data in a database.

BRIEF DESCRIPTION OF THE DRAWINGS

0014 FIG. 1A is a simplified block diagram depicting an
example metamodel;
0015 FIG. 1B is pseudo code for example semantics for a
metamodel;
0016 FIG. 2 is a simplified block diagram depicting an
example metamodel, an example set of ontology objects and
corresponding methods;
0017 FIG. 3 is pseudo code for example semantics for a
metamodel, which are defined on ontology objects;
0018 FIG. 4 is flow chart illustrating an example method
for creating an instance model using ontology objects;
0019 FIG.5 is a flow chart illustrating an example method
for creating and maintaining ontology objects that can be
used in creating instance models; and
0020 FIG. 6A is a simplified block diagram depicting an
example metamodel, an example set of ontology objects, and
an example instance model;
0021 FIG. 6B is another simplified block diagram depict
ing an example metamodel, an example set of ontology
objects, and an example instance model.

DETAILED DESCRIPTION OF THE INVENTION

0022 Dynamic ontology objects capture and maintain
semantics that are consistent with the specifications of a user
defined metamodel. In practice, this may be accomplished by
generating (and compiling, if necessary) program code for
ontology objects whenever a user modifies a metamodel.
Accordingly, an exemplary metamodeling environment pro
vides tools for creating a metamodel. The tools provided by
the metamodeling environment can be used to define an
ontology that consists of entities, properties of entities, rela
tionships among those entities, and the behavior of those
entities. The metamodeling environment also provides a
mechanism that automatically creates ontology objects that
reflect the user-defined ontology. In particular, the tool may
create dynamic ontology objects consisting of classes that
correspond to the entities that make up the user-defined ontol
ogy. These classes may include constructors to create and
initialize instance model instances of the metamodel entities
and destructors to delete instances from the instance model
and perform necessary cleanup. They may also have methods
that create, delete, and modify the instance model data that
correspond to properties. Further, they may also capture the
relationships between the user-defined entities. In particular,

Sep. 18, 2008

the classes may include further methods that create, delete,
and modify the instance model data that capture the relation
ships between the entities.
0023 FIG. 1A depicts a user-defined model created with a
metamodeling tool. The model includes two entities: a
“Vehicle' entity 102, and a “Person” entity 104. The Vehicle
entity 102 also has a License Plate Number String prop
erty. This property is a String of characters, numbers, and/or
symbols representing the license plate number for a given
vehicle. FIG. 1 also includes an OWNERS relationship 106
between Vehicle entity 102 and Person entity 104. This rela
tionship defines a person as an owner of a given vehicle.
0024 Relationships between various entities in a user
defined metamodel may be of various types. For example,
relationships may be defined to have a multiplicity of one-to
one, one-to-many, many-to-one, or many-to-many. A one-to
many relationship means that an instance of the first entity
may be related in the defined manner to multiple instances of
a second type of entity, but each instance of the second type of
entity may only be related with a single instance of the first
type of entity. A one-to-one relationship means that an
instance of a first entity may be related in the defined manner
to only one instance of a second entity, and vice versa. Many
to-one and many-to-many relationships are similarly defined.
For instance, OWNERS relationship 106 is a many-to-many
relationship, indicating that one person can own multiple
vehicles, and one vehicle can have multiple owners.
0025 By creating a metamodel structure (i.e. entities 102,
104, and relationship 106, between the entities), a user defines
the syntax of the metamodel. A user defines the semantics by
writing programming code. FIG. 1B shows an example of
semantics defined without using ontology objects. More spe
cifically, by way of example, FIG. 1B shows pseudo code 108
for a method (i.e. semantics) for the person entity.
0026) Pseudo code 108 defines a method for retrieving the
license plate numbers of all vehicles owned by a particular
person. The logic of this method is fairly simple, iterating
through each vehicle a person owns and retrieving the license
plate number for that vehicle. However, creating this method
may not be as simple, as without ontology objects, all refer
ences to the metamodel entities and relationships are defined
in the language of the metamodeling tool, not in the language
of the metamodel. More specifically, executeNodeMethod
and getProperty are methods that are specific to the metamod
eling tool, and the user typically has no knowledge of Such
methods. As these methods are useful for programming
against a metamodel, it is a desirable for the user to have
access to them. Ontology objects can provide access to Such
methods, without requiring any specific knowledge of the
methods. Also, note that the getAllPlateNumbers method also
relies on particular tool-specific classes (e.g. metalNode) that
must be defined in the language of the metamodeling tool.
0027 Ontology objects allow semantics to be created con
currently with the syntax by allowing a user to define the
semantics using the syntax they are creating, rather than the
Syntax of the modeling tool (i.e. the language of, or methods
specific to, the metamodeling tool). As shown in FIG. 2, an
exemplary metamodeling tool may dynamically create ontol
ogy objects 202 that correspond to a user-defined metamodel.
Similar to FIG.1, the metamodel includes aVehicle entity 102
and a Person entity 104, as well as the OWNERS relationship
106 between Vehicle entity 102 and Person entity 104. The

