
Coordinated Management of Large-Scale Networks Using Constraint Satisfaction

Martin Michalowski and Mark Boddy and Todd Carpenter
Adventium Enterprises, LLC

111 Third Avenue South, Suite 100
Minneapolis, MN 55401 USA

{first.lastname}@adventiumenterprises.com

Abstract

In this paper, we describe a toolset for managing the con-
figuration and management of large-scale networks. In par-
ticular, we focus on managing limited processing and com-
munication resources for coordinated network cyber-defense
applications. Our implementation encompasses the complete
cycle, from initial network modeling and extraction of the rel-
evant constraints, through translation into a formal constraint
model, and finally the application of a Linear Programming
solver to determine feasibility. This system has been demon-
strated on realistic cyber-defense network models provided
by domain experts, as well as on automatically-generated
models, used to explore the scaling behavior of the system.

Introduction
Due to the scale and diversity of modern network architec-
tures and the increasing range of missions being supported
by those networks, current means for designing, fielding,
controlling, and maintaining network-wide cyber-defense
applications do not scale to real world applications. For ex-
ample, the United States Air Force (USAF) must protect a
large and diverse set of interconnected networks spanning
from unstable, low bandwidth, weakly connected ad hoc tac-
tical components (e.g., ground sensors) to more stable oper-
ational components (e.g., aircraft, ground control, ISR plat-
forms) through to very large, stable strategic components
(e.g., SATCOM). These networks support a broad range of
missions with real-time, mission-critical, and life-critical re-
quirements. Misconfigured defensive deployments that ac-
cidentally consume more resources than expected, make un-
planned system modifications, or otherwise unfavorably af-
fect mission performance can have severe consequences.

On a small scale, coordinated cyber-defense operations
can be managed using carefully constructed deployment
rules and controls. For networks consisting of hundreds of
thousands of nodes, manual oversight and configuration is
infeasible. In this paper, we describe a toolset for managing
the configuration and management of large-scale networks.
In particular, we focus on managing limited processing and
communication resources for coordinated network cyber-
defense applications. Our implementation encompasses the

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

complete cycle, from initial network modeling and extrac-
tion of the relevant constraints, through translation into a
formal constraint model, and finally the application of a Lin-
ear Programming solver to determine feasibility. This sys-
tem has been demonstrated on realistic cyber-defense net-
work models provided by domain experts, as well as on
automatically-generated models, used to explore the scaling
behavior of the system.

Figure 1: Cyber Architecture Reasoner Inferring Network
and Application Environments (CARINAE)

Given a network model and information regarding cur-
rent and planned network operations in support of both mis-
sions and network defense, the Cyber Architecture Reasoner
Inferring Network and Application Environments (CARI-
NAE) system shown in Figure 1 provides Cyber-Defense
System developers and operators with the means to detect
and resolve resource conflicts in network cyber-defense op-
erations. Focused on large, service-oriented net-centric en-
terprise systems, CARINAE leverages constraint-based rea-
soning and open source, industry standard tools to create a
robust analytical architecture that can analyze the interac-
tions between network configurations and mission require-
ments for large-scale defensive cyber applications. CARI-
NAE provides bandwidth, memory, and computational per-
formance guarantees for large networks supporting diverse
operational missions and defensive applications. CARINAE



has been employed to analyze networks consisting of up to
1,000,000 nodes.

Motivating Example
Figure 2 shows a simple network model supporting a four-
way video conference, where users on four different net-
works are using a video conference server a2. This video
conferencing task places access, bandwidth, and quality of
service (QoS) obligations on the satellite link S1, the fire-
walls protecting the individual networks, and the routers on
the WAN. It also levies memory and processing obligations
on the endpoint hosts, most notably a2.

