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Abstract

Over the past several months, we have been engaged in the
definition and implementation of automated planning capa-
bilities for supporting NASA operations personnel in plan-
ning and executing operations on the International Space Sta-
tion (ISS). For this activity, we have chosen to use the Action
Notation Modeling Language (ANML). In this process, we
have exercised much of ANML’s considerable flexibility, in-
cluding exploring several different means of specifying goal
decomposition, rather than the task decomposition directly
supported in ANML. We have also encountered unexpected
semantic ambiguities in the language, for example related to
the use of functional fluents with non-numeric ranges. In this
paper, we briefly describe the domain, then discuss the mod-
eling challenges arising in this domain and how we have used
ANML to address those challenges, and some lessons learned
about ANML in the process.

1. Introduction and Motivation
Over the past several months, we have been engaged in the
definition and implementation of automated planning capa-
bilities for supporting NASA operations personnel in plan-
ning and executing operations on the International Space
Station (ISS). Specifically, we have been working on provid-
ing tools that support the construction and maintenance of a
set of procedures detailing how operations must be carried
out, and the generation from these procedures of a document
detailing what will be done during a given operation (a flight
note).

In this effort, we have been engaged in implementation
and analysis activities aimed at different parts of the oper-
ations planning process. First, in consultation with NASA
personnel, we identified a target application domain and a
reference scenario: Extra-Vehicular Activity (EVA) for the
ISS. Through an extended period of interaction with the
flight controllers responsible for those operations, we inves-
tigated and documented both the scenario and the planning
process itself. The results of this analysis are summarized
below in Section 3., and reported in more detail in (Bonasso,
Boddy, and Kortenkamp 2009).

With those results in hand, we have subsequently been
pursuing parallel development of several required capabil-
ities. First, we have identified a set of expressive exten-
sions to the current representation of procedures used by
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the operations planners, which can be used to provide ad-
ditional support for the planning process. Specifically, we
are designing means to support representation and reason-
ing about composing smaller procedures into larger, more
complex operational plans, reasoning in a more principled
way about the duration required for these operations, and
about interactions between different operations, in terms of
the resources required. The resulting models are a combina-
tion of the original ISS procedures, written in the Procedure
Representation Language (PRL) (Kortenkamp et al. 2008),
and an intermediate representation of the additional infor-
mation described above, which can then be translated into
a planning model in any of several planning languages, and
manipulated using a tool for mixed-initiative planning.

This implementation is still very much a work in progress.
At this point, we have defined a structured process for elic-
iting the additional information required from the domain
experts and building the intermediate planning representa-
tion described above. This process is described in detail
in (Bonasso and Boddy 2010). We have constructed a pro-
totype planning tool. A screenshot of the user interface for
that tool is shown in Figure 1. Finally, we have been working
on understanding the kinds of planning models and capabil-
ities required to provide effective support. This process has
consisted of two parallel efforts. In the first, we have im-
plemented a hand-translated model of the augmented oper-
ations procedures, using the AP planner and its input lan-
guage, pddl-e (Applegate, Elsaesser, and Sanborn 1990).
Generating plans with AP provides information about the
consistency and coverage of the model we have constructed.
Showing the plans generated by this process to the opera-
tions planners provides us with feedback as to whether the
extended capabilities we are providing are the ones needed.

In parallel, we have been investigating the use of a more
recently-developed planning language: NASA’s Action No-
tation Modeling Language (ANML) (Smith, Frank, and
Cushing 2008). ANML is an attractive target language for
several reasons. First, ANML is under active development.
This has resulted in a feedback cycle in which some features
of the language have been modified, based on the results of
our attempts to use it to build models of significant com-
plexity. Second, ANML is sufficiently expressive for us to
explore a wide range of alternative modeling choices. Third,
ANML is deliberately defined to have a semantics indepen-
dent of the choice of a particular planner or executive. As
discussed briefly below in Section 4., and in more detail in
(Smith, Frank, and Cushing 2008), an ANML model can



Figure 1: The ISS EVA Planning Tool Prototype

be viewed as a set of constraints on execution, rather than
as input to a particular planning algorithm. This provides a
valuable degree of independence from any particular plan-
ning algorithm or approach.

In the rest of this paper, we discuss in turn the applica-
tion domain (Section 2.), and a reference scenario (Section 3.).
We then present a very brief review of some key features of
ANML (Section 4.) and then provide some examples show-
ing how we have used ANML to model some of the more
problematic features arising in this domain. We then con-
clude with a summary and a discussion of future work.

2. Building Complex Procedures for ISS
Operations

At this time, operations planners for various facets of ISS
operations are increasingly adopting, or making plans to
adopt, a standard syntax and semantics for authoring pro-
cedures, known as the Procedure Representation Language
(PRL) (Kortenkamp et al. 2008).

