
Reasoner Performance on Ontologies for Operations

Scott Bell1, Jim Carciofini2, Mark Boddy2, and Pete Bonasso1

1TRACLabs Inc., Houston, TX, USA
2Adventium Labs, Minneapolis, MN, USA

scott@traclabs.com, jim.carciofini@adventiumlabs.com, mark.boddy@adventiumlabs.com, bonasso@traclabs.com

Keywords: ontology, operations, reasoner, performance

Abstract: While creating a software suite of ontology tools for operations, we encountered several reasoner performance
scaling issues. This paper describes the symptoms, the diagnosis, and the mitigation strategies used.

1 INTRODUCTION

In previous work, we described a set of software tools
called the PRIDE ONTOlogy Editor (PRONTOE)
and a methodology that allows system operators and
domain experts to build and maintain ontologies of
their systems with no explicit understanding of the
underlying ontology representation (S. Bell et al.,
2013). Represented in the Web Ontology Language
or OWL (W3C OWL Working Group, 2009), these
ontologies provide the knowledge necessary for
software tools that assist operators in monitoring and
controlling complex and dynamic systems. Onto-
logical reasoners are used to automatically populate
object data fields, derive relations between objects to
improve search of system information, and maintain
consistency across the model. The initial application
modeled was International Space Station (ISS)
operations, and among the issues that needed to be
dealt with were: incomplete information, maintaining
consistency in a model continually being updated by
many different people, representing the physics of an
operational domain (specifically that there are physical
restrictions, e.g. one thing in exactly one place at one
time), and implications of other changes made. These
issues were addressed using four key features of OWL:
functional properties, closed enumerated classes,
existential property restrictions, and Semantic Web
Rule Language (SWRL) (Horrocks et al., 2004) rules.

1.1 Functional Properties

In OWL we can specify functional relations, that is re-
lations which, given values for the first n-1 arguments,
have a single result for the nth argument at any point
in time. For example, a tether can only be tethered to
one agent at a time, so the relation (tethered-to ?tether
?agent) can only have one value for ?agent, given
a value for ?tether. Thus if a user tries to assert that
another agent is using that tether, PRONTOE will flag
the inconsistency. However, the reasoner does not give

us the inconsistency we would like. Using Pellet’s
Unique Name Assumption feature, GUID functional
data properties, or DifferentIndividuals axioms allow
inconsistencies to be detected instead of permitting
undesired individual equality inferences.

1.2 Closed Enumerated Classes

Commonly with command and data handling systems,
a given command or a given telemetry identifier can
only have a certain set of values. For example, a
blower for a carbon dioxide removal system can be
commanded to be enabled or disabled, powered or
unpowered, and an air inlet valve position can either
be open or closed. To ensure that commands and
telemetry are restricted in this manner, we use OWL’s
closed enumeration definitions for these classes.

1.3 Existential Property Restrictions

PRONTOE uses the existence of the existential prop-
erty restriction to indicate properties in the GUI. The
user is not required to fill in the value, but the fact that
the value is required is simply highlighted for the user
to eventually fill in. The model remains consistent with
incomplete information, which is the desired behavior.

1.4 SWRL Rules

We use a number of logical rules, so that a reasoner
can infer additional properties on behalf of the
user. These rules manage bookkeeping during
operations—e.g., moving a container changes the
location of all the items in the container—and for
domain physics, such as the loss of fluid flow when
a pump loses power. The rules are given in the form
of SWRL rules (Horrocks et al., 2004), which can be
used to form rules whose left hand sides (the if portion
or context) and right hand sides (the then portion or
implication) are OWL relations. An example of a rule
in our ontology is given below:



