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Abstract

A fundamental requirement for success with
technology that supports space operations,
such as automated procedures and interactive
plan generation, is that the technology must
operate on valid models or ontologies of the
application domain. Making these models is
difficult because the data involved are volu-
minous, dynamic and come from a variety
of sources and formats, so manual entry and
maintenance is prohibitive. Using an ontolog-
ical framework such as OWL can greatly alle-
viate this effort, but domain experts reason in
domain terms, not the formal logic of ontolo-
gies. This paper describes an editing system
that allows NASA domain experts to construct
and maintain ontological information, and yet
produce a standard form that can be manip-
ulated by procedure authoring and execution,
automated planning and other AI applications.

∗Corresponding author. E-mail:
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1 Motivation

Automation and system autonomy are key el-
ements in realizing the vision for space explo-
ration. As crosscutting technology areas, they
are applicable to broad areas of technology
emphasis, including heavy lift launch vehicle
technologies, robotic precursor platforms, ef-
ficient use of the International Space Station
(ISS), and enabling long duration space mis-
sions. The NASA exploration technology pro-
gram has been developing a set of core auton-
omy capabilities that can adjust the level of
human interaction from fully manual to fully
autonomous. One such capability is a proce-
dure representation language (PRL) [8], de-
veloped to capture the form of traditional pro-
cedures, but allowing for automatic transla-
tion into code that can be executed by NASA-
developed autonomous executives. Another
capability is interactive aids to generate ac-
tivity plans. A third concerns tools for au-
thoring and integrating planning information
into PRL. Such a tool is the Procedure In-
tegrated Development Environment (PRIDE)
[7]. However, the planning information for
procedures that produce planning actions is a
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relatively small part of the information needed
for planning. Beyond resources, conditions
and timing constraints, a given planning action
and the procedure it encompasses requires on-
tological information, such as the number and
types of objects in the domain, their possible
states and configurations and the relationships
that can hold among them. But the problem
with making ontological information available
for end users in automated systems is three-
fold. First, domain experts reason in terms of
their domain rather than in terms of the formal
logic used by ontology-constructing tools such
as Protégé. Second, the states and configura-
tions of the specific objects in the domain are
both voluminous and dynamic, making man-
ual entry and maintenance prohibitive. And
third, the data required, especially state up-
dates, need to be extracted or imported from
other disparate systems. The modeling frame-
work described herein provides 1) an onto-
logical representation of domain information
in a standard ontological representation the
Web Ontology Language (OWL) – that can be
used by NASA’s developing automation soft-
ware, 2) an interactive editing environment an
extension to PRIDE to allow subject mat-
ter experts (SMEs) to construct and maintain
the ontological information, and 3) a general,
systematic, and maintainable semantic map-
ping from external data sets into the user-
constructed ontology. This paper details that
framework and how it will support space op-
erations.

2 PRONTOE
Over the past year we worked with flight con-
trollers and other SMEs to design an ontolog-
ical authoring system that would allow an end

user to author and edit an ontological model of
the International Space Station (ISS) in sup-
port of procedure authoring and maintenance
as well as the interactive generation of oper-
ations plans. The resulting design included a
class hierarchy of the instances of items in and
around the station, the data associated with
those instances and a set of directives axioms
and operational constraints that bear upon the
state of the models. This year we made avail-
able to our SMEs an initial prototype of the
editing system called PRONTOE (the Pride
ONTological Editor) to obtain feedback on our
modeling approach and its usefulness in sup-
porting procedure and plan development. The
description of PRONTOE in this report re-
flects that feedback. The ontology is organized
into a base ontology of domain concepts that
is extended through model kernels, represent-
ing the different flight disciplines involved in
ISS operations. The information in the ontol-
ogy does not cover the whole of the ISS, but
rather, is complete enough in its conceptual
framework to allow the users to incrementally
extend the kernel to support on-going opera-
tions.