PRL both captures the form of traditional proce-
dures and allows for automatic translation into code that
can be executed by NASA-developed autonomous execu-
tives (Bonasso, Kortenkamp, and Thronesbery 2003; Verma
et al. 2006). PRL provides for access to spacecraft and habi-
tat telemetry, includes constructs for human centered dis-
plays, allows for the full range of human interaction, and al-

lows for automatic methods of verification and validation.
Finally, PRL is being developed with a graphical author-
ing system that enables non-computer specialists to write
automated procedures (Kortenkamp, Bonasso, and Schreck-
enghost 2007). PRL and the tools being developed for cre-
ating, modifying, checking, and executing PRL procedures
will go a long way in simplifying and standardizing opera-
tions planning. However, the generation of flight notes from
previously-defined procedures is still almost entirely a man-
ual process.

For many operations planning tasks, including the ISS
Extra-Vehicular Activity (EVA) operations that we have ad-
dressed, the majority of procedures are simple ones, as
shown in the following example of how a single crew mem-
ber moves from the airlock to outside of the ISS:
Procedure (tether)
1. Thermal cover - open
2. Egress AIRLOCK
3. Attach tether to left D-ring extender
4. Verify tether config

However, not all procedures are so simple. Procedures can
be fragmentary: several of them may need to combined to
construct a flight note. They may also be conditional, in the
sense that only parts of a given procedure may be needed
for any given operation. Some procedures are hierarchi-
cal, in the sense that one step of a given procedure may



refer to another procedure (or, in some cases, to a step or
steps contained in another procedure). Planning for com-
plex operations may require reasoning about resources such
as oxygen, fuel, or tools, choosing alternative sub-actions,
synchronized or overlapping action by multiple agents, and
reasoning about preconditions and effects at planning time.
As a language designed primarily to support execution, PRL
provides at best minimal support for any kind of reasoning
about these features.

3. EVA Mission Scenario
In this section, we summarize the application motivating
the work reported in the rest of the paper. For more de-
tails, please see (Bonasso, Boddy, and Kortenkamp 2009).
When we began this research, the PHALCON (Power, Heat
And Light CONtrol) and EVA (Extra Vehicular Activity)
flight controllers for ISS had recently conducted a mission
wherein one of the EVA tasks was the removal and replace-
ment of a DC-to-DC Converter Unit (DDCU). The main
EVA tasks for the six-hour operation were:

1. Crew egress the airlock

2. Retrieve CETA (Crew and Equipment Translation Aid)
Light 2

3. Relocate CETA-cart 2 from the P1 truss to the P3 truss

4. Remove and Replace the DDCU 1A on the S0 truss

5. Crew ingress the airlock

We constructed a model of both the planning and procedu-
ral elements of this operation. The PHALCON tasks were
derived from systems operations data files (SODFs), word
files that were part of the repository of flight controller pro-
cedures. For the EVA tasks, we needed to go over the writ-
ten description of the full six-hour scenario because the EVA
flight controllers develop each EVA activity essentially from
scratch. While the activities of connecting and disconnect-
ing equipment to and from the station are fairly routine, each
EVA is unique both in the number and types of tasks and
in the starting locations of the equipment and tools used
in the tasks. But these written documents have little or no
planning information associated with them, such as activ-
ity duration, purpose, preconditions or constraints. To de-
rive this planning information, we started with a given EVA
or PHALCON procedure, discussed each step with the cog-
nizant flight controller, and then rewrote the procedure to
include the information required for planning. We then used
this information to construct a planning model for the tasks
involved.

From this analysis we distilled seven intermediate sub-
procedures and ten leaf-level PHALCON procedures, and
thirteen intermediate and 48 leaf-level EVA sub- procedures.
An example of the breakout of sub-procedures for EVAs is
shown in Figure 2. This breakout shows how to retrieve the
CETA light with an agent starting outside the ISS, located at
the AIRLOCK. The agent gets the ORU (orbital replacement
unit) bag for the light, travels to the light’s location, removes
the light and stows it in the bag, then takes it back to the
airlock. One interesting aspect of this procedure, and of all
EVA procedures that involve moving the agents from place
to place is the limitation of the safety tether. If the target
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Deriving Planning Information 