<DLSafeRule>
<Body>
<ClassAtom>

<Class abbreviatedIRI="base:PhysicalEntity"/>
<Variable IRI="urn:swrl#a"/>

</ClassAtom>
<ClassAtom>

<Class abbreviatedIRI="base:PhysicalEntity"/>
<Variable IRI="urn:swrl#b"/>

</ClassAtom>
<ClassAtom>

<Class IRI="#ISSlocation"/>
<Variable IRI="urn:swrl#l"/>

</ClassAtom>
<ObjectPropertyAtom>

<ObjectProperty IRI="#isAttachedTo"/>
<Variable IRI="urn:swrl#a"/>
<Variable IRI="urn:swrl#b"/>

</ObjectPropertyAtom>
<ObjectPropertyAtom>

<ObjectProperty IRI="#hasISSlocation"/>
<Variable IRI="urn:swrl#b"/>
<Variable IRI="urn:swrl#l"/>

</ObjectPropertyAtom>
</Body>
<Head>
<ObjectPropertyAtom>

<ObjectProperty IRI="#hasISSlocation"/>
<Variable IRI="urn:swrl#a"/>
<Variable IRI="urn:swrl#l"/>

</ObjectPropertyAtom>
</Head>

</DLSafeRule>

This rule says if a object is attached to another
object, and that object has an ISS location, then the
first object also has that location. Thus if a user asserts
that a piece of equipment is attached to a mount and
that mount has a location, a reasoner will infer the
location of the equipment. Figure 1 shows a piece of
equipment on the ISS called a DC to DC Converter
Unit (DDCU-E 3) with a few relations defined, the
important one being the isAttachedTo linking DDCU-
E 3 to the cold plate called DDCU-CP 1. This in turn
is attached to a mount (S0 DDCUmount1), and finally
ends with a specific ISS location (S0B01F01MS).
After running the reasoner and applying the SWRL
rules as shown in Figure 2, the reasoner can infer that
DDCU-E 3 is located at S0B01F01MS.

2 REASONER
PERFORMANCE ISSUES

As the PRONTOE project progressed, we noticed
a significant performance degradation in two OWL
reasoners: Pellet (Sirin et al., 2007) and HermiT
(Shearer et al., 2008)—especially when we added
telemetry data to the OWL ontology. Before we added
the telemetry the reasoner would run over PRONTOE
in 15–30 seconds; with the telemetry added it took
from 15 to 20 minutes. Our ontology without the
telemetry had 442 classes and 1386 individuals;
with the telemetry these increased to 502 and 1539
respectively. It seemed strange that this slight increase
in data would cause such severe degradation in perfor-

mance. The telemetry data used all four of the OWL
features mentioned above. We originally focused on
the SWRL rules, but this was quickly dismissed since
removing the SWRL rules had no significant effect
on performance. After some experimentation, we
discovered that removing all individuals of subclasses
of Enumeration made the reasoner faster. Adding
members for a single subclass back (e.g. CDRS-
DayNightEnumeration members day and night) made
the reasoner slow again. CDRSDayNightEnumeration
and other subclasses of Enumeration are so-called
closed enumerated classes. They are specified with
the following axioms (function-style syntax):
EquivalentClasses(:CDRSDayNightEnumeration

ObjectOneOf(:night :day))

We change this to an open class as follows:
ClassAssertion(:OpenOrClosedClass :a)
ClassAssertion(:OpenOrClosedClass :b)

The reasoner got much faster. There was initially
concern about switching the closed classes to open
classes. The intention of the closed classes was to
restrict the operator to choosing among the specified
individuals in a given class. However, OWL does
not make any assumptions about the uniqueness
of individuals. Thus, closed classes can lead to
unexpected inference. For example, if you have a
closed class with members (A, B, C) and you assert
that D is also a member of the class, you will not
get an inconsistency. You will instead infer that D is
equivalent to A, B or C. We could get along with open
classes by having PRONTOE do its own checking
for closedness, but we decided to more thoroughly
characterize the sources of the slow reasoner speeds.