PRONTOE is an extension of PRIDE,
which is used for authoring procedures and
rendering them in an XML schema known
as PRL. PRIDE includes the PRIDE Planning
Wizard (PPW) that allows the user to add re-
source, timing and constraint information to
procedures. The resulting PRL files can be
read by procedure viewers and executives and
can be translated into standard planning lan-
guages such as PDDL [5] and ANML [13], so
that AI planners can generate operations plans
with the authored procedures. Since PRIDE
and the PPW rely on a domain ontology for
their use, PRONTOE allows the user to edit
the underlying ontological models themselves,
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thus completing the human authoring process.
PRONTOE not only interfaces with plan-

ners and procedure executives but also with
several external data sources. The inventory
and location of equipment and tools dealt with
by the crew in and around the station is main-
tained in the Inventory Management System
(IMS) for internal stowage and in the Configu-
ration Analysis Modeling and Mass Properties
(CAMMP) databases for external stowage, in
particular, in the External Configuration Anal-
ysis and Tracking Tool (ExCATT) database.
Finally, in work planned for the latter part
of the project, the OWL models will be up-
dated using data streamed from the Interna-
tional Space Station (ISS).

2.1 PRONTOE Interface
The PRONTOE application is an Eclipse-
based interactive graphical editor that presents
the model information in taxonomy trees, con-
cept graphs and as a distribution of objects
on a graphic depiction of the ISS (see Fig-
ure 1). PRONTOE will be used by flight
controllers of the core subsystems of the ISS
e.g., power, motion control, life support but
also by operators concerned with managing
non-instrumented equipment around the sta-
tion, such as extra-vehicular activity (EVA)
and robotics. In Figure 1 the kernel extensions
for the various flight disciplines are listed in
the Project Explorer window, including an
integrated kernel, nasa2i, used by EVA and
robotics personnel. The different disciplines
wanted to configure the windows in PRON-
TOE to more easily support their work, so we
have added the capability to save window con-
figurations called perspectives for later reuse.
PRONTOE comes with default Core and EVA
perspectives, shown in the tabs at the upper

Figure 1: Screenshot of the PRONTOE user
interface. The user selects an ontology file on
the left and PRONTOE produces several re-
lated views: a class/subclass Ontology Tree
(top right), an ontology graph (top center) and
a color-coded depiction of the area location of
all the instances below the hierarchy level se-
lected (bottom right). An incremental search
field above the ontology tree allows for quick
access to named items. While the ontology
tree shows the entire ontology the Focus view
(bottom center) shows only those items se-
lected. In the panes on the bottom right, one
can display screenshots of the equipment, and
access a variety of Web-based data such as
the Mission Integration Database Applications
System (MIDAS), to obtain weight and size
data, and on-orbit photos and videos of the
equipment in the ontology.

right of Figure 1.
PRONTOE allows the user to add, delete or

modify class and instance information, to in-
clude the relations among the instances. Fig-
ure 2 shows an editing dialog used for adding
or modifying the data and relations associated
with a given piece of station equipment known
as a DC-to-DC Converter Unit (DDCU). Some
of the required data associated with an item
can be obtained from external databases avail-
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Figure 2: A subset of the PRONTOE windows
showing the data and relation editing dialog
for a piece of power equipment on the left, and
on the right, a view of that items mass prop-
erties as retrieved by searching MIDAS using
the part number.

able via the Internet. For instance, Figure 2
shows the mass properties associated with the
item designated as DDCU-E 3. These can be
copied into the items dialog directly from the
MIDAS search page.

3 Location of External
Equipment

Of particular interest to EVA and robotics
flight controllers are the number, type and lo-
cation of external equipment. PRONTOE has
a number of facilities to assist with quickly
searching for location items. To begin with,
we populated the ontology from the parts
listed in the part catalog of and the instances
from the ExCATT database. When an EVA or
robotics activity relocates a piece of external
equipment, the flight control team sends those
changes to ExCATT (as well as to the IMS).
PRONTOE exchanges information with Ex-
CATT via JavaScript Object Notation (JSON)
files.

Figure 3: A subset of the PRONTOE windows
showing the schematic view of the ISS on the
left. The user has clicked on truss segment S0
and the Focus View lists the equipment located
there. On the right is a set of assembly and
closeout photos of the DDCU designated as
S01A. This screenshot was taken with PRON-
TOE in the EVA perspective, which concen-
trates on the schematic and the group of tabs
in the lower right.