Whether this task is feasible depends on the current state
of the network. If S1 or any one of the routers becomes in-
operable, or if one of the firewalls or routers is configured
to deny access on the ports used for the video conference
traffic, one or more of the participants will be unavailable.
Similarly, it is possible that the satellite link, or some com-
bination of links on the WAN will be bandwidth limited to
the point where they cannot support the throughput required.
The issue of bandwidth limitations becomes more of a con-
cern when we introduce a second task. In this task, users on
network B, C and D collaborate in performing a data fusion
task, which levies its own connectivity and bandwidth obli-
gations on the network infrastructure. If both this task and
the previous video conference task are performed simulta-
neously, there may be infeasibility resulting from bandwidth
constraints on one or more of the network links.

Figure 2: Video Conference Task

Constructing the Feasibility Model
Determining mission feasibility starts with the extraction of
a mathematical statement of the feasibility problem from the
mission and network models. More specifically, this pro-
cess starts with a set of tasks to be supported and the net-
work configuration that will be in place at the time those
tasks are active. Each one of these tasks has an associated
set of resource requirements, specifying the need for sys-
tem resources for the duration of that task. In the video
conferencing example shown in Figure 2, these resources

might consist of bandwidth requirements from each of the
remote locations to the video server, as well as processing
time and memory requirements on both the server and the
remote nodes. These bandwidth requirements may specify
a particular route through the network (for example, an en-
crypted channel), a set of routes, or make no specification at
all beyond the need for a certain level of throughput, how-
ever it is to be satisfied, in which case CARINAE may al-
locate that bandwidth across multiple paths through the net-
work. For example, the bandwidth requirement associated
with b2 can be realized by distributing the bandwidth across
the direct route R3 to R1, and the less direct route through
R2.

Figure 3: Example Mission Tasks and Network Configura-
tion Timeline

As a result of this extraction process, we have a set of
resource requirements, or demands, derived from the tasks
associated with one or more planned missions, and a set of
resource availabilities, or capacities, derived from the cur-
rent network configuration. The tasks associated with each
mission must be scheduled: each will have a specified start-
ing and ending time. There may also be planned network
configuration changes, which also take place at specified
times. As shown in Figure 3, these times partition the time-
line into periods over which both the set of tasks and current
configuration are unchanging. We refer to this as a multi-
period model. Multi-period models involving continuous
allocations of bandwidth, CPU, and memory resources can
be represented by sets of linear inequalities, and solved us-
ing linear programming (LP) solvers, which are capable of
handling problem sizes involving hundreds of thousands of
variables, and millions of constraints.

Implementation
The CARINAE implementation has several components, as
well as a set of well-defined interfaces between them. The
task and network models are maintained in the Architec-
ture Analysis and Design Language, using the Eclipse-based
Open-Source AADL Tool Environment (OSATE). From
these models, an Eclipse plug-in is used to extract resource
demands associated with tasks, and resource capacities as
determined by the projected network configuration. The out-
put of this plugin is formatted in the MINIZINC (Nethercote
et al. 2007) constraint modeling language. The resulting
constraint problem can then be submitted to the accompa-
nying MINIZINC solver or other CSP solvers that accept the
MINIZINC language.

However, both the MINIZINC solver and other solvers ca-
pable of accepting or translating MINIZINC input, such as



GeCode1 are problematic for this application, based on their
expressive limitations (for example, the use of floating-point
numbers), or their failure to scale to very large problem in-
stances. Consequently, our use of CSP solvers accepting
MINIZINC directly was limited to small test cases, used to
debug the constraint extraction and modeling process.

The scalability desired for CARINAE was a primary mo-
tivation for starting with a multi-period model, simple forms
of which can be represented as linear programs, and more
complex versions of which can be addressed either through
repeated solutions of an LP, or using Mixed-Integer Linear
Programming. Therefore we translate the MINIZINC repre-
sentation of the problem into MPS, an input language ac-
cepted by a broad array of linear programming systems.2
This model is then solved using CLP, an open-source C++-
based linear programming solver.3 CLP has proved remark-
ably efficient and robust, scaling effectively to network mod-
els involving over one million nodes.

