
(19) United States
US 2005.009 1036A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0091036A1
Shackleton et al. (43) Pub. Date: Apr. 28, 2005

(54) METHOD AND APPARATUS FOR A
HIERARCHICAL OBJECT MODEL-BASED
CONSTRAINED LANGUAGE
INTERPRETER-PARSER

(76) Inventors: Hazel Shackleton, Blaine, MN (US);
Christopher J. Misiak, Phoenix, AZ
(US)

Correspondence Address:
HONEY WELL INTERNATIONAL INC.
Law Dept. AB2
P.O. BOX 2.245
Morristown, NJ 07962-9806 (US)

(21) Appl. No.: 10/692, 112

(22) Filed: Oct. 23, 2003

Publication Classification

(51) Int. Cl." ... G06F 17/27
(52) U.S. Cl. .. 704/9

(57) ABSTRACT

A natural language parser creates parsed commands or
output for an external System from user commands entered
on a user interface. The parser utilizes Symbols arranged in
an object-oriented hierarchical manner, and a grammar
information and State table to constrain language inputs So
that they conform to requirements of the external System.
The parser provides feedback to the user via the user
interface to assist in the formation of valid output to the
external System and reduce the complexity for the user. The
parser may be applied to the field of control Systems in
general, as well as a flight control System for an aircraft.

18 LANGUAGE 10
Parser Ul input INTERPRETER.

USER Elements PARSER
INTERFACE (UI) Strings SYMBO 8. 20

Word(s) HEAL
12 Number(s)

Symbol(s)
PARTAL 22
STRINGS

Commands
GRAMMAR

NFORMATION 8. 24, 25
STATEABLE

14 AUXLLARY
Paser Ul APPLICATION 26
Outputs INFO

Possible Next Words
Error Messages TRANSLATON

TABLE

EXTERNAL SYSTEM
NFO

COMMUNICATIONS
DCTIONARY

17
Command
Or Other
Output Parser 16

Output

EXTERNAL
SYSTEM

32

US 2005/0091036A1 Patent Application Publication Apr. 28, 2005 Sheet 1 of 10

||

OHNI

ZG ||ZOZ90 ||

US 2005/0091036A1

SD NESSE OORHCH-ENHc]

00 ||

Patent Application Publication Apr. 28, 2005 Sheet 3 of 10

(loquuÁS ppv ees)

US 2005/0091036A1

?un||e- uOssaoonS uO

Patent Application Publication Apr. 28, 2005 Sheet 4 of 10

US 2005/0091036A1

JOJ JEJeLuUue-ISD SS30Oud

0 || Z.

||?7 || Z.
?un||2-.. UOSS000 nS uO

80ZZ || Z.

Patent Application Publication Apr. 28, 2005 Sheet 5 of 10

--->
Z09

oog TOEWAS GOV

Patent Application Publication Apr. 28, 2005 Sheet 7 of 10

US 2005/0091036A1

|Z || 7

100[qO pIOH ?AIOS98 —?
0 || #7+ JOJ JEsseoon.S uO

(I Lºwd) QNWWWOO CINES

00?7

Patent Application Publication Apr. 28, 2005 Sheet 9 of 10

| |

89 #7

007(Z LAJVd) CINVWWOO CINES

Patent Application Publication Apr. 28, 2005 Sheet 10 of 10

US 2005/0091036A1

METHOD AND APPARATUS FOR A
HIERARCHICAL OBJECT MODEL-BASED

CONSTRAINED LANGUAGE
INTERPRETER-PARSER

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 The invention relates to the field of language
interpreters and more specifically to a natural language
interpreter based on a hierarchical object model. Such lan
guage processors may be used to Simplify the human inter
face with a controller for a vehicle, machine, or any other
mechanism that uses a controller.

0003 2. Description of the Related Art
0004 Complex systems requiring advanced controls
have proliferated in recent decades. Traditional user inter
faces (e.g., keyboard, graphical display) and appertaining
Software has been used to interact with these controls. AS a
result of the increased System and control complexity, these
Systems typically require fairly extensive training for the
user and also require constant use by the user in order to
maintain proficiency.
0005. This is particularly true in the aircraft cockpit,
where there has been much concern about the usability of
aircraft flight management Systems (FMS). Concerns in this
field range from the amount of training time required, as
described by Wiener, E. (1989), Human factors of advanced
technology ("glass cockpit") aircraft, Moffett Field: NASA
Contractor Report 177528, to errors and difficulty under
Standing them, Such as those described by Sarter, N., and
Woods, D. (1991), User interaction with cockpit automa
tion. Operational experiences with the flight management
System (FMS), The Ohio State University, Columbus, Ohio.
0006 Much of the recent work attempting to resolve
problems related to complexity has focused on develop
ments utilizing increased flexibility of graphical formats to
provide more hand-holding through operational procedures,
including pop-up menus, dialog boxes, and other tools.
However, in many situations, it is not the interface itself that
makes the complex controllers difficult to use, but is rather
the complexity of the underlying functional logic.

0007 As an illustrative example, in the field of aircraft
control, when a user learns to use an FMS, he or She must
learn and commit to memory a large Set of procedures and
operating rules. Many of these involve mode logic as
described by Sherry, L., and Poulson, P. (1998). “Implica
tions of Situation-Action Rule Description of Avionics
Behavior'HCI-Aero 1998, Montreal, Quebec, but many
others involve the basic steps required for performing FMS
functions. For example, the Steps required to build a holding
pattern around an unpublished waypoint are generally not
intuitive, and if a user has not performed the procedure
recently, it can take Several minutes of trial and error before
he or she finds the correct path through the interaction logic.
0008 To address this control complexity in the context of
aircraft control systems, U.S. Pat. No. 6,346,892 (892),
herein incorporated by reference, discloses a method and
apparatus for aircraft Systems management that employs a
Cockpit Control Language (CCL) using an operational logic
that users are already familiar with (the content and Syntax

Apr. 28, 2005

of air traffic control (ATC) clearances as the basis for FMS
interaction logic. This permits the user to avoid having to
learn a new, apparently arbitrary, Set of rules governing the
operation of a complex System. In other words, this allows
the system to work like the user thinks rather than have the
user think like the System works.

