
FUSED: A Tool Integration Framework
for Collaborative System Engineering

Mark Boddy, Martin Michalowski, August Schwerdfeger, Hazel Shackleton, and Steve Vestal
Adventium Enterprises
Minneapolis, MN, USA

{mark.boddy,martin.michalowski,august.schwerdfeger,hazel.shackleton,steve.vestal}@adventiumenterprises.com

Abstract—FUSED is a tool integration framework that
supports multiple engineers who are collaborating in the
development of a diverse set of engineering models used for
multiple purposes in multiple phases of development. FUSED
is extensible to support a chosen set of modeling environments;
a few examples from our work are requirements, solid geom-
etry, computational fluid dynamics, dynamical systems, and
vetronics/avionics. An extensible language approach is used,
so that many FUSED capabilities are presented to domain
experts as minor additions to familiar languages and tools.
There is also a special FUSED language to specify compositions
of models. Compositions may be used for multiple purposes,
e.g., to specify multiple views of a component, verify inter-
model consistency, specify part/whole assemblies, or apply
design operations to models. One goal of FUSED is to reduce
errors due to inconsistencies and emergent properties that
occur across multiple models being developed by multiple
domain-specific experts. For example, FUSED has an exten-
sible typing and meta-typing system, and compositions may
include powerful model verification environments. Another
goal is improved support for concurrent, collaborative, mixed-
initiative, evolutionary development processes. For example,
FUSED was designed to support dependency tracking, change
management and ripple effects analyses, version control and
remote model server access, and mixed-initiative and multi-
disciplinary collaborative optimization.

Keywords-tool integration; system engineering; collaborative
development; extensible languages;

I. INTRODUCTION

We use the term “modeling environment” to mean a set of
languages used to model systems from particular viewpoints
plus a set of tools that automate associated engineering tasks.
Some examples (all freely available) are OpenModelica for
dynamical systems, BRL-CAD or Google SketchUp for
solid modeling, Athena Vortex Lattice for computational
fluid dynamics, TOPCASED for SysML requirements and
AADL vetronics/avionics models. A modeling environment
typically has a primary language for human entry and
a number of additional data representations. The primary

This work was supported by DARPA under the META program contract
FA8650-10-C-7076. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense or
the U.S. Government. Approved for Public Release, Distribution Unlimited.
Submitted 2nd Workshop on Analytic Virtual Integration of Cyber-Physical
Systems.

language could be a standardized textual language specified
by a formal grammar, but it may also be specified informally
by a GUI or API. Environments also include other represen-
tations, such as those generated by various model analysis
and simulation tools. Our tool integration framework, which
we call FUSED, has been designed so that it can be extended
to support any given set of modeling environments.

The FUSED framework provides additional capabilities to
specify compositions of diverse models, to script operations
on these compositions, and to support dependency tracking
and change management in a collaborative development
environment. Examples include a composition of solid and
dynamical models to capture different viewpoints of a com-
ponent; a composition of components into an assembly or
architecture; or a composition of a design optimizer with a
design.

Developers must be able to specify how these new capa-
bilities are to be applied. Our approach is to leverage existing
modeling environments as much as possible by applying
extensible language concepts. New FUSED capabilities are
provided to domain experts as minor extensions to familiar
languages. There is an additional, new FUSED language
for specifying compositions of models developed in other
modeling environments. This language deals with issues that
are inherently multi-model and multi-environment and is
primarily intended for system rather than domain-specific
engineering.

Our concept of model includes traditional design models
such as geometry models of aircraft wings and DAE models
of vehicle dynamics. It also encompasses what might be
called design process models, which are models that operate
on other models. Examples in this category are design
optimizers and trade space visualizers, model checkers and
verifiers, and uncertainty propagators and global sensitivity
analyzers. FUSED compositions can assemble parts into
assemblies; e.g., four wheels and a framework into a chassis.
They can also specify applications of process models to
design models; e.g., a composition of a design optimizer or
trade space visualizer with another composition of design
models.

Defining a semantics for a composition of models that
themselves have diverse and incommensurate semantics is a

challenge. For example, the extensive and intricate geometric
semantics defined for a solid modeling environment are at
best weakly reflected in logical languages found in vetronics
and avionics environments. Our approach is to combine
concepts found in classical type theory with concepts found
in theories of abstraction. The semantics of FUSED com-
positions are the abstractions of types found in the different
models, at a level of abstraction that is common across the
models.