This architecture has several advantages. First, it isolates
the extraction of the feasibility model from the network and
mission models, separating that process completely from the
choice of solver and solver input format. Second, using
MINIZINC as an intermediate representation provides con-
siderable expressive flexibility. In addition to the LP models
currently being employed, MINIZINC can represent finite-
domain constraints, with built-in constructs supporting high-
level specification of constraints. Thus, we can use the same
intermediate representation while varying either or both of
the network and mission models, or the solver and solver
input language. This provides an ideal basis for exploring
alternative modeling formalisms, languages, or techniques.

Constraint Model
Once extracted from the network and mission models, the
feasibility model is represented as a set of constraints among
a set of variables, corresponding to decisions about net-
work configuration, mission schedules, and possibly choices
among different means of achieving a particular mission.
Additional variables represent the network’s state, compris-
ing its current (fixed) physical and logical structure, the set
of active or scheduled missions, and the resulting network
demands. For example, modeling the video conference task
requires representing all of the hardware and bandwidth re-
quirements specified, then solving to find an assignment of
those demands to nodes or links that have available the re-
quired capacity. In the CARINAE model, we represent com-
puting nodes as processing elements, which may be orga-
nized hierarchically. Communication between nodes is via
a set of links among ports. Task resource requirements are
represented as a set of demands on the available resources.

Definition of a CSP Model
We start by defining an instance of a CSP problem C as a
tuple

1www.gecode.org
2lpsolve.sourceforge.net/5.5/mps-format.htm
3projects.coin-or.org/Clp

C = 〈E,P,L,D〉
comprising

• a set E of processing elements,
• a set P of ports,
• a set L of links, and
• a set D of demands.
For the work reported in this paper, we employ a static CSP
model, which describes the state of the system at a single in-
stant (or over a single period) of time. Consequently all re-
source limits and demands are expressed in time-free terms.
CPU demand is expressed as a MIPS requirement. Commu-
nications demand is expressed as a requirement for a spec-
ified data-rate. Memory demand is expressed as an amount
of memory that must be allocated, out of a finite store.

Processing Elements A processing element e ∈ E has the
following attributes 4

• CPU capacity (in MIPS): mips(e) 7→ R+

• memory capacity (in MB): mem(e) 7→ R+

• A set of sub-elements: sub(e) 7→ E
• CPU-aggregate-utilization: aggmips(e) 7→ R+

• memory-aggregate-utilization: aggmem(e) 7→ R+

Ports Ports collect communication flows into and out of
a particular processing element. A port p ∈ P has these
attributes:
• an associated processing element: pe(p) 7→ E
• throughput capacity, defined in Mbps: Mbps(p) 7→ R+

Links Communication connectivity is provided by links.
Links are directional, with the following attributes for a link
l ∈ L:
• a source port: src(l) 7→ P
• a destination port: dest(l) 7→ P
• throughput capacity, defined in Mbps: Mbps(l) 7→ R+

We’ve chosen to use directed rather than undirected edges,
and do not explicitly model hyper-edges (connections
among larger sets of nodes than pairs).

Demands We have three resources, and so three kinds of
demand. CPU and memory demands d ∈ D have the fol-
lowing attributes:
• a processing element with which the demand is associ-

ated: orig(d) 7→ E
• a demand level: demand(d) 7→ R+

A communication demand d ∈ D has
• a source port: src(d) 7→ P
• a destination port: dest(d) 7→ P
• a demand level: demand(d) 7→ R+

• a set of allowed links: allowed(d) 7→ 2L

4R+ denotes the set of non-negative real numbers.



The symbol 2L denotes the power set of L. To differentiate
among the different types of demands, we define subsets of
D: Dcpu, Dmem, Dcomm, each comprising all of the CPU,
memory, and communication demands, respectively.