0009. An interface and system for aircraft control and
based on this principle is described in Riley, V. (2000).
“Developing a User-Centered Autoflight Interface'Proceed
ings of the World Aviation Congress, San Diego, Calif.,
which demonstrates that users could learn to use Such a
System in about fifteen minutes. During the training time,
users were trained to enter a required time of arrival crossing
restriction over a waypoint and hold around an unpublished
Waypoint with minimal help. For example, to execute a
clearance command, “Hold at twenty miles before Ala
mosa,” the user only had to enter “HOLD 20 BEFORE
ALS.” Thus, in this example disclosed in Riley, the impor
tant elements of the user's entry mimic the order of the same
elements in the clearance.

0010. The 892 patent utilizes a display, an input device,
and a language parser/interpreter programmed to interpret
various alternate expressions which have been entered into
a predetermined format recognizable by a computer which is
operable to display the parsed command and upon approval,
to input the parsed command to the computer. However, one
of the problems with the language parser utilized in, e.g., the
892 patent is that it may be difficult to update or adapt for
new applications, languages, etc. Traditional models for
language programming can be Somewhat inflexible and not
easy to adapt to a changing environment. It can be difficult
to implement complex rules efficiently with traditional pro
gramming designs.

SUMMARY OF THE INVENTION

0011. The invention is based on the object of providing a
natural language parser/interpreter that utilizes a hierarchi
cal object model to provide flexibility and simplify complex
rules and constraints of a particular System. The inventive
parser is an interface between a user interface and an
external System that the user interface communicates with,
the inventive parser constraining the language passed to the
external System So that only valid Strings or commands are
provided. The language processor also provides feedback to
the user interface to assist the user in entering valid infor
mation.

0012 Features of a user interface that permit easy input
and output of information may be utilized; however, in the
inventive System, it is important to distinguish between the
user interface to a System and the interaction logic required
by the System that addresses application-related levels of
assistance; the user interface is made up of the physical
displays and controls the user uses, Such as CRTs, key
boards, mice, voice recognition and other input/output
devices, and associated drivers, while the interaction logic
governs how the interface and underlying System workS.

0013 The inventive language interpreter could be used in
any System comprising a complex control, Such as the
cockpit control system described in the 892 patent above.
However, the present invention is not limited to aircraft or
vehicular applications, it can be utilized wherever any type

US 2005/0091036A1

of complex control mechanism is utilized or even wherever
language is to be translated from one form to another or
constrained in Some manner.

0.014. The principal design concept includes the separa
tion of functionality and the use of a hierarchical model for
flexibility. The functionality is separated into input (where
information is translated into objects or Symbols), Syntactic
parsing, Semantic parsing, and controller translation, which
maps commands and Symbols Separately. Syntactic parsing
is concerned only with the order of the symbol (or word),
while Semantic parsing refers to the actual logical values
asSociated with each Symbol or word.
0.015 Semantic checks occur after each object is added to
the command object and possibly when the command object
is thought to be complete before it is passed to the translator.
Sets of Syntactic and Semantic rules are specific to each
object in the hierarchy and are located in the DoME model
with each object or are coded into or inherent to the chosen
object model.
0016. The inventive hierarchical model involves gram
mar creation, object class code generation, and the identi
fication and translation of Strings to objects. The inventive
elements are described in more detail below. Although a
specific embodiment of the invention is described below in
its exemplary application to a user interacting with an FMS
in a cockpit Setting, the invention is to be construed more
broadly, as indicated above.
0.017. The interface for this platform has been designed
for maximum flexibility, but the real workload savings
asSociated with the invention are due to the reduced cogni
tive effort of the user in trying to remember and follow the
appertaining System rules and procedures. This System is
ideal to enter even the most complex command Strings,
particularly when the entry concerns relate to the complexity
of the functional logic. The System is designed to accom
modate different grammar constructions, So the Syntax of the
interaction logic can be customized for different languages
with relative ease.

0.018. This principle could apply where any type of
language utilizes an existing body of user knowledge about
a field, for example, knowledge of high level geometry and
machine tool control-based languages for machinists when
controlling numerically controlled machine tools, or knowl
edge of a process control language for manufacturing per
Sonnel for industrial processes. Even more broadly, this
principle could apply in the Simple transformation of lan
guage in one form to language in another.

DESCRIPTION OF THE DRAWINGS

0.019 FIG. 1 is a block diagram showing the high-level
data flow and data tables in the System;
0020 FIG. 2 is a block diagram of the parser internal
logic modules and their interactions with one another;
0021 FIG. 3 is a flow diagram illustrating the pre
processing of Strings;
0022 FIG. 4 is a flow diagram illustrating the processing
of Strings,
0023 FIG. 5 is a flow diagram illustrating the pre
processing of numbers,

Apr. 28, 2005

0024 FIG. 6 is a flow diagram illustrating the processing
of a Symbol using grammar;

0025 FIG. 7 is a flow diagram illustrating adding a
symbol;

0026 FIG. 8 is a flow diagram illustrating adding a
Symbol to a temporary object, and

0027 FIGS. 9A & 9B represent a flow diagram illustrat
ing an execution of the Send command.

DETAILED DESCRIPTION OF THE
INVENTION

0028 System Architecture

0029 FIG. 1 illustrates an embodiment of the inventive
language interpreter-parser 10. The language parser 10 inter
faces with both a user interface 50, and an external system
60 that could be a controller, computer System, display, or
other device that can accept a command or a constrained text
string 17. In this context, the term “constrained text string”
means any output that is understandable by the external
system 60

0030 The inventive language parser 10 is a constrained
natural language parser that uses two primary Semi-inde
pendent mechanisms: a grammar information 25 and State
table 25 (these may be integrated and are indicated below, in
places, in their integrated form), and a symbol and hierar
chical object model 20. In addition to these two primary
mechanisms, the parser 10 may include additional Support
ing elements. These elements may include one or more of a
partial String buffer 22, auxiliary application information 26,
a translation table 28, external system information 30, and a
communications dictionary 32.

0031. In a general Sense, the grammar information and
State table 24, 25 is used to provide a rigid Set of constraints
for the language that limit the language to that which can be
understood by the external system 60. The object model 20
allows user input elements 18 to be manipulated into objects
that can be interpreted correctly. These two primary mecha
nisms are interdependent of one another: the grammar
portion 24 takes advantage of the object model 20 by relying
on hierarchical definitions given to objects and their respec
tive enumerations. Likewise the object model 20 relies
heavily on the grammar information 24 to disallow many
Syntactically incorrect Strings. Using this hybrid approach in
the parser 10 maximizes the usefulness of the object oriented
nature of commands/phrases and the flexibility of the Syntax
necessary for a language based interpreter, making changes
or adaptations to different Systems much simpler. The prin
cipal design concepts includes the Separation of functional
ity and the use of a hierarchical object model for flexibility.