Additionally, all of the items in PRON-
TOE have a schematic location data slot. If
one clicks on a subarea of the ISS schematic
(see Figure 3), a list of all the items lo-
cated there is shown in the Focus view. Fur-
ther, one can add screenshots of the item
from NASA’s Dynamic On-board Ubiquitous
Graphics (DOUG) system (see Figure 4), a 3D
rendering system that is kept up to date with
location changes from the flight controllers.

ExCATT only gives general locations as
shown in the schematic view. But in order
to plan paths to and manipulate the equip-
ment, EVA and robotics need a specific phys-
ical location. As part of the PRONTOE de-
velopment, we have designed location speci-
fications for each of the external areas of the
ISS the truss segments, the external stowage
places and the station modules, such as the
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Figure 4: A subset of the PRONTOE windows
showing the relationships associated with the
DDCU known as S01A in the ontology tree,
and the DOUG shot of the DDCU (highlighted
in blue) in the lower right. The small slanted
arrow icons in the DOUG window allow the
user to interface directly with the DOUG ap-
plication.

US Lab and nodes. A truss location is a
ten-letter code specifying the truss segment,
bay, face (some segments are six sided and
some are four sided) and a zenith-middle-nadir
and port-middle-starboard location on the face
(see Figure 5).

The external stowage places are External
Stowage Platforms (ESPs) and EXpedite the
PRocessing of Experiments to Space Station
(ExPRESS) logistics Carriers (ELCs). The lo-
cation specification consists of a sixteen-letter
code designating the stowage platform name,
the position on the platform (up to 8, depend-
ing on the platform), and three three-letter des-
ignations for the orientations aft, forward,
nadir, zenith, starboard and port with respect
to the forward direction of ISS travel, with
zenith towards the Earth (see Figure 6).

Figure 5: Sample truss location specifications.
The center picture is that of a nitrogen tank as-
sembly at the mid-port section of face 1 of bay
6 on the P1 truss, or P1B06F01MP. The left
picture is a main bus switching unit on the aft
face, face 4, of the S0 truss segment. Its speci-
fication is S0B02F04MP. The right picture is s
DDCU on one of the four-sided trusses known
as integrated equipment assemblies (IEAs). Its
location is given as S4B23F04ZM.

Figure 6: Sample external stowage location
specifications. The left picture is a flex hose
rotary coupler on ESP 2, position 7. Its ori-
entation is aft, port, nadir, so the full spec is
ESP0207aftPrtNad. The right picture is that
of a pump module assembly on ELC01. Its
location spec is ELC0107fwdStbNad.

Modules are cylinders that can be seen as
being circumscribed by rectangles. Each side
of the rectangle has two parts with orientations
depending on the modules over all orientation.
For instance if a modules long axis is fore/aft
each side will have a forward section and an
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aft section. What remains is to place the item
in the opposing parts of the side, such as nadir-
zenith (see Figure 7). Items on the ends of the
rectangle are on end cones designated by the
orientation of the module. So if the module is
oriented fore/aft it will have both forward and
aft end cones.

Figure 7: Sample module location specifica-
tions. The right picture is a toolbox on the
Quest airlock. The airlock is oriented along
the port-starboard axis and the toolbox is on
the forward segment of the airlock. Thus, its
location spec is ALCKfwdStb. The left pic-
ture is a heat exchanger on the forward end
cone (fec) of Node 2. Its location spec is
NOD2fecPrt.

An additional facility requested by the EVA
and robotics teams to support equipment lo-
cation was a PRONTOE to DOUG interface,
the idea being that as one selects an item in
PRONTOE, the DOUG camera view will ori-
ent on that item. Since we have a formal speci-
fication for object locations, it was a matter of
geometry to transform the location spec into
a DOUG camera view. But the Virtual Real-
ity Laboratory at JSC that developed DOUG
also suggested that when a user mouses over a
DOUG item, the item should be displayed in
PRONTOE. It happens that when the DOUG
application loads, it runs a set of tool com-
mand language (TCL) scripts that can be used

as the main interface machinery. One of those
scripts sets up a command service that allows
DOUG to receive a special set of commands
from outside sources. So one simply exe-
cutes an http-post with the appropriate com-
mand on the appropriate port of the machine
running DOUG. The commands we use are for
the camera positioning (see the upward point-
ing arrow in the DOUG window in Figure 4),
and for fetching the name of the DOUG node
under the mouse at any given time, (see the
downward pointing arrow in the DOUG win-
dow in Figure 4). When a user selects an
item in PRONTOE, if the DOUG application
is available, PRONTOE will trigger DOUG to
fly to the object and show it from a commensu-
rate standoff position. This is useful when the
EVA/ROBO user is planning approaches to the
equipment for extraction and repairs. When
a user mouses over an object in the DOUG
interface, that item will be highlighted in the
PRONTOE interface along with its position in
the ISS taxonomy. This is useful when one de-
sires to get detailed information about an item
displayed in DOUG.