US 2008/0228812 A1

ontology objects 202 capture the syntax and semantics of the
metamodel. Ontology objects 202 may then be used to create
one or more instance models.
0028. Each ontology object 202 may take the form of a
class that is generated by the metamodeling tool, whenever
the corresponding entity is created or updated by the user.
Thus, ontology objects 202 include a Vehicle class 204 and a
Person class 206. Variables will be described using the fol
lowing format, with the name of the variable in capital letters
and the type of the variable in bracketed lower case letters:
VARIABLE NAMEvariable type).
0029 Classes may capture relationships with variables
and/or methods. For example, the OWNERS relationship 106
may be captured by the VEHICLES vehicle list variable for
the Person class 206 and the OWNERSperson list instance
variable for the Vehicle class 204. By defining these variables
the many-to-many OWNERS relationship 106 is captured by
ontology objects 202. Specifically, the many-to-many rela
tionship is captured because the Person class 206 includes a
variable that represents a list of vehicles (e.g. VEHICLES
vehicle list) that are owned by that person. Likewise, the
Vehicle class includes a variable that represents the people
(e.g. OWNERSperson list) that owns that vehicle.
0030. In one aspect, the ontology objects comprise meth
ods that provide foundational modeling semantics that, for
example, maintain consistency between these instance vari
ables. For example, specifying a new owner for a Vehicle
using the addOwner(Person) method will add that vehicle to
the VEHICLESvehicle list variable on the Person object
and add the Person to the OWNERSIperson list variable on
the Vehicle object. To facilitate this functionality, class meth
ods 210 are generated as an interface of the ontology objects.
Further, implementations of these methods are generated as
components of the ontology objects.
0031 Ontology object interfaces and implementations are
generated that facilitate the creation of instance models.
These may be associated with classes 204, 206 and provide
various functionality for these entities. In particular, methods
may be created that provide access to the instance model data,
allowing the semantics to be defined in terms of the ontology
objects. In the examples methods will be referenced using the
following notation, which uses parentheses rather than brack
ets, as are used in reference to variables: classMethod(Input
Type).
0032. In one aspect, methods may be provided for defin
ing, accessing, and/or manipulating instance model data. For
example, an addOwner(Person), removeowner(Person), and
getOwners() method may be generated in accord with an
OWNERS person list variable of Vehicle class. The add
Owner(Person), remove()wner(Person), and getOwners()
methods may allow a user to specify, delete, and/or retrieve
the vehicle's owner or owners for an instance of Vehicle class
204. Similar functionality may be provided by the setLicense
PlateNumber(String) and getLicensePlateNumber() meth
ods for the LICENSE PLATE NUMBER(string variable,
and by the addVehicle(Vehicle), removeVehicle(Vehicle),
and getVehicles() methods for the VEHICLESvehicle list
variable of Person class 206.
0033. In one aspect, user-defined methods may be sup
ported in addition to methods automatically generated from
relationships or properties. A user may associate methods
with metamodel entities. These methods will appear in the
interfaces that correspond to those entities. The implementa
tion of these methods may be defined using ontology objects.