0032. In an embodiment of the invention, an FMS appli
cation in which the external system 60 is a flight controller
for an aircraft, the invention facilitates the use of the CCL
used by the flight controller by implementing a constrained
natural language parser 10 that allows a user to enter
clearance elements for flight control in almost any order She
wishes, as long as She follows legal English Syntax and ATC
phraseology. The CCL is a user-centered interaction concept
for an autoflight System that any user can learn to use in
about fifteen minutes.

US 2005/0091036A1

0033. In a broader sense, the invention facilitates the
translation of language from one form to another and could
be used to interface to a control or any other type of external
system 60. By providing flexibility in command entry and
providing contextual, Syntactic, and grammatical assistance
for entering information, the invention eliminates the need
to learn and remember special operating rules for a particu
lar interface making it easier for the user to enter commands
in a manner which follows the operational logic used within
the domain. The application is general enough So permit
conformance of any user input to a constrained output in any
form of a language understandable by the external System
60. This ease of learning and use is made possible by the fact
that a language understood by the user (e.g., CCL) uses
existing user knowledge about operating the external System
60 as the basis for the interaction logic. That is, the inter
action logic of the System mimics the operational logic of the
domain. Therefore, the user does not have to learn new
operating logic for a complex System Such as the automated
control of any type of vehicle or machine or deal with modes
management or other State-based aspects of the System when
entering information directed to the external system 60.
0034. The inventive language parser 10 has four primary
functions: 1) to provide shortcuts for the user by automati
cally inserting implied words into the command or input
String So that he or she does not have to enter redundant
words; 2) to facilitate the resolution of ambiguities that may
be present during entry; 3) to confirm the logical validity of
the message and produce appropriate error messages for
invalid Strings; and 4) to prompt users by providing a list of
next possible words, word phrases, or word completions
during entry.

0.035 Although the language parser 10 is the primary
focus of the invention, the following briefly describes the
user interface 50 and the external system 60 to which the
language parser 10 can interface.

0.036 The user interface 50 may comprise any known
display unit Such as a CRT, LCD/plasma panel, keyboard,
mouse, text or character reader, barcode reader, Speech
recognition System, Speaker, etc. In the FMS embodiment,
the user interface 50 may comprise a control/display unit, a
primary flight display, a multifunction display, a navigation
display area, keyboards having alphanumeric keys or key
pad, an option display area, a command display area, line
Select keys, option keys, a camera and/or voice input device
that is possibly a microphone. The user interface 50 is used
to transmit StringS/partial Strings and commands 18 into the
language parser 10. The user interface 50 is also used to
receive parser user interface outputs 14 (help, error mes
Sages, completions) and provide them to the user.
0037. The external system 60 can be any system that
utilizes parsed or constrained text as an input. The external
System could be construed as broadly as a computer System
or display mechanism, where the language parser 10 simply
translates language from one form into another. The lan
guage parser 10 provides limitations and constraints based
on the rules and Syntax of a particular language. However,
in a broadly construed embodiment, the external system 60
may be a control of Some Sort that accepts commands and
acts on those commands. The language parser 10 then Serves
to provide only acceptable commands to the control 60 out
of all possible language that a user might attempt to use to

Apr. 28, 2005

communicate with the control 60. In the narrower exemplary
embodiment, the external system 60 may be a Flight Control
System (as noted above), such as that described by the 892
patent. The external System accepts completed commands or
other output 17 from the language parser 10 that is under
standable by the external system 60.
0038. In referring to the entities below, the word “table”
may be used to describe a collection of one or more objects.
A traditional table has often been construed as a database
that would only contain data and that was distinct from the
function modules that operated on the data. In the present
description of the preferred embodiments, however, the
words “table”, “object”, “database”, “buffer', or other words
referring to data may be implemented in an object-oriented
manner, meaning that these entities may also contain func
tionality or program code that operates on respective data of
an object. In other words, a "table', as used below, may
additionally contain functional code for operating on data
stored in the table.

0039. As noted above, the primary components of the
interface-parser 10 itself are two Semi-independent mecha
nisms: 1) the symbol and hierarchical objects table 20, and
2) the grammar information and State table 24, 25. In a basic
sense, the symbol and hierarchical objects table 20 allows
input command Strings to be manipulated into Symbol
objects 80 that can be interpreted into their intents. The
grammar table 24, 25 may be used to provide a rigid set of
constraints for the language that maps to the language of the
external System 60. In other words, the grammar information
24, 25 may contain all legal commands or words that can be
used by the external system 60.
0040 AS FIG. 1 illustrates, the inventive language inter
preter-parser 10 may utilize any number of additional data
bases or tables which may or may not be integrated into the
parser 10 itself; however, those databases that are not
integrated into the parser 10 may be readily accessed by the
parser 10. A partial strings buffer 22 may be provided to
temporarily hold partial Strings that are input via the user
interface 50 so that they may be analyzed and combined in
a manner that will ultimately result in a completed object or
output 17. This partial string only exists until a symbol (or
multiple symbols) can be identified, formed and passed onto
the next next legal String. The hold and temporary objects
comprise one or more Symbols.
0041 Auxiliary application information databases 26
may be provided that contain information that is not used
exclusively by the language parser 10, but rather provide
relevant information that can assist the language parser 10 in
formatting the command 17.
0042. For example, in the exemplary system used for an
FMS, the auxiliary application information 26 could be a
navigational information database that comprises, e.g., loca
tions of particular objects that might be used during flight,
Such as the airport name, airport objects, and waypoint
objects, as well as possible completions for these elements.
An FMS-EFIS shared memory update may include functions
Such as “get waypoint order number from flight plan”, “get
origin airport”, “get closest airport waypoint order number',
and "get destination airport'. Obviously the navigation
database would provide information to many other applica
tions besides the FMS, and thus is not exclusively a part of
the FMS. Use of the navigational information database in the

US 2005/0091036A1

FMS application could help the user to create a complete
command 17 for the controller 60.