2.1 Characterization

We created a scalable synthetic ontology to investigate
the performance issue in more depth. A Python
program was written to create instances of this
synthetic model with the following parameters:
I Number of individuals.
S Number of subclasses.
P Number of property restrictions.
T Type of property restriction, existential or universal.
C Additional closed or open class with two members.
Figure 3 shows the overall structure of the scalable
synthetic ontology. The ontology fragments below
are in functional-style syntax for readability. All
generated models have these declarations:
Declaration(Class(:ClassWithProps))
Declaration(Class(:OpenOrClosedClass))
Declaration(NamedIndividual(:a))
Declaration(NamedIndividual(:b))

A number of individuals in class ClassWithProps are
generated as indicated by parameter I:
Declaration(Class(:ClassWithProps))
Declaration(Class(:OpenOrClosedClass))
Declaration(NamedIndividual(:a))
Declaration(NamedIndividual(:b))



Figure 1: A piece of equipment modeled in PRONTOE before SWRL rules are applied.

Figure 2: After reasoning, the equipment can be precisely located.



!
Figure 3: A diagram showing the overall structure of the scalable synthetic ontology.

Declaration(NamedIndividual(:member000))
ClassAssertion(:ClassWithProps :member000)
Declaration(NamedIndividual(:member001))
ClassAssertion(:ClassWithProps :member001)
Declaration(NamedIndividual(:member002))
ClassAssertion(:ClassWithProps :member002)
...
Declaration(NamedIndividuael(:member<I>))
ClassAssertion(:ClassWithProps :member<I>)

A number of subclasses of ClassWithProps are
generated per parameter S:
Declaration(Class(:SubClass000))
SubClassOf(:SubClass000 :ClassWithProps)
Declaration(Class(:SubClass001))
SubClassOf(:SubClass001 :ClassWithProps)
Declaration(Class(:SubClass002))
SubClassOf(:SubClass002 :ClassWithProps)
...
Declaration(Class(:SubClass<S>))
SubClassOf(:SubClass<S> :ClassWithProps)

A set of P properties are generated with range and
domain ClassWithProps:
Declaration(ObjectProperty(:p000))
ObjectPropertyDomain(:p000 :ClassWithProps)
ObjectPropertyRange(:p000 :ClassWithProps)
Declaration(ObjectProperty(:p001))
ObjectPropertyDomain(:p001 :ClassWithProps)
ObjectPropertyRange(:p001 :ClassWithProps)
Declaration(ObjectProperty(:p002))
ObjectPropertyDomain(:p002 :ClassWithProps)
ObjectPropertyRange(:p002 :ClassWithProps)
...
Declaration(ObjectProperty(:p<P>))
ObjectPropertyDomain(:p<P> :ClassWithProps)
ObjectPropertyRange(:p<P> :ClassWithProps)

When T=existential, the following existential property
restrictions are defined:

SubClassOf(:ClassWithProps ObjectSomeValuesFrom(:p000 :Thing))
SubClassOf(:ClassWithProps ObjectSomeValuesFrom(:p001 :Thing))
SubClassOf(:ClassWithProps ObjectSomeValuesFrom(:p002 :Thing))
...
SubClassOf(:ClassWithProps ObjectSomeValuesFrom(:p<P> :Thing))

When T=universal, the following universal property
restrictions are defined:
SubClassOf(:ClassWithProps ObjectAllValuesFrom(:p000 :Thing))
SubClassOf(:ClassWithProps ObjectAllValuesFrom(:p001 :Thing))
SubClassOf(:ClassWithProps ObjectAllValuesFrom(:p002 :Thing))
...
SubClassOf(:ClassWithProps ObjectAllValuesFrom(:p<P> :Thing))

When C=closed, OpenOrClosedClass is defined as a
closed class:
EquivalentClasses(:OpenOrClosedClass ObjectOneOf(:b :a))

When C=open, OpenOrClosedClass is defined as an
open class:
ClassAssertion(:OpenOrClosedClass :a)
ClassAssertion(:Thing :a)
ClassAssertion(:OpenOrClosedClass :b)
ClassAssertion(:Thing :b)

We gathered data on runtimes for the Pellet reasoner
on ontologies generated for the cross product of the
following parameter values:
I Number of individuals in (0, 25, 50, 75, 100)
S Number of subclasses in (0, 200, 400, 600, 800,

1000)
P Number of property restrictions in (0, 25, 50, 75,

100)
T Type of property restriction in (existential,

universal)
C Additional class in (closed, open)



!