Sep. 18, 2008

FIG. 3 shows pseudo code for a user-defined method on
ontology objects 202. In particular, pseudo code 300 is for a
method on the Person class 206. This method returns the
license plate numbers for all vehicles owned by a particular
person. This method provides the similar functionality as the
method or semantics defined by the pseudo code of FIG. 1B.
However, pseudo code 300 is defined using ontology objects
rather than using the language of the metamodeling tool.
More specifically, the getVehicles() and getLicensePlate
Number() methods, which are defined on the Person class
and Vehicle class respectively, are utilized instead of
executeNodeMethod(...) and getProperty(...), which are
specific to the metamodeling tool itself. Thus, the getAll
PlateNumbers() method that defines new metamodel seman
tics can be created in the syntax of the metamodel concurrent
to that syntax being created.
0034. In one aspect, ontology objects may be used by the
metamodel tool framework to constrain, guide, or make Sug
gestions in Support to users in defining new semantic code.
This can be implemented by means of auto-completion and
similar mechanisms that are well known in the art in Inte
grated Development Environments.
0035 FIG. 4 is a flow chart depicting an example method
400 for creating an instance model using ontology objects.
The method may be carried out by a user within a metamod
eling environment. First, a metamodel or ontology is created
by defining entities, relationships between the entities, and
semantics, as shown by block 402. Next, as the metamodel is
created, the metamodeling environment may create ontology
objects that correspond to the entities, and capture the rela
tionships between the entities and the semantics of the meta
model, as shown by block 404. The ontology objects can then
be used to create an instance model, as shown by block 406.
0036. The metamodel created in block 402 may be created
by a user working within a metamodeling environment. The
metamodeling environment may provide a framework that
allows the user to create the entities, relationships, and behav
iors that make up the metamodel.
0037. As a user creates a metamodel, ontology objects are
created that reflect the ontology represented by that meta
model. More specifically, a class may be generated for each
user-defined entity. Variables and methods on these classes
are then generated that (a) capture the relationships between
entities and (b) capture the foundational modeling semantics
that allow a user to create, access, and manipulate instances of
the generated classes. Generation of the ontology objects
occurs dynamically, so that this process is transparent to the
user creating the model. Ontology objects may be generated
on an entity-by-entity basis or in response to a predetermined
event. For example, as each entity is created a corresponding
class may also be created. These classes may be updated to
include appropriate methods and variables as relationships
are defined. As an alternative example, the objects may be
created in response to an indication that the user has com
pleted the metamodel. After ontology objects are generated,
they may be used to extend the ontology further with textual
semantic code or create and manage instance model data, as
shown by block 406. While the depicted method refers to
creating a single instance model, many instance models can
be created using the ontology objects from a single meta
model.

0038 FIG. 5 is a flow chart depicting an example method
500 for creating and maintaining ontology objects that can be
used in creating instance models. Similar to the method of

US 2008/0228812 A1

FIG. 4, a metamodel is created, and ontology objects are
generated from the ontology of the metamodel, as shown by
blocks 502-504. The generated ontology objects can then be
used to extend the ontology further with semantics or create
instance models, as shown by block 505. Later, after instance
models have been created, a modification is made to the
underlying metamodel, as shown by block 506. When the
metamodel is modified, the ontology may change. In particu
lar, existing entities, properties, and relationships may be
modified or deleted and new entities, properties, or relation
ships may be added.
0039. To maintain ontology objects consistent with the
metamodel, updates to the ontology objects may be made. In
particular, the semantics may be updated by updating the
methods for the classes that make up the ontology objects.
Accordingly, when a metamodel is modified, a determination
may be made as to whether the modification calls for an
update, as shown by block 508. If an update is required, the
ontology objects may be updated, as shown by block 510. In
order to keep the library of ontology objects consistent with
the updated metamodel, new classes, methods, and/or vari
ables may be created and/or existing classes, methods, and/or
variables may be modified or deleted.
0040 Changes to the metamodel may be reflected in the
corresponding ontology objects as the changes occur. In other
words, ontology objects are dynamically updated to reflect
changes to the underlying metamodel as they occur. Further,
ontology objects are compiled, if compilation is required, as
they are created. If necessary, ontology objects, and not the
metamodel, are recompiled when a modification to the under
lying metamodel is made. This removes the need to recompile
a metamodel whenever a change is made to it. Such mainte
nance of ontology objects may be carried out by a metamod
eling environment. In particular, the metamodeling environ
ment may be provided by computer readable program code
that provides a graphical user interface (GUI). Alternatively,
the environment may provide access through an API to ontol
ogy objects at the program-code level (e.g. ontology objects
represented by generated C++ or Java classes).
0041. In one aspect, ontology objects may be modified so
that existing instance models continue to function without
themselves requiring modification. This is because the ontol
ogy objects add a layer of an abstraction to the metamodeling
process. Rather than creating metamodels and then creating
instance models tied directly to the metamodels, ontology
objects mirroring the metamodel are created and used as an
intermediary to reflect changes in the metamodel, while
maintaining a structure that is consistent with previously
created instance models.