0.043 A control information database 30 may be provided
that comprises information Specific to a particular type of
control or external system 60. This could permit various
types of controls to be used with the same underlying
Software, and only this database might require updating in
order to utilize a different control, and could constitute an
FMS information database system for the FMS application.
0044) A communications dictionary 32 may be provided
that helps to ensure reliable data delivery. Although this
dictionary could contain low level communication protocol
data (e.g., related to TCP/IP, or even lower protocol level
physical layer information), it is primarily concerned with
reliable delivery at a higher level, i.e., ensuring valid com
mands make it to the external System 60 in a reliable manner.
004.5 The communications dictionary 32 may be imple
mented in the FMS application, as a Data Link dictionary 32
for Data Link communications that, for example, is based on
Standards Such as Specifications that are published by RTCA,
Inc. “Minimum Operational Performance Standards for ATC
Two-Way Data Link Communications” RTCA/DO-219,
herein incorporated by reference.

0046) To clarify how the communications dictionary 32
might operate in the FMS embodiment, the following exem
plary description and interaction are provided. In this spe
cific example, Since a Data Link data dictionary 32 is a
functional subset of CCL command strings (“Data Link” is
a subset of ATC commands-and the CCL can handle any
ATC command), CCL and Data Link are fully compatible.
Having the Data Link interface incorporated into the CCL
interface can allow a user to edit Data Link messages in the
CCL environment. This, in turn, Supports the ability to, e.g.,
negotiate clearances completely over Data Link.

0047 For example, if the controller sends a clearance to
an altitude that is higher than is possible due to weight, the
user can copy the clearance into the CCL command String
field, edit the altitude to a feasible value, and send the
command String back to the controller as a request. Editing
within the CCL environment retains the executable proper
ties of the original message So that when confirmation is
received from the controller, the command String can be
executed directly, just as any Data Link message or CCL
command string would be. For the FMS, CCL will continue
to be necessary in the world of Data Link because when the
user needs to enter a route modification manually, his use of
Data Link as the primary mechanism of entering route data
will prevent him from staying proficient at traditional CDU
based FMS operations, so ease of use for the FMS will be
even more important than it is today. Furthermore, Since
CCL uses the same operational logic as Data Link (as both
are based on ATC messages), Data Link messages actually
reinforce the interaction logic of CCL, making manual and
automatic operations essentially the same. This should
enable users to stay proficient at lower levels of automation
and manual data entry despite loSS of continual practice.
0.048. This principle can be generalized by stating that
when Such a communications dictionary database (internal
or external) 32 is used in conjunction with the language
parser 10, information contained within the database can be
utilized not only to assist in the entry of the proper infor

Apr. 28, 2005

mation, but can also serve to reinforce knowledge about the
logic of the applicable control or external System 60.

0049 Grammar Information and State Table
0050. The grammar information 24 and state table 25 are
formed pre-runtime using a Set of Scripts and a look-ahead
one lexical interpreter; they contain all possible legal State
ments from the controller or external system's 60 perspec
tive (of course, these statements do not comprise
parameterized, categorical or numerical components of the
legal Statements since the tables would be too large). In order
to create this table in the exemplary embodiment, research
indicated that most commands contained a single action and
target (or parameter variable), and a set of prepositions. The
research also identified frequently used adjectives, adverbs,
parameters, and conjunctions (see Table 1).
0051. The language parser 10 was initially developed in
the context of the FMS. In this development of the grammar
(which was used to generate the State table 25), an initial set
of command Strings comprised a comprehensive list of
common clearances, from those clearances, the CCL
vocabulary was identified (i.e., which words represented
actions and which words represented targets.) From this
Vocabulary, the original list of clearances, Data Link speci
fications, and from accepted ATC phraseology, a list of
possible command Strings was extrapolated to form the
grammar.

0052 Once the grammar has been defined, grammar
information 24 from Such Strings can be created in a gen
eralized sense by entering each of the command strings (or
other type of output String, rule component, etc.) into a rule
file in their general form/type as a verb, a target/parameter,
and a list of possible prepositional phrases. Then, a program
may be run that permutes the rule into all of the possible
orderings. Each target and prepositional phrase may be
individually defined, and (wherever possible) enumerations
may be used to represent equivalent words and phrases.

0053. The state table 25 may be constructed using rule
permutations, noun rules and hierarchical representation.
The grammar may be merged with the object mappings and
transformed into a State machine 25 using any grammar State
generation technique or tool (Such as Bison). The State table
25 determines a particular State of a particular command line
as it is being formed, Such as whether the command is
complete, what information it lacks, what options are avail
able, etc. The state table is flexible as it can be utilized to
check ahead and See if needed information can be antici
pated. Thus despite being a look ahead one parser State
machine, the parser can perform as a look ahead two or even
look ahead k when necessary.
0054 The rule permutations may utilize as many as 200
or more well-defined commands. The rule permutation also
contains a list of word groupings that must appear together
and in the order listed, as well as a list of prepositions and
verbs, according to word types. The noun rules include the
ordering of words or objects expected by a user and defines
what each collection of objects map to. The hierarchical
model includes a listing of hierarchical object relationships.
The processing of grammar to Bison to State machine is
completed by transforming the Bison output into a tempo
rary file after insertions and then into a final parser-read
grammar table.

US 2005/0091036A1

0.055 This may be done with a series of scripts or other
programs: The first Script might mark word grouping. This
allows for differentiation when the word order in the com
mands are critical, for example, “CLIMB AT 20NM” and
“AT 20NM CLIMB.” Another script may flag the preposi
tions and verbs, and another Script may take each flagged
grouping and create all the possible permutations Such that
prepositional phrases can be placed in any order before or
after the verb and it's target. After that is complete, the noun
rules which define how a given target can be entered and the
hierarchical object relationships may then merged with the
permuted command list. This merged information is then
passed into Bison to create a State machine in an output
format particular to Bison. This format can then be modified
as input for a parser by pulling out the State info along with
the Bison rule list.

0056 Substitutions may be utilized in this construction.
In the FMS example, “when at”, “on reaching”, and “when
reaching” can all be substituted for by “at” to create a
command String with identical meaning. The grammar infor
mation and state table 24, 25 may be used at run-time both
to ensure correctness of the Strings entered and to prompt the
user for possible next words. However, while the prompts
are convenient, if the user wishes to enter only targets or to
avoid Some part of the command String, the object model
may be used to determine the missing words or to prompt the
user for an appropriate choice.

