
A Design Notation and Toolset for High-Performance
Embedded Systems Development

Devesh Bhatt and John Shackleton

Honeywell Technology Center
3660 Technology Drive

Minneapolis, MN 55418. USA

Abstract. In traditional design methodologies, the system designer typically
develops the application in a sequential paradigm almost to completion before
addressing issues of parallelism and mapping to a heterogeneous architecture.
As the architectural complexity of these applications increase, however, this
process becomes too costly since implementation must be started anew after the
design. The quality of the design also often suffers as a result. This is especially
true for embedded applications, where the complexity lies within the system
software and hardware architecture. We present a new methodology and toolset
aimed at improving the system development process for high-performance
embedded applications. The toolset provides a unified design representation
from early design specification to integration--allowing for parallelism and
synchronization specification in domain specific styles, and automating many
process steps such as partitioning/mapping, simulation, glue-code generation,
and performance analysis.

1 Introduction

The increased availability of relatively inexpensive embedded architectures has made
it feasible to implement more and more high-performance applications. The potential
benefit of parallel architectures, however, is often offset by the effort needed to
develop and port applications on these architectures. This effort is further increased for
embedded systems due to their real-time requirements and due to the complexity of
integrating interacting application functions that may use different styles of
parallelization and synchronization. This is unlike typical scientific applications that
implement a single central algorithm. In addition, interactions between components
must be understandable and verifiable for mission-critical applications.

In spite of recent progress in object-oriented design methods, parallel languages,
communication libraries, and real-time operating systems, substantial manual effort is
needed in developing an application using these often diverse technology components.
The system designer typically deveIops the application in a sequential paradigm
almost to completion before addressing issues of parallelism and mapping to a
multilevel heterogeneous architecture, and using the communication and operating
system services. Thus, the implementation becomes disjoint from the design--
resulting in duplication of effort and inconsistencies.

The Multi-Domain Embedded System Architect (MESA) is a methodology and toolset
that bridges this gap and addresses many issues facing the developers of complex
embedded systems. MESA provides the following capabilities"

• an end-to-end development process driven by a unified design notation

250

• a design notation for specification of parallelism, synchronization, and schedul-
ing properties within domain-specific programming styles.

• automated partitioning, mapping, analysis, and simulation of the complete soft-
ware and hardware design.

• automated glue-code generation to specific target communication and operating
system services on the hardware architecture, with performance monitoring

This paper is divided into five sections. Section 2 discusses the current design methods
and languages and the need for domain-specific approaches. Section 3 presents an
overview of the MESA methodology, focusing on the design notation. Section 4
presents some features of the MESA toolset in the context of an application. Finally,
Section 5 presents the current MESA status and future plans.

2 Background and Motivation

2.1 Object-Oriented Methodologies

Much progress has been made recently in object-oriented (OO) design methods and
tools for applications on sequential platforms. Published OO methodologies, such as
Coad Yourdon [2], Shlaer-Mellor [3], and OMT [4], and their implementation in
commercial Computer Aided Software Engineering (CASE) tools is gaining
widespread acceptance in many application domains; typically those domains that do
not require high-performance architectures and real-time operation.

Information Complexity vs. Architectural Complexity. In a typical system
development today, one encounters two kinds of complexities:

1.Information Complexity. This is due to the different types of data, objects, inherit-
ance, and relationships. The class diagrams in OO methodologies allow specifica-
tion of these aspects for information-intensive applications such as databases.

2. Architectural Complexity. This is due to the paraltelization/distribution of soft-
ware functions, data striping, data buffering and pipelining, mapping of functions
onto hardware, scheduling to meet real-time requirements. Embedded applica-
tions such as radar signal processing, tracking, automatic target recognition, avi-
onics mission management, industrial process control have this kind of
architectural complexity.

For example, a typical PC database application might exhibit 95% information
complexity and 5% architectural complexity. On the other end, a typical embedded
signal processing application might exhibit 5% information complexity and 95%
architectural complexity. While the OO methodologies do a good job of analyzing and
designing information-intensive applications, they are inadequate for a large class of
embedded applications, especially those utilizing complex architectures to achieve
high performance. We have indeed found this to be the case in our development of
signal processing and tracking applications.

2.2 ParaUel Languages and Models

To address certain issues of architectural complexity for parallel and distributed
architectures, much progress has been made lately in languages, middleware, and
operating systems. This includes: programming models such as Actors; programming