0042 FIG. 6A shows an example user-defined metamodel
600. Ontology objects 602 have been created to capture syn
tax and semantics of metamodel 600. Further, instance model
604 has been created using ontology objects 602. This model
captures a many-to-one relationship between vehicles and
vehicle owners. This structure represents a model where a
person can own multiple vehicles, but a vehicle can be owned
by only one person.
0043 Ontology objects 602 mirror metamodel 600, and
therefore include a Person class 606 and a Vehicle class 608,
which capture the Person entity 610 and the Vehicle entity
612, respectively. To capture the OWNER relationship 614,
the Person class 606 includes a VEHICLES vehicle list
variable and the Vehicle class includes an OWNER person
instance variable.

Sep. 18, 2008

0044 Instance model 604 includes an instance of the Per
son class 616, as well as two instances of the Vehicle class
618, 620. The user may define values for each property of
each instance, such as the name of a person (e.g. Bob) or the
brand of a vehicle (e.g. Porsche or Yugo). The instance model
may also be defined to specify OWNER relationships indi
cating that Bob owns a Porsche and a Yugo. These relation
ships can be captured by setting values of instance variables
for the class instances 616-620. The instance of the Person
class 616 would set the value of the VEHICLES vehicle list
to be a list referencing the instances of the Vehicle class 618,
620 (indicating Bob owns the Porsche and the Yugo). The
instance of the Person class 616 would be set as the value for
the OWNER person variable for instance of the Vehicle class
618 (indicating the Porsche is owned by Bob). The instance of
the Person class 616 would be set as the value for the OWNER
person variable instance of the Vehicle class 620 (indicating
the Yugo is owned by Bob). These relationships can be cap
tured in the language of the metamodel by calling ontology
object methods Bob.addVehicle(Porsche) and Yugo.setOwn
er(Bob).
0045. In FIG. 6B, metamodel 600 has been modified so
that the OWNER relationship 614 between Person entity 610
and Vehicle entity 612, has been modified to be many-to
many OWNERS relationship 622. This structure represents a
model where aperson can own multiple vehicles and a vehicle
can be owned by multiple people. To capture the many-to
many OWNERS relationship 622 the Person class 606
includes aVEHICLES vehicle list instance variable and the
Vehicle class 608 now includes an OWNERS person list
variable. More specifically, the OWNERS person list vari
able now references a list of instances of the Person class,
rather than a single instance of the Person class. This reflects
the many-to-many OWNERS relationship by allowing
instance models to include vehicles with multiple owners.
0046) Note that ontology object interfaces and implemen
tations are generally updated only when the related meta
model entity is modified oran update is required because of a
modified relationship involving the related entity. For
example a previously generated setOwner(Person) method
that sets the value for the OWNER person variable, may be
replaced with a new addOwner(Person) method that adds a
person to the list of vehicles contained in the OWNERS
person list variable. Accordingly, the change to the many
to-many OWNERS relationship 622, calls for the Vehicle
class to be updated. In particular, the OWNER variable of
Vehicle class 608 is changed to a OWNERSperson list
variable, which represents a list of Person instances rather
than a singular instance. In general, adding a new attribute to
metamodel 600, may result in an update to an appropriate
ontology object, such as a Java or C++ class (or if no appro
priate ontology object exists, the creation of an appropriate
ontology object). For example, if a YEAR property (not
shown) is added to Vehicle entity 612, Vehicle class 608
would be updated to include an instance variable storing the
year. Further, methods might be added to create, access, and/
or modify the variable for aparticular instance of the class. On
the other hand, Some entities may require no change after a
modification to the underlying metamodel. For example, the
Person class 606 requires no change to reflect the many-to
many OWNERS relationship 622 because the model previ
ously allowed a person to own multiple vehicles. Therefore,
unlike the Vehicle class 608, the Person class 606 may not be
updated after adding OWNERS relationship 622.

US 2008/0228812 A1

0047. In one aspect, ontology objects may take the form of
executable program code (e.g. C++, Java, etc.) that is gener
ated to reflect a user-defined ontology. Code for a class (e.g. a
C++ or Java class) may be generated for each entity as the
entity is added to the metamodel by a user. The code for the
class may be generated "on the fly'. An example metamod
eling environment may monitor (e.g. continuously or periodi
cally) user-defined metamodels, and when a model changes,
generate code for classes that captures the change, and then
compile the code. This assures that up-to-date ontology
objects are continuously available. Note that any code that
references the classes may require an update. If the tool is
aware of this code (e.g., if the code has been developed with
the metamodeling environment or if the user has registered
the externally developed code with the metamodeling envi
ronment), it can perform the repairs itself or prompt the user
to do so.