0057 The state table 25 is bound tightly with the gram
mar table 24-the grammar information 24 holds all valid
command objects that could be used on the controller, but
the state table 25 might address this information in order to
potentially modify the State of a particular command. The
grammar information 25 may include the current State,
current symbol object (in command, temporary, or hold
object), command, temporary object (objects processed by
grammar, but that cannot be added to the command), and
hold object (objects that are legal to add to the command but
have not been processed by the grammar). The distinction
between a temporary object and a hold object can be
illustrated as follows. For the command “TO FIL320 AT
KMSP', the grammar expects: TO+FL+number. The com
mand object expects Verb=TO; the cclTo object expects
Target=Altitude, and the cclaltitude object expects Altitude
Unit=Enumeration (FL) Value=number. So for “TO FL', the
grammar is okay and the temp object keeps "FL', but for
“TO FL320 KMSP", the grammar is not okay and the hold
object keeps “KMSP”.

0.058 Translation
0059) The FMS translation involves the following. An
FMS table is created to map FMS commands into a CCL
equivalent. A translation table is created at Startup to load the
CCL equivalent in an n-airy tree for quick lookup. Inherit
ance and attribute mapping is used to find an equivalent CCL
command from the FMS table. Since the CCL commands as
objects are very specific, the equivalent of a CCL command
can be found by climbing the hierarchical model and walk
ing through the n-airy tree. At each terminal node, there is
an FMS number that matches the CCL string and maps to
one or more FMS commands. Data types may be filled with
a translator object, and additional information is obtained
from the database, if necessary.

Apr. 28, 2005

0060 Symbol & Hierarchical Object Model Table
0061 The symbol table and hierarchical objects database
20 takes advantage of many common object oriented pro
gramming techniques (e.g., encapsulation, inheritance, and
abstraction). Each word, partial word, number or phrase that
is entered into the System, via any user input device 50, is
transformed into a simple object that may be considered to
be like a token, enumeration, or other form of object
representation. This database 20 may contain objects that
include tokenized enumerations of these partial words,
words, numbers, and phrases (textual elements). The objects
may then be combined together using the object model to
create a single command object 84. Once the user input is
transformed into an object format, then Semantic checks,
translation into external controller or System commands, or
other types of operations can be performed on these trans
formed objects. The inventive parser 10 implementation
creates an accurate and complete object model to capture the
complexity of the natural language and the nuances of word
ordering.

0062) The object model is hierarchical in that an object
ordered hierarchy may be imposed on the Structure of the
objects. For example, at a low level, objects could broadly
model words or partial words, at a next level, a more specific
child object type may be modeled Such as a noun, verb,
parameter, etc.; the child object may inherit all or Some of
the properties of the parent “word” object that it is based on.
At an even higher level, an object directed to, e.g., a location
might be defined that inherits all or Some of the properties
of the “noun” object that it is based on. All of the tools of
the object oriented programming methodology may be uti
lized and the advantages realized.
0063. The implementation of an embodiment may be a

file organized in an object-oriented manner according to: 1)
grammar objects, 2) general objects, 3) control classes, and
4) interfaces.
0064. The grammar objects may be organized into types
Such as verbs, conjunctions, prepositions and parameters
(nouns). Many of these grammar objects would be relevant
for a number of different implementations. In the FMS
embodiment, these grammar objects may include:

TABLE 1.

Verbs: Clear Copy Erase Expected Hide Inhibit Avoid
Cross Follow

Conjunctions: And AndThen
Prepositions: Between From When Above After At AtOrAbove

AtOrBelow Before Below For Of On Until
Parameters: Degrees Cardinal Direction Latitude.Direction

Longitude.Direction Distance Frequency Channel
Hours Minutes Leftright Lattitude Longitude
Pressure Seconds Temperature Wind Target
Adjective ArcTarget Arc AngleTarget Angle
BankAngle Climb Angle

0065. The implementation of these objects may actually
be a Single class type which, when dynamically instantiated,
reads it's object Specific information from a database which
was constructed on Start up.
0066 General objects may include symbol objects, num
ber objects, an object list, and temporary objects used to
Store part of a command object when the command is not

US 2005/0091036A1

entered Sequentially. These general objects may also be
command objects (which may include a verb and a list of
prepositions), compound command objects (which may
include two command objects and one conjunction), return
types (which may include a message or an error Severity
type), object pointers, and other types of traditional object
oriented object types. The control classes may include a
Symbol table 20, a grammar information 24 and a State
lookup table 25, and elements of the language parser which
may include the partial String and the Hold or Temporary
Objects. The interfaces may include interfaces for the aux
iliary application information 26, e.g., the navigation data
base interface 26, for the user interface 50, and for the
external control or system 60, e.g., the FMS. These inter
faces are designed to be base classes So that external changes
to the System are isolated.
0067 Software Configuration and Execution
0068 FIG. 2 illustrates an exemplary embodiment of the
inventive language parser 10 comprising four internal logic
blocks/modules: a symbol lookup and send module 70, an
apply grammar and add module 72, a get word type or data
module 74, and a translate and send module 76.

0069. A discussion of the operation of these modules may
best be illustrated by way of example. In the FMS embodi
ment, a user may wish to enter a command String that reflects
a crossing restriction, “Cross MCW at or above FL210,"
where MCW is a symbol for a location, and FL210 is a
symbol for an altitude-this is the command string that would
be provided to the FMS control 60. The user uses the user
input device 50 to enter this command.
0070 For pre-processing Strings, a string or partial String
is provided by the user. To initiate the above command
String, a user might begin by either entering a “C” on an
alphanumeric keypad, or by entering the entire word “cross'
via any suitable input mechanism 50. This input 12 is
initially handled by the symbol lookup and send module 70.
0.071) If a partial string “C” is initially entered via the
input device 50, the “C” may be sent to the language parser
10 to be processed. The parser 10 generally performs string
formatting that attempts to add/remove Spaces, identify
numbers, merge the partial String with old unprocessed
Strings, and checks with other databases. In this instance, the
symbol lookup and send module 70 checks the partial string
buffer 22 to see if there are any old unprocessed Strings
present. Since this is a new command, the partial String
buffer 22 is empty, either because the last Send command
caused it to be cleared out or because of Some form of
initialization of this buffer 22.

0072) Next, the symbol lookup and send module 70 tries
to identify the input as a valid Symbol object, utilizing the
symbol table 20 (FIGS. 1 & 2). In general, the pre
processing of Strings will either Store a formatted input
String as an unprocessed/partial String in the partial String
buffer 22, will send it on for further number processing, or
will Send it on for further String processing. In the present
example, the “C” is checked with the symbol table 20 that
comprises possible words that may be used and may check
with the grammar info 24 for those words that are legal (for
this example those words that may start a command). A list
of possible words beginning with “C” may be displayed to
the user on the user interface 50 So that the user can select

Apr. 28, 2005

one of the words from a pick list. The user may complete the
entry of the word “cross”, possibly by selecting the word
from a list presented to her or by repeating the keyboard
entry for the remaining letters. The communications from
the user input device to the language parser in this embodi
ment may take place via a control abstraction layer Simu
lation, although in a general Sense, any known protocol may
be used.