Processing Element Constraints
Processing elements are defined in a part/whole hierarchy of
elements and sub-elements. For processing elements ei, ej ,
where i 6= j:
• ei ∈ sub(ej)⇒ ej 6∈ sub(ei)
• ei ∈ sub(ej)⇒ ei 6∈ sub(ek),∀k 6= j

In AADL terminology, we may have a node, which has
multiple CPUs, which support multiple virtual machines
(VMs), which support multiple platforms. The term pro-
cessing element can be applied to either hardware or soft-
ware. There are two possible views of the processing el-
ement hierarchy. In the aggregate model, processing ele-
ments at any level in the hierarchy impose constraints cor-
responding to usage attributes, interpreted as resource limits
to be compared to their aggregate-utilization attributes. For
processing elements having no sub-elements, the aggregate-
utilization attributes are set directly (see the Demand Con-
straints section). For processing elements with sub-elements
the aggregate-utilization attributes are computed from the
aggregate-utilization attributes of their sub-elements.

∀e ∈ E, aggmips(e) ≤ mips(e) (1)

∀e ∈ E : sub(e) 6= ∅, aggmips(e) =
∑

e′∈sub(e)

aggmips(e′)

(2)
Similarly for memory:

∀e ∈ E, aggmem(e) ≤ mem(e) (3)

∀e ∈ E : sub(e) 6= ∅, aggmem(e) =
∑

e′∈sub(e)

aggmem(e′)

(4)
This is a good model for aggregated global resources such as
power or communication bandwidth, where at any level of
the hierarchy the sum of the budgets for the next level down
may be more than the capacity limit imposed (we assume not
everyone will draw their maximum budget concurrently).

In the budget model, processing element capacities im-
pose constraints both down the hierarchy (resource limits)
and up the hierarchy (resource demands). In this case, we
replace the constraints 2 and 4 above with

∀e ∈ E : sub(e) 6= ∅, aggmips(e) =
∑

e′∈sub(e)

mips(e′)

(5)
∀e ∈ E : sub(e) 6= ∅, aggmem(e) =

∑
e′∈sub(e)

mem(e′)

(6)
This is more appropriate for something like weight, or power
budgets for sub-assemblies that don’t get switched on and
off. There is no requirement that either the aggregate or
budget models be uniformly applied in a given processing
element hierarchy; both may be needed, in different places.

Demand Constraints
We model two different types of demand constraints.

Memory and CPU Demands Memory and CPU demands
are imposed by constraining the corresponding aggregate
utilization for orig(d). For memory:
∀d ∈ Dmem, aggmem(orig(d)) = demand(d) (7)

and for CPU:
∀d ∈ Dcpu, aggmips(orig(d)) = demand(d) (8)

Additionally, we constrain sub(orig(d)) to equal ∅, restrict-
ing the imposition of memory and CPU demands to leaf el-
ements in the processing element hierarchy. This does not
restrict our ability to model demands at non-leaf nodes, be-
cause those demands can be assigned to a dummy leaf node
which is then added as a sub-element of the appropriate pro-
cessing element.

Communication Demands Communication demands are
imposed by adding the required throughput to the specified
ports. See Constraints 12 and 13, below.

Link Constraints
We can view the set of ports P and any set of links L ⊆ L
in a given CSP model as a directed graph G = 〈P, L〉, with
vertices P and edges L, where each edge l ∈ L is labeled
with Mbps(l). Then G fits the definition of a flow network.5
Because different communication demands are represented
as different flows, with distinct sources and sinks, we need to
represent this as a multi-commodity flow problem, with each
demand d corresponding to a different commodity. Conse-
quently, we define network flow on a specific link with re-
spect to a given set of links L and demand d:

flowL(l, d) 7→ R+

Then we add the following constraint:

∀l ∈ L, flowL(l) =
∑

d∈Dcomm

flowL(l, d) (9)