Knowledge engineering is key to constructing a planning 
model as well as to extracting the critical parts of a 
domain ontology. The PHALCON tasks were derived 
from systems operations data files (SODFs), word files 
that were part of the repository of flight controller 
procedures.  For the EVA tasks, we needed to go over the 
written description of the full six-hour scenario because 
the EVA flight controllers develop each EVA activity 
essentially from scratch.  While the activities of 
connecting and disconnecting equipment to and from the 
station are fairly routine (though new equipment requires 
astronauts to test the procedures in the neutral buoyancy 
facility at JSC), each EVA is unique both in the number 
and types of tasks and in the starting locations of the 
equipment and tools used in the tasks. 
 But these written documents have little or no planning 
information associated with them, such as activity 
duration, purpose, preconditions or constraints.  To derive 
this planning information, we started with a given EVA or 
PHALCON procedure, discussed each step with the 
cognizant flight controller, and then rewrote the procedure 
to include the information required for planning.  We then 
used this information to construct a planning model for 
the tasks involved. This procedure analysis and 
distillation resulted in a structured view of the tasks in our 
scenario. 
 A hierarchical task net of the EVA tasks with a partial 
decomposition is shown in Figure 1.  Consider the egress 
airlock task.  When the two astronauts exit the airlock, 
first one goes out and attaches to a safety tether.  Then the 
second astronaut hands out certain equipment (in this case 
the bag to hold the CETA-light to be retrieved) to the first 
before exiting himself.  The green text in Figure 1 shows 
the procedure one would find in any number of previous 
EVA procedures for the single person egress.  Simply, it 
says to open the thermal cover, go out and tether up.  The 
key choice here is which safety tether to use.  The PRL 
from the procedure alone would look like the following 
(PRL is in XML so we use a pseudo-PRL for illustration):  
 
Step 1 
  Manual Instruction: Thermal cover to open 
  Manual Instruction: Egress airlock 
  Manual Instruction: Hook Safety-tether to D-ring on suit 
  Verify Instruction: Verify Safety-tether configuration 
 
 Our derived planning information associated with that 
procedure shows that the point of the procedure is to get 
an inside human agent located outside the airlock, the 
duration is typically 4 minutes and it requires that there be 
an unoccupied safety tether outside the airlock.  A 
bookkeeping side effect is that the thermal cover will be 
open when this procedure completes. 
  
 

Derived Sub-procedures 

From our analysis we distilled seven intermediate sub-
procedures and ten leaf-level PHALCON procedures, and 
thirteen intermediate and 48 leaf-level EVA sub-
procedures.  An example of a partial breakout of sub-
procedures for PHALCONs is shown in Figure 2. When 
viewed from a planning perspective, the DDCU shutdown 
consists of a group of tasks that can be done many hours 

prior to the EVA crew arriving at the DDCU site, and 
another group that is executed when the EVA crew is 30 
minutes away from arriving at the site.  The first group 
involves a mix of intermediate and leaf sub-procedures 
(shown in light blue) that are executed in conjunction 
with other flight disciplines that will be affected by the 
shutdown.  The actual number of these sub-procedures 
used in a plan will depend on the state of the hardware of 
the sub-disciplines at the time of the DDCU R&R EVA. 
The second set of actions is leaf-level sub-procedures that 
include powering down and electrically isolating the 
DDCU. 
 In several procedures, for example, the S-BAND-swap, 

 

 

Figure 2 A breakdown of the PHALCON sub-procedures for a 

DDCU Shutdown. Light blue text indicate leaf level (non-

decomposable) plan nodes. 

 

 

Figure 3 A breakout of EVA sub-procedures for removing a 
CETA light. Figure 2: EVA sub-procedures for removing a CETA light

location is farther away than the 55-foot safety tether can
reach, the agent has to travel to the location of another tether,
usually of the 85-foot variety, and perform a tether- swap
before moving on.

Multi-agent EVA procedures involve two agents working
together to accomplish the task. In the case of the replacing
the DDCU, for example, during the installation of the spare
DDCU, agent1 has the old DDCU attached to his body re-
straint tether and agent2 holds the spare DDCU on a stan-
chion mount cover. The coordinated exchange is as follows:

1. Agent2 presents the spare DDCU to agent1.

2. Agent1 grabs the spare via a scoop on the spare and
agent2 detaches the spare from the cover.

3. Agent1 inserts the spare in position and then presents the
old DDCU to agent2

4. Agent2 attaches the cover on the old DDCU and then
stows it

5. Agent1 bolts the spare in place

Clearly, this domain requires the representation of parallel
activities by multiple agents, which may be either coordi-
nated or asynchronous.

4. The Action Notation Modeling Language
The Action Notation Modeling Language (ANML) is a fairly
recent, and to some extent still evolving, attempt to combine
the best features of several different languages for defining
planning and scheduling problems. ANML supports precon-
ditions and effects, hierarchical task decomposition, com-
plex constraints among tasks, and a flexible specification of
goals, rather than just goals of achievement. In this sec-
tion, we provide just enough of an introduction to ANML
to permit the reader to understand the examples provided
in the rest of the paper. For a more complete description
of ANML’s design rationale and usage, including compari-
son to previous planning languages, see (Smith, Frank, and



1 a c t i o n S t o w e x t e r n a l ( crew ev1 , ev2 , o b j e c t i t em ) [ durat ion ] {
2 [ s t a r t ] { l o c a t e d ( ev1 ) == INTRA VEHICLE ;
3 l o c a t e d ( ev2 ) == AIRLOCK} ;
4 [ a l l ] c o n t a i n s { s1 : Stow ( ev2 , i t em ) ;
5 s2 : Hand over ( ev1 , i t em ) } ;
6 s t a r t ( s1 ) == s t a r t ( s2 ) ;
7 end ( s1 ) == end ( s2 ) ;
8 [ a l l ] l o c a t e d ( i t em ) == INTRA VEHICLE :−> AIRLOCK }

Figure 3: A simple ANML action declaration

Cushing 2008). For the most complete definition of ANML
syntax of which we are aware, see (ANML ). To the best
of our knowledge, ANML’s semantics are still somewhat
in flux, but the basic structure is laid out in the paper cited
above.