0073. An attempt is made to translate the string into a
symbol, e.g., to find the symbol for “cross”. If the translation
fails, then an attempt is made to locate the object in the
auxiliary application (FMS) info database 26. If the string
cannot be found in the database 26 then it is Stored as an
unprocessed String and the user is issued a warning. Once
the parser 10 processes the input “cross” and identifies this
input as a valid symbol object using its symbol table 20, the
word “cross” is identified as a particular symbol type 82 by
the get word type or data module 74 based on the grammar
information 24. The get word type module 74 receives a
string 18 provided by the symbol lookup and send module
70 and returns an appertaining Symbol type 82, (e.g., noun,
verb, conjunction, preposition, parameter, enumeration) if
found. If it is not found, then an error may be returned to the
user or Some other form of error handling invoked.
0074) When the symbol lookup and send module 70
receives a symbol type 82, the parser 10 constructs a symbol
object 80 and passes it to the apply grammar and add module
72 which processes the Symbol object 80 against grammar
rules Stored in a grammar information table 24 and a State
table 25 to create a command object 84. The apply grammar
and add module 72 may check to see if there is a hold object
waiting. If there is, the symbol object 80 may be added to the
hold object and this combined object is processed as a
symbol object 80 if no error occurs (otherwise, appropriate
error handling is invoked). If there is no hold object waiting,
then the grammar is checked to ensure the Symbol can
legally come next. If the grammar check is not Successful, an
attempt may be made to perform an auto-insertion of a
conjunction or a verb. If this fails, a hold object may be
created with the existing Symbol, or the user may be
prompted to enter a user-choice. If the grammar check is
Successful, then it is processed and the Symbol added to the
grammar.

0075. In the present example, the “cross' symbol object
is processed by the apply grammar and add module 72
against the grammar rules and State table to create a com
mand object 84. At this point, the parser 10 can reduce the
list of “possible next words to only those that can legally
follow “cross', and optionally displays these to the user.

0076) Next, the user may enter an “M” on the user input
device, as a part of the navigational symbol “MCW, and the
symbol lookup and send module 70 is activated. As before,
the parser 10 tries to identify the input as a valid symbol
object. If it cannot, it Stores the input as a partial String in the
partial String buffer 22 and either waits for additional input
or issues an error message. Once again, the parser 10 reduces
the list of “possible next” words to only those that begin with
an “M” and may display these to the user. The user may
continue by entering “CW' on the keyboard. Again the
parser 10 tries to identify the input as a valid symbol object
and Stores it as a partial String in the buffer 22, possibly
adding the input String to the contents of the partial String

US 2005/0091036A1

buffer 22, and either waits for additional input or issues an
error message. The parser 10 reduces the list of “possible
next' words to only those that begin with “MCW, and, in
this exemplary instance, there are none, So the user interface
displays no options.

0.077 Next, the user enters a space (“”), and the parser 10
tries to identify the input as a valid symbol object. In this
case, “MCW' is passed to the get word type or data module
74 and, Since this is not one of the normal command words,
it is communicated to the translate and send module 76
where the auxiliary application information database 26 (in
this case, the navigational database) is queried. “MCW" is
found in this database 26 as a navigational Symbol and the
Symbol and its type are returned. The parser 10 processes the
Symbol object against grammar rules 24 and a State table 25
in the apply grammar and add module 72 and adds the
symbol (for “MCW") to the previously created command
object (“cross”) 84. The parser 10 can now reduce the list of
“possible next” words to only those that can legally follow
the resultant combined command object (“cross MCW) and
optionally display them to the user.

0078 Next, in the example provided, the user enters “FL
210” on the user interface, which represents an altitude. The
parser 10 processes the Symbol object in the get word type
or data module 74 against grammar rules 24 and a State table,
but in this case, does not add the Symbol to the previously
created command object. Next, the user enters a space ("),
and the parser 10 processes the Symbol object in the get
word type or data module 74 against grammar rules 24 and
the state table. At this point, the system cannot add the “FL
210' altitude symbol to the previously created command
object, because a "user choice' is required to remove
ambiguity (which invokes the get user choice routine 86).
007.9 The parser 10 produces a list of “insertion” words

(e.g., above, after, after at, at, at and maintain, at or above,
at or after, at or before, etc.) in the apply grammar and add
module 72 since the altitude has not yet been added to the
command object. These insertion words are displayed to the
user. The user must then Select one of these, or, alternately,
the user can select “delete' or “clear to clear out the
contents, possibly via the keyboards.

0080. In the example presented, the user enters “at or
above”. The parser 10 processes the symbol object in the
apply grammar and add module 72 against grammar rules 24
and the state table 25 and adds the symbol to the previously
created command object. Again, the parser produces a list of
“possible next words.

0081. The full string has now been entered, and the user
enters “GO' to invoke the command string via a send
command input 12. The parser 10 processes the command
object 84. Using inheritance and attribute mapping, the
command object 84 is identified as a crossing restriction and
is translated by the parser 10 into a format that the controller
60 can implement as a flight change plan. The parser 10 may
then produce a list of “possible next words. If this is the end
of the command, the parser may clear the display area of the
user interface 50, the command string buffers, and other
respective buffers of the System, and prepare to accept
another command. Alternately, the user may delete or clear
out the contents.