The total flow on a given edge (link) must be less than the
capacity:

∀l ∈ L, flowL(l) ≤ Mbps(l) (10)
Demands can only flow on allowed links:
∀l ∈ L,∀d ∈ Dcomm : l /∈ allowed(d), flowL(l, d) = 0

(11)
We define flow at a vertex (i.e., port) p, which also enforces
conservation of flow in the network:
∀d ∈ Dcomm,∀p ∈ P, flowL(p, d) =∑
{l∈L | src(l)=p}

flowL(l, d) +
∑

{d∈ Dcomm| dest(d)=p}

demand(d)

(12)

∀d ∈ Dcomm,∀p ∈ P, flowL(p, d) =∑
{l∈L | dest(l)=p}

flowL(l, d) +
∑

{d∈ Dcomm| src(d)=p}

demand(d)

(13)

5en.wikipedia.org/wiki/Flow_network



These constraints add the communication demand, as well.
Note that according to this definition, there is no require-

ment that a given communication flow use a single path from
one port to another. The throughput required may be spread
over any or all of the possible paths between the two points.
Finally, there are constraints on flows through ports, due to
the capacities we allow to be specified on ports:

∀p ∈ P, flowL(p) =
∑

d∈Dcomm

flowL(p, d) (14)

flowL(p) ≤ Mbps(p) (15)

Experimental Evaluation
For CARINAE, we demonstrated two somewhat-separate
properties. First, we demonstrated the end-to-end process,
starting with AADL representations of an assortment of net-
work management problems related to cyber-defense. These
problems were designed to reflect properties of real-world
networks, and either generated by or validated by domain
experts. The largest of these networks consisted of up to a
million nodes, though most of our testing focussed on con-
siderably smaller networks.

For the purposes of testing for scalability, we used an au-
tomated generator, so as to be able to more systematically
control different properties of the networks being evaluated.
The instances produced by our instance generator take the
shape of a balanced tree where the user can control the depth
and width of the tree. Additionally, the user can adjust the
capacities of ports and the procedure used to generate the
communication demands. Node connections in the tree are
modeled using two communication links in opposite direc-
tions. Consequently, some path exists from any network
node to any other node.

Linear Programming Solver Performance
In the graphs in this section, the x-axis shows the number
of nodes in the problem instance, and the y-axis is the time
required to generate a feasible solution.

Figure 4: Branching Factor = 3, functional demands

Figure 4 shows the results obtained when using a con-
stant branching factor of three for each problem instance and

varying the depth of the tree from two through seven. In all
cases, demands were automatically generated, so that each
internal node in the network has at least one demand pass-
ing through it from one child node to another child node, in
addition to any demands that require communication up or
down the tree through that node. The number of demands in
the network thus grows slightly faster than linearly.

These results demonstrate how the solving time increases
as the size of the network grows by increasing the depth of
the tree. In this configuration, the system is permitted to
look for communication paths along any link in the subtree
containing both the source and destination node. For nodes
whose only common ancestor is the root, the demands can
potentially use any link in the entire network.

Figure 5: Branching Factor = 3, 20 demands

Figure 5 shows the growth in solution time with increas-
ing network size for a fixed number of demands. Again, the
branching factor is constant at three and the depth of the
tree varies. A comparison to Figure 4 demonstrates that in-
creasing demands as a function of network time makes the
problem significantly larger and more difficult.

Figure 6: Branching Factor = 3, functional demands, path
only nodes

In Figure 6, the instances are the same structure and size
as those in Figures 4 and 5 but now the system will only con-
sider paths using links either up or down the tree, imposing a
unique path from one node to another. The performance im-



provement for this more restrictive model is minor, support-
ing the argument that the more flexible routing scheme does
not lead to a significant extra cost for pairwise demands.