Figure 3 shows a fairly simple ANML action declaration,
illustrating several relevant features. This declares an ac-
tion called Stow external which takes three typed parame-
ters: ev1, ev2, and item. The [duration] tag indicates that
the execution time of this action is not specified, subject to
the other constraints placed on this action. Lines 2 and 3
declare a temporally-scoped constraint, specifying required
values for two fluents at the time this action starts. Lines
4 and 5 define a decomposition for Stow external , consist-
ing of two labelled subactions, Stow(ev2,item) with label s1
and Hand over(ev1,item) with label s2. These labels are used
to refer to specific instances of the subactions, so that in
lines 6 and 7 we can add constraints such that the actions
must start and end at the same times. Finally, line 8 com-
bines a precondition with an effect. The temporal condi-
tion [all] indicates that this takes place over the entire ex-
tent of the action Stow external . At the start of the action,
the fluent located (item) is tested for equality with the con-
stant INTRA VEHICLE. The :−> notation means that the
value of that fluent is undefined over the extent of the ac-
tion, then is set to the constant AIRLOCK at the action’s end
point. ANML does not include an infinitesimal duration as
in PDDL 2.1. Instead, temporal conditions can be defined
over both open and closed intervals, permitting the modeler
to define their own semantics for consecutive durative ac-
tions that start and end at the same point.

5. Modeling ISS Operations in ANML

In this section, we show how some of the information re-
quired for operations planning, currently represented either
in text documents or in the expertise of individual flight con-
trollers, can be effectively represented in ANML.

As discussed in the previous section, ANML is quite flex-
ible and expressive. In the example in that section, much of
the complexity involved the temporal extent of durative ac-
tions and the times during those actions that conditions may
be tested and effects may occur. It is straightforward to use
this flexibility to emulate the precondition and effect defini-
tions for durative actions in PDDL, with the single exception
of not having an infinitesimal duration. In this section, we
will explore some other areas in which ANML’s flexibility
proves useful.

Combining Idioms
In AI planning, there are three main ways of specifying the
relationships among actions required in a valid plan. In
classical planning, action effects are required to satisfy pre-
conditions of later actions. In task decomposition, actions
are specified as parts of the expansion of a higher-level ac-
tion, possibly with some additional constraints among them.
In goal decomposition, actions must be present to satisfy
goals specified in the expansion of a higher-level action. In
ANML, any or all of these can be combined in the same
model. Equally, any one or two of them will suffice to con-
struct a domain model in most cases.1 As already shown
in Figure 3, task decomposition is directly supported in
ANML. As we will show in a slightly more extended ex-
ample, preconditions and effects can be combined in a very
natural way with task decomposition.

In Figure 4, we see definitions for several actions. The ac-
tion Stow it (line 1) has no preconditions or effects, but spec-
ifies a decomposition into two sub-tasks, Pickup (line 4) and
Put away (line 10). Pickup has a precondition (line 6), a com-
bined precondition and effect involving a single fluent (line
7), and an effect (line 8). Put away has the same structure,
with a different set of conditions and effects. Next we have
definitions for two movement actions, Translate by handrail
and Translate by CETA. 2 In both of these actions, the du-
ration required is computed as a function of the locations
between which the movement occurs. Translate by handrail
also contains a bound on the maximum distance over which
it can be used. Given the following problem definition, we
can use the actions in Figure 3 to generate a plan.

/ / S t a r t and end t i m e s :
s t a r t := 0 ;
end := 100 ;

/ / S t a t i c s :
MAX HANDRAIL DIST := 5 0 ;
d i s t a n c e ( l 2 1 , l 7 2 ) = 3 0 ;
d i s t a n c e ( l 2 1 , l 1 7 ) = 6 0 ;
d i s t a n c e ( l 7 2 , l 1 7 ) = 8 0 ;
d i s t a n c e ( l 1 7 , AIRLOCK) = 2 0 ;

/ / I n i t i a l s i t u a t i o n
[ 0 ] l o c a t e d ( p g t 3 1 ) := l 1 7 ;
[ 0 ] l o c a t e d ( Bob ) := l 2 1 ;

1Erol, Hendler, and Nau (Erol, Hendler, and Nau 1994) demon-
strate that HTN planning is strictly more expressive than goal re-
gression, but for task hierarchies without recursion or cycles, this
does not become an issue.

2CETA stands for Crew and Equipment Translation Aid.