Apr. 28, 2005

0082 Inventive Method
0083. The inventive system and a method of operation
has been explained above with reference to two specific
examples. The following describes the inventive method in
a procedural manner. The inventive method comprises rou
tines for: 1) pre-processing Strings; 2) processing Strings; 3)
pre-processing numbers; 4) processing Symbols using gram
mar; 5) adding a symbol; 6) adding a symbol to a temporary
object; and 7) sending a command or output String. These
routines are described in more detail and without reference
to a particular example below. Except where noted, the
pre-processing & processing of Strings is performed by the
symbol lookup & send Subsystem 70 while the remainder of
the processing functions are performed by the apply gram
mar & add subsystem 72.
0084 Pre-Processing Strings
0085. As indicated in FIG.3, an input string 102, which
are user input elements 18 is processed by one or more
functions 104 that provide preliminary processing 100 of the
input string 102. These functions 104 include adding and/or
removing Spaces in appropriate places, identifying numbers,
performing merges with old unprocessed Strings, performing
a data base check (performed by the get word type or data
Subsystem 72 using the auxiliary application information
database 26), and other functions. This can result in the
pre-processed String being Stored as an unprocessed String
106, being translated as a number 202, or being interpreted
as a next legal String 152.
0086) Processing Strings
0087. Upon completion of producing a next legal string
152 by the pre-processing routine, the processing of Strings
routine 150, according to FIG. 4, takes the next legal string
152 and attempts to translate it into a symbol 154. If this
translation fails 158, a search is performed 160 (by get word
type or data Subunit 74 in the auxiliary application infor
mation database 26) to locate the symbol object 162. This
database search 160 is not performed if the symbol trans
lation 154 is successful 156. The symbol object 162 has any
waiting numbers added to it 302 (as defined in more detail
below), and this combination is then processed 252 as
defined in more detail below by the process Symbol using
grammar routine.
0088 Pre-Processing Numbers
0089. As indicated in FIG. 5, a new number 202 is
provided to the pre-processing number routine 200 and a test
is made to See if there are waiting numbers. If there are
waiting numbers 218, the new number is added to the
waiting number 220. Otherwise, a grammar check is per
formed 206. If this grammar check fails 208, then error
processing is implemented 210, which may be in the form of
an error message to the user. But if the grammar check 206
is Successful 212, then the grammar is processed 214 and a
number placeholder is added to the hold object 216.
0090 Process Symbol Using Grammar
0091 FIG. 6 illustrates the routine for processing a
Symbol using grammar 250. A test is made to determine if
there is a hold object waiting 252. If so 278, an attempt is
made to add the symbol to the hold object 352. This
operation may result in success 280, but if it results in failure
282, an attempt is made to process the hold object 284. If this

US 2005/0091036A1

operation fails 288, then error handling is implemented 290.
If it is successful 286, then this routine 250 is repeated.
0092 Correspondingly, if there is no hold object waiting
254 when processing the Symbol, then a grammar check is
attempted 256. If this check is successful 258, then the
grammar is processed 260 and the symbol is added 302, as
described below. If the grammar check fails 262, then an
attempt is made to auto-insert a conjunction or verb 264.
This operation may result in Success 266, but if it fails 268,
an attempt is made to hold the object 270. The hold object
attempt may be successful 272, but if it fails 2523, the user
is requested to input a choice 276 which is accepted via the
symbol lookup and send module 70.
0093. Add Symbol
0094) The addition of a symbol 300 is illustrated in FIG.
7. Similar to the previous routine, a test is made to see if
there is a temporary object waiting 302. If there is no
temporary object waiting 304, then an attempt is made to
add the symbol to the current object 306. If it is successful
308, then this triggers the semantic parsing 314 which takes
place after any new Symbol is added to a command object or
temporary object. If adding the Symbol to the current object
is not successful 310, then a temporary object 312 is created.
0.095 If a temporary object is waiting 320, then an
attempt is made to add the Symbol to the temporary object
352 that may succeed 322, or fail 324. On failure 324, an
attempt is made to add a temporary object 326. If this add
is successful 328, then the symbol is added 334 and the
process is repeated 300.
0096). Add Symbol to Temporary Object
0097. An attempt may be made to add a symbol onto an
object 352 according to the add symbol to temporary object
routine 350, as illustrated in FIG. 8. This attempt may be
successful 354, or it may fail 356. If it fails, the symbol is
transformed into it's parent object (using standard object
oriented techniques) 358, and then an attempt is made to add
the transformed symbol onto the object 358. This attempt
may be successful 360 or it may fail 362. If it fails 362, a
search is performed for the “missing” object which is able to
add both the new or transformed symbol and the temporary
object 364. An attempt is then made to try to add the
“missing” object and add the symbol or transformed symbol
365. This attempt may be successful 366 or it may fail 368.
If it fails 368, an attempt is made to make the symbol into
a temporary symbol and to add the object to it 370, which
may be successful 372 or may fail 374 in which case error
handling is initiated. In any event, the routine 350 is
repeated.

0098. Send Command
0099] The send command handling 400 is illustrated in
FIGS. 9A and 9B. As illustrated in FIG. 9A, invoking the
Send command 402 involves attempting to proceSS unproc
essed StringS 404. If this attempt is not Successful, then error
handling is invoked 408. If it is successful 406, then a
resolution on the hold object is implemented 410, with a
possible operation of processing the hold object 412. In any
event, the grammar is checked 414 and error handing is
invoked 416 if this check is not successful. If it is successful
418, then a resolution of the temp object is performed 420,
and, if appropriate, a temporary object is added 422. In any

Apr. 28, 2005

event, a check is performed to See if it is acceptable to Send
424, and error handling is invoked if it is not 428. If it is
okay to Send 426, then the command is translated and Sent
to the external system 430.
0100 FIG. 9B illustrates the processing of a command
432 that has undergone Semantic parsing 314. The command
is converted to an external System number 434, and each
object is then translated to external system values 436.
Corresponding external System Scripts are then run 438
which may invoke error handling 442 if there are problems,
or, on Success 440, reset the grammar information 444.
0101 The present invention may be described in terms of
functional block components and various processing Steps.
Such functional blocks may be realized by any number of
hardware and/or Software components configured to per
form the Specified functions. For example, the present
invention may employ various integrated circuit compo
nents, e.g., memory elements, processing elements, logic
elements, look-up tables, and the like, which may carry out
a variety of functions under the control of one or more
microprocessors or other control devices. Similarly, where
the elements of the present invention are implemented using
Software programming or Software elements the invention
may be implemented with any programming or Scripting
language Such as C, C++, Java, assembler, or the like, with
the various algorithms being implemented with any combi
nation of data Structures, objects, processes, routines or
other programming elements. Furthermore, the present
invention could employ any number of conventional tech
niques for electronics configuration, Signal processing and/
or control, data processing and the like.
0102) The particular implementations shown and
described herein are illustrative examples of the invention
and are not intended to otherwise limit the Scope of the
invention in any way. For the Sake of brevity, conventional
electronics, control Systems, Software development and
other functional aspects of the Systems (and components of
the individual operating components of the Systems) may
not be described in detail. Furthermore, the connecting lines,
or connectors shown in the various figures presented are
intended to represent exemplary functional relationships
and/or physical or logical couplings between the various
elements. It should be noted that many alternative or addi
tional functional relationships, physical connections or logi
cal connections may be present in a practical device. More
over, no item or component is essential to the practice of the
invention unless the element is specifically described as
“essential” or “critical'. Numerous modifications and adap
tations will be readily apparent to those skilled in this art
without departing from the Spirit and Scope of the present
invention.