4 Using Ontological Reason-
ers

One of the advantages of having a formal on-
tology is that we can invoke a reasoner to keep
the data consistent and to infer additional re-
lationships among the objects, given the ones
asserted by the user. We use a reasoner in
PRONTOE to execute axioms and constraints,
which constitute an important type of informa-
tion included in our ontology that we collec-
tively term directives. Axioms are rules that
manage bookkeeping during planning, e.g.,
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moving a container changes the location of
all the items in the container, and for do-
main physics, such as the loss of fluid flow
when a pump loses power. While we cur-
rently author our axioms in the OWL API di-
rectly, PRONTOE will support user authoring
of axioms as they pertain to the class/relations
information, which is the basis of precon-
ditions and effects authored with the PPW.
We are using SWRL (OWG SWRL), which
can be used to form rules whose left hand
sides (LHSs) and right hand sides (RHSs) are
OWL relations, and which can be fired by
an ontological reasoner such as Hermit [9]).
PRONTOE currently uses the Pellet reasoner
(http://clarkparsia.com/pellet/).

But we can use the reasoner to make the
editing of a set of objects less tedious. For ex-
ample, various classes of remote power con-
troller modules (RPCMs) are restricted in the
number of Remote Power Controllers (RPCs)
they can manage, a data property we call has-
MaxRPCs. Executing the reasoner over such
classes will automatically populate the has-
MaxRPCs property of all the instances appro-
priately. So if because of a design change one
were to change that value of the class from 4
to 6, running the reasoner would preclude the
user from having to update all the instances of
that class.

Another aspect of a formal ontology is
being able to designate relations that are
inverses of each other. For instance, if an Or-
bital Replacement Unit (ORU) isContainedBy
an ORU bag then conversely that ORU
bag contains that ORU. The two relations
are inverses of each other. We need both
relations. The Contains relation allows us to
ascertain the contents of a given container
with one query. But for planning applications
we can immediately locate a tool with the

isContainedBy relation rather than search
through all the toolboxes for the one has that
tool. As another example, suppose our ISS
computers flight controller has changed the
computer that controls two heat exchangers.
She does this by editing the isControlledBy
property of the heat exchangers. Without the
concept of inverses she must then add two
suppliesC&DHto properties to the computer
item. But because suppliesC&DHto is an
inverse of isControlledBy, she can run the
reasoner to establish the new relations for
the computer. Figure 8 shows the added
relationships for a DDCU after running our
Pellet reasoner. Compare with Figure 4.
In particular, users of the other kernels,
such as the thermal control system (TCS),
assert that their various equipments have
power channels, which in turn have electrical
components in the electrical power system
(EPS) kernel. The reasoner infers the in-
verse of those relations to the EPS items,
e.g., hasDDCU(powerChannelS01A A 02,
DDCU-E 3) and inPowerChannel(DDCU-
E 3, powerChannelS01A A 02).

5 Knowledge Engineering
During our first year effort, we designed a set
of capabilities for PRONTOE that were vali-
dated by our SMEs. After the initial version of
the prototype was complete we had several de-
tailed one-on-one sessions with specific flight
controllers that generated a number of modi-
fications described in this paper. Flight con-
trollers of all disciplines desired some modi-
fications, such as incremental search. Another
modification concerned the optional display of
roles. The items in the core systems are gen-
erally referred to by their roles. For instance,
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Figure 8: DDCU S01A after running the rea-
soner. In Figure 4 this DDCU had the re-
lations hasORUrole, isAttachedTo and hasS-
chematicLocation. After running the reasoner
we see it now has a physical location speci-
fication. This is because it was attached to a
cold plate (DDCU-CP 1) that was in turn at-
tached to a mount that had a physical loca-
tion. SWRL rules mapped that location to both
the cold plate and the DDCU. Many pieces of
equipment have power channels that have DD-
CUs providing the voltage conversion. Here
we see now all the channels associated with
this DDCU. This kind of view makes it easier
to see what parts of the ISS will be affected if
a piece of electrical equipment fails.