1 a c t i o n S t o w i t ( crew ev , o b j e c t i tem , l o c a t i o n s towage ) [ durat ion ] {
2 [ a l l ] c o n t a i n s o r d e r e d ( P ickup ( ev , i t em ) , Put away ( ev , i tem , s towage ) ) }
3

4 a c t i o n Pickup ( crew ev , o b j e c t i t em ) {
5 durat ion := 5 ;
6 [ s t a r t ] l o c a t e d ( ev ) == l o c a t e d ( i t em ) ;
7 [ a l l ] p o s s e s s e s ( ev , i t em ) == FALSE :−> TRUE;
8 [ end ] l o c a t e d ( i t em ) := POSSESSED }
9

10 a c t i o n Put away ( crew ev , o b j e c t i tem , l o c a t i o n s towage ) {
11 durat ion := 1 0 ;
12 [ s t a r t ] l o c a t e d ( ev ) == s towage ;
13 [ a l l ] p o s s e s s e s ( ev , i t em ) == TRUE :−> FALSE ;
14 [ end ] l o c a t e d ( i t em ) := s towage }
15

16 a c t i o n T r a n s l a t e b y h a n d r a i l ( crew ev , l o c a t i o n loc1 , l o c 2 ) {
17 d i s t a n c e ( loc1 , l o c 2 ) <= MAX HANDRAIL DIST ;
18 durat ion := h a n d r a i l t r a n s l a t i o n t i m e ( loc1 , l o c 2 ) ;
19 [ a l l ] l o c a t e d ( ev ) == l o c 1 :−> l o c 2 }
20

21 a c t i o n Trans la t e by CETA ( crew ev , l o c a t i o n loc1 , l o c 2 ) {
22 durat ion := c e t a c a r t t r a n s l a t i o n t i m e ( loc1 , l o c 2 ) ;
23 [ a l l ] { l o c a t e d ( ev ) == l o c 1 :−> l o c 2 ;
24 l o c a t e d (CETA) == l o c 1 :−> l o c 2 } }

Figure 4: Combining Task Decomposition and Goal Regression in ANML

[ 0 ] l o c a t e d (CETA) := l 7 2 ;

/ / Goal :
Goal [ a l l ] c o n t a i n s

S t o w i t ( Bob , pg t 31 , AIRLOCK) ;

The Goal statement simply requires that the action
Stow it (Bob,pgt 31,AIRLOCK) occur, with its entire extent
within the planning horizon defined by start and end. A
valid ANML expansion for this problem appears in Figure 5.
Shaded actions show the task decomposition. The move-
ment actions were added as required to satisfy action precon-
ditions. Both translation actions are needed at the beginning
of the plan, to get Bob to where the CETA cart is, because it
is too far from his initial location to use the handrails to get
to the initial location of pgt 31.

Goal-Reduction Planning in ANML
For the EVA domain, we sometimes find it useful to use goal
decomposition, rather than task decomposition. As in the ex-
amples above, task decomposition involves expanding non-
primitive actions by placing a set of sub-actions and asso-
ciated constraints in the plan. Goal decomposition involves
expanding non-primitive tasks by adding a partially-ordered
set of subgoals and associated constraints to the plan. Each
subgoal is then established by a task, if necessary. The ratio-
nale for using goal decomposition is that in some situations,
the planners think in terms of a series of goals to achieve,
rather than actions to execute. The primary distinction is
that these goals may not require any action in order to be
established.

But whereas task decomposition is directly supported in
ANML and has a reasonably well-defined semantics based
on the conditions, effects, and temporal extent of sub-
actions, goal decomposition leaves considerably more for

the implementer to define. What is the extent over which
the subgoal, once established, must remain true? If a sub-
sequent goal is already established, do the preceding goals
still need to be established? For two consecutive subgoals,
is it the times at which those subgoals are established that
must be ordered, or must we order the actions that estab-
lish them? Any planner doing goal decomposition, for ex-
ample the AP planner previously cited, or Wilkins’ SIPE-2
(Wilkins 1990), must provide an answer to these questions.
The unique feature of ANML is that, due to the focus on ex-
ecution semantics, these answers need to be provided in the
model itself: we cannot depend on any particular planning
algorithm to enforce the desired relationships.

We want to use a mixture of goal and task decomposition,
writing something like the following:
a c t i o n foo ( ) [ durat ion ] {
[ a l l ] c o n t a i n s

o r d e r e d ( a c h i e v e ( p o s s e s s e s ( ev , bag ) ) ,
a c h i e v e ( l o c a t e d ( ev , l i g h t p l a c e ) ) ,
i n s t a l l ( ev , l i g h t ) ) }

where the first two “subtasks” in the decomposition specify
subgoals to be achieved. Notice that in this model, there are
no constraints that the goals, once established, persist over
any particular temporal extent. But even with a propositional
model, this will not have the desired effect. The problem is
that the parameters of the achieve sub-actions in this exam-
ple will be evaluated and “passed” by value, rather than by
reference. So, within the action definition for achieve, the
parameter will evaluate to the fluent’s value (in the first in-
stance, either TRUE or FALSE), rather than to the fluent
itself. Thus, the fluent cannot be affected by the sub-action.
This argument exposes another interesting issue: with re-
gard to what time, exactly, is the sub-action’s parameter to
be evaluated? For ANML, the answer is apparently not yet



Figure 5: ANML plan, generated using both task decomposition and classical planning

specified. This problem does not arise for parameters that
evaluate to static or temporally definite relations, or if we fix
the time of evaluation, for example using a local variable in
the action definition.