What is claimed is:
1. A natural language parser for accepting language input

and producing a constrained language output, comprising:

an input configured to accept user input elements from a
user interface comprising one or more of words, partial
words, numbers, language Symbols, and a Send com
mand;

an output configured to output completed Syntactically
correct parsed output Strings to an external System;

US 2005/0091036A1

a symbol table that is Structured according to a hierarchi
cal object model comprising multiple Symbol objects
representing possible valid user input elements, the
Symbol objects being based on an object-oriented
based hierarchical Structure, wherein mapped symbol
objects are mapped to the user input elements based on
corresponding Symbol objects of the Symbol table and
Syntactic rules,

a grammar information and State table comprising:
multiple grammar output objects representing legal

Statements that may be used with the external Sys
tem, the grammar information and State table pro
Viding a rigid set of constraints for the completed
parsed output Strings and disallowing Syntactically
incorrect Strings, the grammar information and State
table being utilized to create mapped output objects
based on one or more of the mapped Symbol objects
in the hierarchically structured symbol table based
on Semantic rules, the grammar information and State
table interacting with the symbol table to disallow
Syntactically incorrect user input elements, and

a State table configured to reflect a State of a particular
output as it is progressively entered by the user;

the natural language parser further comprising,
a translator comprising a translation table having an

output object to output String mapping, the translator
configured to combine information from the translation
table and the output object to produce the parsed output
Strings.

2. The parser according to claim 1, wherein:
the external System is a controller for at least one of a

vehicle, a machine, and a System.
3. The parser according to claim 2, wherein the vehicle

controller is an aircraft FMS controller, and the parsed
output Strings are FMS commands.

4. The parser according to claim 1, wherein the grammar
information and State table comprises word types that
include one or more of Verbs, prepositions and adjectives.

5. The parser according to claim 1, wherein the multiple
Symbol objects comprise grammar objects, general objects,
control classes, and interfaces.

6. The parser according to claim 5, wherein the interfaces
comprise an application auxiliary information interface, and
an external System interface.

7. The parser according to claim 6, wherein the applica
tion auxiliary information interface is a navigation database
information interface, and the external System interface is an
FMS interface.

8. The parser according to claim 5, wherein:
the control classes comprise a symbol type list, a grammar

and State interface, and a State lookup table;
the general objects comprise Symbol objects, number

objects, an object list, and temporary objects, and
the grammar objects comprise verbs, conjunctions, prepo

Sitions and parameters.
9. The parser according to claim 1, wherein the grammar

information and State table is configured to map at least two
different user input elements to a single Same mapped
command object.

Apr. 28, 2005

10. The parser according to claim 1, further comprising:
a partial String buffer configured to hold user input ele

ments until at least one of a mapped Symbol object and
a mapped command object is formed.

11. The parser according to claim 1, wherein:
the input is configured to accept input from more than one

user interface device; and
the parser is configured to combine user input elements

from two or more user interface devices into a Single
parsed output String.

12. A method for parsing a user-Supplied language input
and providing a parsed output for an external System,
comprising:

providing a natural language parser comprising a user
input that accepts user input elements from a user via
a user interface, the parser further comprising an output
that outputs parsed output Strings to an external System;

building a Symbol table that is part of the parser according
to a hierarchical object model Structure by entering into
the symbol table symbol objects that correspond to
valid user input elements and include Symbol object
type information;

building a grammar information and State table by pro
viding multiple grammar output objects that corre
spond to valid parsed output Strings of the external
System;

building a translator by providing output Strings corre
sponding to the command objects,

entering user input elements into the user input by a user;
converting the user input elements into mapped Symbol

objects corresponding to the user input elements uti
lizing the Symbol table and Syntactic rules,

converting one or more of the mapped symbol objects into
a corresponding mapped output object utilizing the
grammar information and State table and based on
Semantic rules, and updating a State of a mapped output
object in the State table,

constraining user input elements as they are being entered
by checking the grammar and information State table,
the Symbol table, the Syntactic rules, and the Semantic
rules, and providing information back to assist the user
in entering proper user input elements,

receiving a Send command as a user input element;
translating, in response to receiving the Send command,

the mapped output object into a corresponding parsed
output String utilizing the translator, and

Sending the parsed output String to the external System.
13. The method according to claim 12, wherein constrain

ing user input elements comprises:

providing to the user via the user interface at least one of
a pick list of valid next inputs, a help message defining
a type of valid next input, and an error message
indicating a problem with user entry;

14. The method according to claim 12, wherein building
the grammar information and State table comprises identi
fying a comprehensive Set of output Strings for the external
System, entering the command Strings into a rule file in their

US 2005/0091036A1

general form, parameter, and list of possible prepositional
phrases, and the permutations of the rules into all possible
orderings.

15. The method according to claim 12, further compris
Ing:

providing to the user a graphical representation of gram
mar objects and their relationships to one another that
relate to function, Semantic restrictions, and default
information for auto-insertion or creation.

16. The method according to claim 12, further compris
Ing:

inserting, for the user, user input elements when the user
does not follow proper grammar; and

prompting the user for a user input element required for
a parsed output String.

17. A method for parsing a user-Supplied language input
and providing a parsed output for an external System,
comprising:

pre-processing user input elements as input Strings by
Storing pre-processed Strings as an unprocessed String,
performing number handling, or processing Strings by
performing next legal String handling,

processing the unprocessed String by the next legal String
handling into a mapped symbol object based on corre
sponding Symbol objects of a Symbol table;

Apr. 28, 2005

pre-processing input numbers by the number handling and
adding a number placeholder to a hold object repre
Senting a current State of a command object;

processing the mapped Symbol object that results in at
least one of: a) combining the mapped symbol object
with the hold object, b) providing an error message to
the user interface, c) automatically inserting a conjunc
tion or verb, d) providing the user with a choice list of
possible next entry values, e) locating and adding a
missing object to the current State of the command
object, and f) adding the mapped symbol object to the
current State of the command object;

processing a user entered Send command that combines
any unresolved mapped Symbol objects with the current
State of the command object, producing a completed
valid command object;

translating the completed valid command object into a
parsed output String, and

Sending the parsed output String to the external System
and resetting the current State of the command object.