Figure 7: Depth = 3, functional demands

Figure 7 shows how solution time grows for a fixed-depth
network with an increasing branching factor. In these sets of
experiments we fixed the tree depth to three and varied the
branching factor from three through 100. Again, the num-
ber of demands was functionally-based on the number of
nodes, growing slightly faster than linearly, and we used the
same characterization of allowed paths as the models in Fig-
ure 4. When compared to the results presented in Figure 4,
we see how longer paths (deeper trees) versus more paths
(wider trees) through a given router affects performance in
this model. The solve time grows slightly faster in instances
with more paths (wider trees).

To test the growth rate of the solution time as a function of
the number of demands, we generated instances with a fixed
depth of three and branching factor of 15, varying the num-
ber of demands from 10 through 4000. Figure 8(a) shows
that very close to linear growth in solution time with respect
to the number of communication demands (messages) for a
fixed-size network. Comparing Figure 8(a) to Figure 8(b)
shows that the solution time is not significantly affected by
restricting demands to be between leaf nodes with a common
immediate parent, despite the fact that this strongly restricts
the possible paths between the two nodes.

Figure 9(a) and Figure 9(b) show performance informa-
tion for a broadcast message. This is specifically NOT multi-
cast: each network host is sent its own message. The per-
formance in Figure 9(b) is significantly improved over Fig-
ure 9(a), by virtue of the routing guidance provided by re-
stricting possible paths to network links up and down the
tree. This is in dramatic contrast to the pairwise communi-
cation modeled in Figure 4 and Figure 6, where this restric-
tion had only a minimal effect. Furthermore, this restriction
puts the performance for a broadcast message in the same
general area as for pairwise messages, with or without the
path restriction.

(a) Depth = 3, Branching Factor = 15

(b) Depth = 3, Branching Factor = 15, localized demands

Figure 8: Varying Demands in a Fixed Network

Related Work
The solution techniques we employ are drawn from the very
large body of work on methods for Constraint Satisfaction
and Constraint Optimization for combinatorial, continuous,
and hybrid problems. See, for example (Dechter 1989;
Nadel 1990; Boddy and Johnson 2002; Michalowski and
Knoblock 2005; Hentenryck and Michel 2006). The work
reported here uses purely continuous models, but in using
MINIZINC, we have deliberately opted for a significantly
more expressive constraint language. As discussed in the
next section, we plan to extend CARINAE to handle more
general problems, for which this expressive power may be
needed. There is as well a considerable body of work on
building network models, including the use of tools such
as NMAP to construct these models largely or completely
automatically. Deriving a CSP model of the form we em-
ploy here directly from a network model is not something
we have previously seen discussed.

Tools for large-scale network configuration management
are not widely available. The need for these tools shows
clearly in the increase in propagation speed of network
worms, such as Code Red and Sapphire/Slammer, early in
this decade. Code Red I infected 359,000 Internet hosts
on July 2001 in less than 14 hours (Moore, Shannon, and
Brown 2002). Its infection rate peaked at 2,000 hosts per
minute, and the number of infected hosts doubled approx-
imately every 37 minutes. The following year, the Sap-



(a) Branching Factor = 3, broadcast demands

(b) Branching Factor = 3, broadcast demands, path only nodes

Figure 9: Broadcast Demands with a Constant Branching
Factor of 3

phire/Slammer worm was two orders of magnitude faster,
doubling every 8.5 seconds, and achieved its maximum in-
fection rate of 55 million scans per second after only three
minutes (Moore et al. 2003). Effective defense of large net-
works from attacks of this nature requires a coordinated re-
sponse.

Discussion and Future Work
We have demonstrated that a multi-period feasibility model
can be solved efficiently for very large instances. There are
several directions in which we plan to extend this work. The
first one is to support successively more flexible feasibility
problems. For example, a simple scheduling problem can be
supported by a minor extension to the multi-period model, in
which missions are added one at a time, generating a small
number of additional periods requiring solution. Schedul-
ing problems that involve moving tasks around, or deciding
whether or not to schedule missions, are potentially signifi-
cantly more difficult to solve, because they contain a mix of
both discrete and continuous variables.