We can work around this problem of parameter evaluation
as in the following model:

a c t i o n foo ( ) [ durat ion ] {
[ a l l ] c o n t a i n s

o r d e r e d ( a c h p o s s e s s e s ( ev , bag ) ,
a c h l o c a t e d ( ev , l i g h t p l a c e ) ,
i n s t a l l ( ev , l i g h t ) ) }

where we define a set of actions to achieve sub-goals involv-
ing specific predicates. For example, here is the definition
for ach possesses :

a c t i o n a c h p o s s e s s e s ( crew agen t , o b j e c t
i t em ) [ durat ion ] {

{ [ s t a r t ] p o s s e s s e s ( agen t , i t em ) == TRUE} | |
{ [ s t a r t ] p o s s e s s e s ( agen t , i t em ) == FALSE ;

( s t a r t , end ) c o n t a i n s
p o s s e s s e s ( agen t , i t em ) == UNDEFINED ;

[ end ] p o s s e s s e s ( agen t , i t em ) == TRUE} }

We still have not managed to constrain the extent over which
the sub-goal must remain established. That can be done, but
the best way we have found to do it thus far is somewhat
messier. Here is an example of an action definition which
includes three sequential subgoals, each of which is required
to remain established until the start of the action establishing
the next subgoal (or the end of the overall action, if there is
no next subgoal).

a c t i o n EVA ( crew ev , o b j e c t s t r i n g e r ,
l i g h t , jumper , fqd ) [ durat ion ] {

/ / E s t a b l i s h p l a c e h o l d e r i n t e r v a l l a b e l s
f o r s u b a c t i o n s . These may be
d e g e n e r a t e .

[ a l l ] c o n t a i n s o r d e r e d ( s1 : TRUE, s2 :
TRUE, s3 : TRUE, s4 : TRUE) ;

/ / Add i n t e r v a l ” p r e c o n d i t i o n s ” t o
p r e v e n t c l o b b e r i n g .

[ s t a r t ( s2 ) ] p o s s e s s e s ( ev , s t r i n g e r ) ==
TRUE;

[ s t a r t ( s3 ) ] r e t r i e v e d ( ev , l i g h t ) == TRUE;
[ s t a r t ( s4 ) ] i n s t a l l e d ( ev , jumper ) == TRUE;
[ end ] i n s t a l l e d ( ev , fqd ) == TRUE;

/ / Add o n l y needed a c t i o n s .

[ s t a r t ] p o s s e s s e s ( ev , s t r i n g e r ) == TRUE | |
{ [ s t a r t ( s1 ) ] p o s s e s s e s ( ev , s t r i n g e r ) ==

FALSE ;
( s t a r t ( s1 ) , end ( s1 ) ) c o n t a i n s

p o s s e s s e s ( ev , s t r i n g e r ) ==
UNDEFINED ;

[ end ( s1 ) ] p o s s e s s e s ( ev , s t r i n g e r ) ==
TRUE} ;

[ end ( s1 ) ] r e t r i e v e d ( ev , l i g h t ) == TRUE | |
{ [ s t a r t ( s2 ) ] r e t r i e v e d ( ev , l i g h t ) ==

FALSE ;
( s t a r t ( s2 ) , end ( s2 ) ) c o n t a i n s

r e t r i e v e d ( ev , l i g h t ) == UNDEFINED ;
[ end ( s2 ) ] r e t r i e v e d ( ev , l i g h t ) == TRUE} ;

[ end ( s2 ) ] i n s t a l l e d ( ev , jumper ) == TRUE
| |

{ [ s t a r t ( s3 ) ] i n s t a l l e d ( ev , jumper ) ==
FALSE ;

( s t a r t ( s3 ) , end ( s3 ) ) c o n t a i n s
i n s t a l l e d ( ev , jumper ) == UNDEFINED ;

[ end ( s3 ) ] i n s t a l l e d ( ev , jumper ) ==
TRUE} ;

[ end ( s3 ) ] i n s t a l l e d ( ev , fqd ) == TRUE | |
{ [ s t a r t ( s4 ) ] i n s t a l l e d ( ev , fqd ) == FALSE ;

( s t a r t ( s4 ) , end ( s4 ) ) c o n t a i n s
i n s t a l l e d ( ev , fqd ) == UNDEFINED ;

[ end ( s4 ) ] i n s t a l l e d ( ev , fqd ) == TRUE}}

Compositional Action Definitions
In this section, we describe one additional use of ANML’s
modeling flexibility in this domain. For many actions exe-
cuted by both ISS crew and flight controllers, it is desirable
to add an explicit verification step, a “check” that the action
has had the desired effect. This is an execution-time check,
not a simple confirmation in the planning model that some
condition is now satisfied. In the domain elicitation pro-
cess described in (Bonasso and Boddy 2010), the supported
sequence is to define the action itself, then to add a “ver-
ify” tag, indicating that such a check is required. There are
several ways this may be accomplished, each with different
properties.