0.048. Instance models can now be created with the new
ontology including many-to-many OWNERS relationships.
Further, because the change was isolated within the ontology
object methods, existing instance models, such as instance
model 604, may persistand remain functional. These changes
may affect any code that calls the previous ontology object
method, including user-defined code specifying additional
semantics in the metamodel. However, these changes can be
managed by well known means. For example, the framework
can either propagate the necessary changes automatically or
notify the user of the problem. One method to address this
situation is to deprecate the old method and change its behav
ior to call the other two as appropriate.
0049. While exemplary embodiments have been
described, persons of skill in the art will appreciate that varia
tions may be made without departure from the scope and
spirit of the invention. This true scope and spirit is defined by
the appended claims, which may be interpreted in light of the
foregoing.

1. A method for creating an instance model, the method
comprising:

creating a metamodel, wherein the metamodel comprises
entities and relationships between the entities and a
description of the semantics;

accessing ontology objects, wherein the ontology objects
are generated as the metamodel is created, and wherein
the ontology objects correspond to the entities and cap
ture the relationships between the entities; and

creating the instance model using the ontology objects.
2. The method of claim 1 further comprising:
modifying the metamodel; and
re-generating ontology objects that correspond to the

modified entities and relationships between the entities.
3. A method for providing ontology objects for use in a

modeling environment, the method comprising:
providing a framework for creating a metamodel, wherein

the metamodel comprises one or more entities, relation
ships, and domain semantics, and the framework accepts
input from a user to create the entities;

generating ontology objects, wherein the ontology objects
comprise source code for one or more classes, and
wherein each class corresponds to one of the entities;
and

compiling the Source code if necessary.

Sep. 18, 2008

4. The method of claim 3, further comprising:
detecting that a change has been made to the metamodel;
updating the ontology objects to reflect the change to the

metamodel, wherein updating the ontology objects com
prises generating new Source code for one or more
classes; and

compiling the new Source code if necessary.
5. The method of claim 3, wherein updating the ontology

objects to reflect the change to the metamodel comprises
specifying behavior in the metamodel in terms of the ontol
ogy objects.

6. The method of claim3, further comprising extending the
metamodel by creating one or more user-defined methods to
specify semantics, wherein the semantics are specified in
terms of the ontology objects.

7. A metamodeling environment comprising:
an interface for creating and modifying at least one meta

model, wherein the metamodel comprises a plurality of
entities and one or more relationship between the enti
ties, and wherein the interface accepts user input to
define the plurality of entities and the relationships
between the entities; and

program logic executable to dynamically maintain a plu
rality of ontology objects, wherein the ontology objects
correspond to the defined entities and describe the rela
tionships between the entities.

8. The metamodeling environment of claim 7 further com
prising an interface for using ontology objects to create one or
more instance models.

9. The metamodeling environment of claim 8, wherein
maintaining the plurality of ontology objects comprises cre
ating an ontology object whenever a new entity is defined for
the metamodel.

10. The metamodeling environment of claim 8, wherein
maintaining the plurality of ontology objects comprises
updating the ontology objects whenever an entity is modified.

11. The metamodeling environment of claim 7, wherein the
ontology objects comprise a plurality of classes.

12. The metamodeling environment of claim 11, wherein
each of the classes corresponds to a user-defined entity.

13. The metamodeling environment of claim 11, wherein at
least one of the classes comprises at least one instance vari
able that describes the relationships between the entities.

14. The metamodeling environment of claim 11, wherein at
least one of the defined entities comprises one or more
attributes, and wherein a class corresponding to the defined
entity comprises one or more instance variables correspond
ing to the one or more attributes.

15. The metamodeling environment of claim 11, wherein at
least one of the classes comprises at least one method.

16. The metamodeling environment of claim 15, wherein
the method operates on an instance variable.

17. The metamodeling environment of claim 7, wherein the
ontology objects function as an interface to data storage con
taining the entities and relationships of the metamodel.

18. The metamodeling environment of claim 7, wherein the
ontology objects function as an interface to an XML file
containing the entities and relationships of the metamodel.

19. The metamodeling environment of claim 7, wherein the
metamodeling environment is provided to a user on a com
puter by executing program code stored on a computer read
able medium.

20. The metamodeling environment of claim 19, wherein
the ontology objects comprise Java or C++ classes.

c c c c c