In the work reported here, we have modeled mission re-
quirements as independent demands on processing and com-
munication resources. This puts the onus on the user to track

two things. First, the user must coordinate demands (for ex-
ample, the need to allocate both CPU and communication
resources at the same time for the same task). Secondly, the
user may need to specify sequential phases of the same mis-
sion. Business process modeling formalisms such as YAWL
offer a way to capture a mission’s tasks and the associated
demands. The mission can then be analyzed, monitored or
automated, with multiple demands thus being derived from
a single representation (ter Hofstede et al. 2009).

Extending this model to consider latency as well as
throughput is another direction for further work. For ex-
ample, an important difference between Code Red and Sap-
phire/Slammer is that Code Red, which relied on a TCP
connection to propagate, was limited by network latency,
while Sapphire/Slammer, which consisted only of a single
UDP packet, was limited by network bandwidth (Moore et
al. 2003). In fact, Sapphire/Slammer’s scanning quickly in-
terfered with its own growth.

Finally, it is clear that defensive approaches will need to
be more efficient than the malware that they combat. Theo-
retical analysis suggests that optimizations, such as deploy-
ing a list of target addresses and partitioning that list as de-
ployment progresses, or implementing well-known servers
to distribute scan lists upon request, can improve perfor-
mance (Staniford, Paxson, and Weaver 2002), but the fastest
possible deployments will rely on pre-determined “spread
trees” to defend only known vulnerable hosts (Staniford et
al. 2004). For example, the time to defensively inoculate N
hosts with a K-way spread tree is projected as O(logKN).
Further scaling experiments modeling these more structured
approaches to cyber-defense can provide useful information
regarding the best areas for further work on either expres-
siveness or scalability for CARINAE.

Acknowledgments
This material is based upon work supported by the Air Force
Research Laboratory under Contract Number FA8750-08-C.

References
Boddy, M., and Johnson, D. 2002. A new method for
the solution of large systems of continuous constraints. In
Notes of the 1st International Workshop on Global Con-
strained Optimization and Constraint Satisfaction.
Dechter, R. 1989. Constraint Processing. The MIT Press.
Hentenryck, P. V., and Michel, L. 2006. Nondeterministic
control for hybrid search. Constraints 11(4):353–373.
Michalowski, M., and Knoblock, C. A. 2005. A Con-
straint Satisfaction Approach to Geospatial Reasoning. In
Proceedings of AAAI-05, 423–429.
Moore, D.; Paxon, V.; Savage, S.; Shannon, C.; Stani-
ford, S.; and Weaver, N. 2003. The spread of the sap-
phire/slammer worm.
Moore, D.; Shannon, C.; and Brown, J. 2002. Code-red: a
case study on the spread and victims of an internet worm.
In Proc. of the 2nd ACM SIGCOMM Workshop on Internet
measurement, 273–284.



Nadel, B. A. 1990. Representation selection for constraint
satisfaction: A case study using n-queens. IEEE Expert:
Intelligent Systems and Their Applications 5(3):16–23.
Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck,
G. J.; and Tack, G. 2007. Minizinc: Towards a standard
cp modelling language. In Proceedings of the 13th Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP2007), 529–543.
Staniford, S.; Moore, D.; Paxson, V.; and Weaver, N. 2004.
The top speed of flash worms. In Proc. of the 2004 ACM
workshop on Rapid malcode, 33–42.
Staniford, S.; Paxson, V.; and Weaver, N. 2002. How to
own the internet in your spare time. In Proc. of the 11th
USENIX Security Symposium, 149–167.
ter Hofstede, A. H. M.; van der Aalst, W. M. P.; Adams,
M.; and Russell, N., eds. 2009. Modern Business Process
Automation: YAWL and its Support Environment. Springer.