0!

0.5!

1!

1.5!

2!

2.5!

3!

3.5!

4!

4.5!

5!

0! 20! 40! 60! 80! 100!

Se
co
nd
s(

P"

Elapsed(Time(as(P(Increases(
T=Universal(

S=1000!I=100!C=Closed!
S=1000!I=100!C=Open!
S=200!I=25!C=Closed!
S=200!I=25!C=Open!
S=0!I=0!C=Closed!
S=0!I=0!C=Open!

Figure 4: No evident performance problem for the size problems we benchmarked.

The machine used to gather these runtimes is shown
in Table 1. We also recorded runtimes for a limited

CPU Intel Xenon 2.83GHz
Number of CPUs 2

Memory 8GB
Table 1: Test machine characteristics.

number of instances with larger parameter values
to use in the regression analysis described below.
Figure 4 shows that when using universal property
restrictions, there is no evident performance problem
for the size problems we benchmarked. The graph
shows only a subset of the benchmarks run, but all
runs completed in less than 5 seconds.

For the remainder of this discussion we will
focus on cases with existential property restrictions
(T=Existential). In those cases runtimes increase
non-linearly with problem size. The dominant

parameter appears to be P. Figure 5 shows this
behavior for several slices of the data. Figure 6
and Figure 7 show the linear regression analysis
on the data and found SP2 and IP2 to be significant
parameters. The dominant parameter is IP2, but SP2

is significant. Figure 8 shows more detail on how
runtime increases with I and S increasing and P and
S increasing. All use the same scale for run time.

3 RELATED WORK

There have been other examinations of analyzing
performance of OWL reasoners. Dentler et al. (2011)
compared a variety of reasoners on the SNOMED CT
ontology, but this was done using OWL 2 EL. Riboni
and Bettini (2011) proposed and architecture for
modeling human activities with ontologies. Kang et al.



!

0!

50!

100!

150!

200!

250!

300!

350!

400!

450!

500!

0! 20! 40! 60! 80! 100!

Se
co
nd
s(

P(

Elapsed(Time(as(P(Increases(
T=Existential(

S=1000!I=100!C=Closed!
S=1000!I=100!C=Open!
S=200!I=25!C=Closed!
S=200!I=25!C=Open!
S=0!I=0!C=Closed!
S=0!I=0!C=Open!

Figure 5: Runtimes increase non-linearly with problem size.

(2014) and Kang et al. (2012) were able to predict
reasoner performance based on metrics of the ontology.
Our work is distinct in that we studied the performance
of specific OWL semantics designed to assist the end
user, i.e., a domain expert rather than an ontologist.

4 CONCLUSIONS

The primary source of the performance problem is
the existential property restrictions. While they are
semantically correct, they provide no inferences of
use. Removing the existential property restrictions
resulted in faster reasoner times and much better
scaling behavior. PRONTOE can use the existence
of the universal property restrictions to guide the GUI
in eliciting properties from the user instead of the exis-
tential property restriction. Enumerated closed classes
are being used for their original intended purpose:

restricting the user to a set of values. With existential
properties removed, we have no performance issues.

ACKNOWLEDGEMENTS

This work is funded by a NASA Small Business
Innovation Research (SBIR) grant. The authors
grateful to Dr. Jeremy Frank of NASA Ames Research
Center for his help with this project.