We start by defining an action to accomplish the final in-
stallation of a “DC-to-DC converter unit” (DDCU) as fol-
lows:
a c t i o n S e c u r e d d c u ( crew ev ,

d c t o d c c o n v e r t e r u n i t ddcu )
{

durat ion := 1 5 ;



[ s t a r t ] { l o c a t e d ( i t em ) == l o c a t e d ( ev ) ;
i n s e r t e d ( ddcu , l o c a t e d ( ddcu ) ) } ;

[ a l l ] e x i s t s ( p g t w i t h t u r n s e t t i n g p g t )
{ p o s s e s s e d b y ( p g t ) == ev } ;

[ end ] i n s t a l l e d ( i t em ) := TRUE
}

This is a primitive action with two parameters: a crew mem-
ber (“ev”) and a piece of equipment (“ddcu”). In addition,
the crew member needs to have possession of a particular
type of tool (a “power-grip-tool with turn setting”). Which
specific tool does not matter, as long as ev continues in
possession of it throughout the action. The ddcu needs to
have been inserted in the appropriate location, and the per-
son needs to be at the same place. The action’s duration is
specified as 15 minutes, and its final effect is that the ddcu is
now “installed.” In this specific case, the difference between
inserted and installed is that the fastening bolts have been
tightened down.

Now, suppose that in the specification of this action, the
user has indicated that the successful installation of the
DDCU must be manually verified after the installation is
completed, before this action can be considered complete.
We can modify the action definition given above to reflect
this, in several different ways.

First, here’s the declaration for a “check” action:
/ / Check a c t i o n f o r a r i t y −1 p r e d i c a t e s

a c t i o n CHECK( s t r i n g p r e d i c a t e n a m e , o b j e c t
t h i n g 1 )

{
durat ion := 1
}

There are several ways in which to add a requirement that
this check be performed to the planning model. One would
be to add an additional level to the task hierarchy by redefin-
ing Secure ddcu:
a c t i o n S e c u r e d d c u ( crew ev ,

d c t o d c c o n v e r t e r u n i t i t em ) [ durat ion ]
{

[ a l l ] c o n t a i n s
o r d e r e d ( S e c u r e d d c u 1 ( ev , i t em ) ,
Check ( ” i n s t a l l e d ” , i t em ) )

}

a c t i o n S e c u r e d d c u 1 ( crew ev ,
d c t o d c c o n v e r t e r u n i t i t em )

{
motivated ;
durat ion := 1 5 . 0 ;

[ s t a r t ] { l o c a t e d ( i t em ) == l o c a t e d ( ev ) ;
i n s e r t e d ( i tem , l o c a t e d ( i t em ) ) ;
e x i s t s ( p g t w i t h t u r n s e t t i n g p g t )

p o s s e s s e d b y ( p g t ) == ev } ;

[ end ] i n s t a l l e d ( i t em ) := TRUE
}

Note that in this definition, the duration of the overall ac-
tion is now unspecified, other than being constrained to be
greater than the sum of the durations of Secure ddcu as orig-
inally defined and the CHECK action.

Alternatively, we can decide that the CHECK will be ac-
complished as part of the orginally-specified 15-minute du-
ration:

a c t i o n S e c u r e d d c u ( crew ev ,
d c t o d c c o n v e r t e r u n i t i t em )

{
durat ion := 1 5 . 0 ;

[ a l l ] c o n t a i n s
o r d e r e d ( S e c u r e d d c u 1 ( ev , i tem , durat ion ) ,
Check ( ” i n s t a l l e d ” , i t em ) )

}

a c t i o n S e c u r e d d c u 1 ( crew ev ,
d c t o d c c o n v e r t e r u n i t i tem , number
o v e r a l l d u r a t i o n )

{
motivated ;
durat ion := o v e r a l l d u r a t i o n −

CHECK DURATION; / / s u b t r a c t a
c o n s t a n t v a l u e f o r CHECK.