DDCU-E 3 has the role of S01A, that is, by
virtue of where its plugged into the station
EPS, it provides the DC-to-DC conversion for
the 1A power bus on the S0 truss. Core sys-
tems, EVA & Robotics all refer to the item to
be serviced by their roles. And yet, sometimes
EVA needs to be able to count the number and
types of equipment at a given location, and the
role designation makes that difficult (see Fig-
ure 9). So we added a preference that will al-
low items to be displayed without their roles.

As mentioned earlier, EVA and robotics
flight controllers have an understandably dif-
ferent workflow than the core system opera-

Figure 9: Optional Display of Roles. The
shot on the left shows the Focus view of all
the items on the S0 truss displayed by role
if present. But the roles make it difficult to
see the different classes of equipment on the
truss. The right picture shows the same dis-
play with the role display option turned off,
and one can see more clearly the classes of
equipment listed.

tors. As such most of the major modifica-
tions of the displays came from the former.
The use of the ISS schematic, the Focus view,
the DOUG screenshots and being able to build
specific perspectives came from sessions with
the EVA team. But for them, tying PRONTOE
to DOUG a tool they use regularly for plan-
ning EVAs was the modification that made
PRONTOE most useful to them; so much so
that this summer we will be training EVA team
members on the use of PRONTOE to support
EVA planning.
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6 Related Work

The bulk of the efforts in knowledge engi-
neering (KE) for planning involve AI pro-
grammers eliciting planning information from
domain experts, and then using KE aids to
model and validate this information. Exam-
ples are [4] and [12], and the work of Bi-
undo and Stephan [2] on a domain modeling
tool that supports incremental, modular model
development by extending and refining exist-
ing models. PRONTOE on the other hand re-
moves the need for an AI scientist middleman.
Work on meta-theories, e.g. [6], may be con-
sidered related in that it attempts to view an
ontology from a perspective of common con-
cepts and elements. Myers’ work on planning
domain meta-theories [11] falls in this vein,
where she discusses such things as character-
izing air/land/water as “transport media”, and
that movement concepts involve a source and
a destination. Our work on a base ontology as
distinct from kernel ontologies is similar and
our interactive approach use abstraction levels
to make the authoring of models easier for the
user. Ontological engineering (OE) has been a
regular activity in the AI community for many
years. In 1999 it was considered in its infancy
for lack of use of widely accepted methodolo-
gies [10], but as late as 2007, the majority of
OE researchers still did not use any method-
ology [3]. Yet, most OE research accepts as
fundamental the need for an efficient, consis-
tent paradigm for knowledge engineering on-
tologies [14]. The work on developing flight
rules by Barreiro et al [1] is directly comple-
mentary to our work on directives, though in
that project the developed flight rules were not
cast into an ontological framework but into a
specialized representation to be used by plan-
ners and schedulers.

7 Summary and Future
Work

PRONTOE has shown to be an authoring
framework that provides 1) an ontological rep-
resentation of domain information in a stan-
dard format that can be used by NASA’s de-
veloping AI software, 2) an interactive edit-
ing environment to allow SMEs to construct
and maintain the ontological information, and
3) a general, systematic, and maintainable se-
mantic mapping from external databases into
the user-constructed ontology. Our future ef-
forts will support the EVA flight control teams
desire to use PRONTOE as the single locus
of the change data for ORUs. So we will
be adding several structures to our ontology.
First, we will design and develop a dialog for
an EVA activity. An EVA activity will con-
tain information on which items in the ontol-
ogy will be affected in location or device set-
tings by the activity. We will then group sets of
these activities into an EVA Task List, which
essentially predicts how the data in the ontol-
ogy will change as a result of executing these
tasks. Once the actual EVA is completed,
flight controllers can check off those activities
that were completed, and can PRONTOE au-
tomatically post those changes to the ExCATT
and IMS databases.
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