 
 

!100$

0$

100$

200$

300$

400$

500$

600$

1$ 10
$

19
$

28
$

37
$

46
$

55
$

64
$

73
$

82
$

91
$

10
0$

10
9$

11
8$

12
7$

13
6$

14
5$

15
4$

16
3$

17
2$

18
1$

19
0$

19
9$

20
8$

21
7$

22
6$

23
5$

24
4$

Se
co
nd
s(

Observations((sorted(by(Predicted)(

Elapsed(Time(Regression(Results(
C=Closed(T=Existential(

Predicted(=(?4.44947(+(0.00003SP2((+0.00018IP2(((

Actual$
Predicted$

Figure 6: A linear regression with closed enumerated classes.

!

"100!

0!

100!

200!

300!

400!

500!

600!

1! 10
!

19
!

28
!

37
!

46
!

55
!

64
!

73
!

82
!

91
!

10
0!

10
9!

11
8!

12
7!

13
6!

14
5!

15
4!

16
3!

17
2!

18
1!

19
0!

19
9!

20
8!

21
7!

22
6!

23
5!

24
4!

Se
co
nd
s(

Observations((sorted(by(Predicted)(

Elapsed(Time(Regression(Results((
C=Open(T=Existential(

Predicted(=(?4.0923+0.00001SP2(+0.00013IP2((

Actual!

Predicted!

Figure 7: A linear regression with open classes.

REFERENCES

Dentler, K., Cornet, R., ten Teije, A., and de Keizer, N.
(2011). Comparison of reasoners for large ontologies in
the OWL 2 EL profile. Semantic Web, 2(2):71–87.
Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S.,
Grosof, B., and Dean, M. (2004). SWRL: A Semantic
Web Rule Language Combining OWL and RuleML. W3c
member submission, World Wide Web Consortium.
Kang, Y.-B., Li, Y.-F., and Krishnaswamy, S. (2012). Pre-
dicting reasoning performance using ontology metrics. In
The Semantic Web–ISWC 2012, pages 198–214. Springer.

Kang, Y.-B., Pan, J. Z., Krishnaswamy, S., Sawangphol,
W., and Li, Y.-F. (2014). How long will it take? accurate
prediction of ontology reasoning performance.
Riboni, D. and Bettini, C. (2011). OWL 2 modeling and
reasoning with complex human activities. Pervasive and
Mobile Computing, 7(3):379–395.
S. Bell, R. B., Boddy, M., Kortenkamp, D., and Schreck-
enghost, D. (2013). PRONTOE: A case study for
developing ontologies for operations. In International
Conference on Knowledge Engineering and Ontology
Development, Vilamoura, Portugal.
Shearer, R., Motik, B., and Horrocks, I. (2008). HermiT: A



!

0!
400!

800!
0!
50!
100!
150!
200!
250!
300!
350!
400!
450!
500!

0! 25! 50! 75! 100!

S"

Se
co
nd
s"

I"

Elapsed"Time"as"I"and"S"Increase"
C=Closed"T=Existential"P=100"

450*500!
400*450!
350*400!
300*350!
250*300!
200*250!
150*200!
100*150!
50*100!
0*50!

(a)
!

0!
400!

800!
0!
50!
100!
150!
200!
250!
300!
350!
400!
450!
500!

0! 25! 50! 75! 100!

S"

Se
co
nd
s"

P"

Elapsed"Time"as"P"and"S"Increase"
C=Closed"T=Existential"I=100"

450*500!
400*450!
350*400!
300*350!
250*300!
200*250!
150*200!
100*150!
50*100!
0*50!

(b)
Figure 8: (a) When increasing the I and S parameters and using closed enumerated classes, time to finish reasoning increases
dramatically. (b) P and S also affect the result.

highly-efficient OWL reasoner. In Ruttenberg, A., Sattler,
U., and Dolbear, C., editors, Proc. of the 5th Int. Workshop
on OWL: Experiences and Directions (OWLED 2008 EU),
Karlsruhe, Germany.
Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and
Katz, Y. (2007). Pellet: A practical owl-dl reasoner. Web
Semant., 5(2):51–53.
W3C OWL Working Group (27 October 2009). OWL 2
Web Ontology Language: Document Overview. W3C
Recommendation. http://www.w3.org/TR/owl2-overview.