[ s t a r t ] { l o c a t e d ( i t em ) == l o c a t e d ( ev ) ;
i n s e r t e d ( i tem , l o c a t e d ( i t em ) ) ;
e x i s t s ( p g t w i t h t u r n s e t t i n g p g t )

p o s s e s s e d b y ( p g t ) == ev } ;

[ end ] i n s t a l l e d ( i t em ) := TRUE
}

It is also possible to add the verification action without
adding additional level to the hierarchy, again either includ-
ing the duration of that action within the original specifica-
tion, or in addition to it. For brevity, we provide only the
latter example:

a c t i o n S e c u r e d d c u ( crew ev ,
d c t o d c c o n v e r t e r u n i t i t em ) [ durat ion ]

{
s e c u r e d d c u d u r a t i o n := 1 5 ;

[ s t a r t ] { l o c a t e d ( i t em ) == l o c a t e d ( ev ) ;
i n s e r t e d ( i tem , l o c a t e d ( i t em ) ) ;
e x i s t s ( p g t w i t h t u r n s e t t i n g p g t )

p o s s e s s e d b y ( p g t ) == ev } ;

[ s t a r t + s e c u r e d d c u d u r a t i o n ]
i n s t a l l e d ( i t em ) := TRUE;

[ s t a r t + s e c u r e d d c u d u r a t i o n , end ]
c o n t a i n s Check ( ” i n s t a l l e d ” , i t em )

}

Another interesting property of this definition is that the ver-
ification action is constrained to be after the effects of the
original definition of Secure ddcu, but not necessarily imme-
diately after, yet is still constrained to complete before any
action ordered after Secure ddcu.

6. Summary and Conclusion
All of the examples used in this paper were drawn from the
planning model we have been constructing in consultation
with the cognizant operations planners. In each case, the
presence or absence of a particular modeling requirement
has been driven by the application domain. Overall, our ex-
perience with ANML has been positive. The language is



flexible enough to do a great deal (including getting oneself
into trouble). The focus on execution as a criterion for valid-
ity makes things significantly simpler and cleaner. The ap-
parent resemblance between ANML and a block-structured,
strongly-typed programming language can be misleading at
first. But as with any declarative formalism, an ANML
model is not “executed” in any meaningful sense. Rather,
it describes a set of relationships.

At this point, there appears to be at least one significant is-
sue to be resolved in the ANML semantics, which is how to
treat non-numeric functional fluents, in terms of both when,
and with respect to what temporal condition, they will be
evaluated. The most significant remaining expressive limita-
tion in ANML is that it cannot as currently defined be used to
reason about continuous change (discrete changes in contin-
uous values, yes). Removing this restriction would, at least
for some of us, significantly increase the appeal of using the
language, though it will significantly complicate the job of
implementing reasonably complete ANML planners. There
are some syntactic shortcuts that could be useful as well, for
example supporting the specification of a wider variety of
domain axioms, but those are minor points, because they do
not involve changes to the fundamental semantics, the way
that either continuous change or a more general treatment of
functional fluents will.

7. Acknowledgements
This work is supported by NASA, under contract number
NNX09C1A7C. We are indebted to NASA-JSC flight con-
trollers Wayne Wedlake and Dave Crook for providing ex-
tensive domain expertise for this work. Thanks as well to
David Smith and Will Cushing for explanations and discus-
sion of the ANML language, and to Jeremy Frank for dis-
cussions regarding the relationship between planning and
procedural models. Dave Kortenkamp is our colleague on
this project, and has contributed significantly to defining the
integration of planning information into PRL.

References
ANML. http://code.google.com/p/anml/.

Applegate, C.; Elsaesser, C.; and Sanborn, J. 1990. An
architecture for adversarial planning. IEEE Transactions
on Systems, Man, and Cybernetics 20(1):186–194.

Bonasso, P., and Boddy, M. 2010. Eliciting planning infor-
mation from subject matter experts. submission to ICAPS
2010 Workshop on Knowledge Engineering for Planning
and Scheduling (KEPS).

Bonasso, P.; Boddy, M.; and Kortenkamp, D. 2009. En-
hancing nasa’s procedure representation language to sup-
port planning operations. In Proceedings of the Interna-
tional Workshop on Planning and Scheduling for Space
(IWPSS).

Bonasso, R.; Kortenkamp, D.; and Thronesbery, C. 2003.
Intelligent control of a water recovery system: Thryears in
the trenches. AI Magazine 19–44.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. Semantics for
hierarchical task-network planning. Technical report.

Kortenkamp, D.; Dalal, K. M.; Bonasso, R. P.; Schreck-
enghost, D.; Verma, V.; and Wang, L. 2008. A procedure

representation language for human spaceflight operations.
In iSAIRAS 2008.
Kortenkamp, D.; Bonasso, R.; and Schreckenghost, D.
2007. Developing and executing goal-based, adjustably au-
tonomous procedures. In AIAA InfoTech@Aerospace Con-
ference.

Smith, D.; Frank, J.; and Cushing, W. 2008. The anml
language. In International Conference on Automated Plan-
ning and Scheduling.
Verma, V.; Jónsson, A.; Pasareanu, C.; and Iatauro, M.
2006. Universal executive and plexil: Engine and language
for robust spacecraft control and operations. In American
Institute of Aeronautics and Astronautics Space Confer-
ence.
Wilkins, D. E. 1990. Can AI planners solve practical prob-
lems? Computational Intelligence 6(4):232–246.