We assume FUSED will be used in a development process
involving many developers who are concurrently modifying
models from many modeling environments. These models
may be used at different phases and exist at multiple levels of
abstraction, e.g., preliminary requirements through as-built
verification and validation (V&V). We assume models may
be stored in a mixture of version control systems or accessed
using a remote model server.

To ensure its utility in this kind of development, the
FUSED framework is extensible to support any selected
set of modeling environments and any selected set of ob-
ject types from those environments. For the design and
implementation of the FUSED framework itself, there are
a number of technologies from which to choose as a ba-
sis. The UML meta-language approach and its associated
representations and tools provide an obvious example [8].
Semantic web (web 3.0) concepts and representations are
another option. FUSED supports UML domain languages
like SysML and uses XML for tool data exchange, and the
framework is designed to support web/SOA-style interac-
tions such as compositions involving remote model servers,
but our primary implementation technologies are higher-
order attribute grammars and extensible language methods;
specifically, the Silver attribute grammar specification lan-
guage and code generation tools [2]. Silver, although based
around the paradigm of a parser generator, has the full power
of a functional programming language; attributes on syntax-
tree nodes in Silver may have values that are themselves full
syntax trees, and there are also formalisms and analyses for
the concise specification and seamless composition of sets
of language extensions, both on the syntactic and semantic
levels.

The following sections provide overviews and illustrative
usage scenarios for problems addressed, model composition
semantics, modeling environments and compositions, con-
current collaborative development, and the architecture and
implementation approach for the FUSED framework itself.

II. PROBLEMS ADDRESSED

Many errors occur due to inconsistencies between models
developed in different environments, and to misunderstand-
ings by engineers trained in different disciplines and focus-
ing on different issues. Because all models are abstractions,
they represent only aspects of the system, developed to deal
with particular sets of issues for particular purposes. There

are characteristics of a system (sometimes called emergent
properties) that are really captured only in sets of models.
We want to reduce errors that occur due to inconsistencies
between models or due to failure to consider interactions
between models. Section III discusses some FUSED features
that address these problems and presents an illustrative usage
scenario.

Development is a mixed-initiative process. Automated de-
sign tools are becoming increasingly common and powerful,
but these must ultimately be applied by human developers
and as such the human/machine interactions are becoming
increasingly complex. FUSED makes it easy for developers
to apply automated design aids to complex models to support
complex, mixed-initiative development activities.

Additionally, development processes are becoming in-
creasingly collaborative, concurrent, and distributed. The
waterfall model is being supplanted by processes in which
product lines undergo continuous evolution throughout their
life cycle. Advanced multi-disciplinary system engineering
frameworks need to be well-integrated with supporting pro-
cesses like distributed revision control, collaborative model
development, and change management. FUSED integrates
with advanced process support tooling to create an overall
environment in which developers can stand on each other’s
shoulders instead of each other’s toes. Section V discusses
some FUSED features that address these issues and presents
an illustrative usage scenario.

III. COMPOSITION SEMANTICS

Our definition of “semantics” is “a way to map a string of
symbols to a structure defined in some field of mathematics
or science.” Examples would include mapping a STEP file
to a structure in solid geometry or mapping a string in
the Modelica language to a system of hybrid differential
algebraic equations.

For a particular modeling environment, we have to live
with what we are given. This means we have to deal with
different modeling environment semantics mapping strings
to different mathematical domains, using different methods
to define these mappings with differing degrees of rigor,
etc. For example, a solid modeling semantics maps models
to solid geometric objects with semantic rules such as “no
two distinct solid parts may overlap in three space.” These
concepts are absent in the Modelica language definition.
However, it is possible to map a moment-of-inertia tensor
from the solid geometry domain into the domain of differen-
tial algebraic equations. There are some semantics that are
explicitly defined only in the solid modeling environment,
such as the concept of inertia of a material object (which
is arguably a scientific rather than a purely mathematical
semantics). But there are some semantics common to both
modeling environments, such as units and linear operations
on vectors in three space.

When two models are composed in FUSED, a developer
can specify that one model may publish (pub) an object that
is used to satisfy a subscribe (sub) in another model. FUSED
automates this process and uses strong type-checking as
part of what might otherwise be a manual cut-and-paste
operation. When an object is specified for publication, what
is actually published is a string of symbols whose semantics
are an abstraction that is common to both modeling envi-
ronments. In the case of a moment-of-inertia tensor, this is a
3×3 matrix of floating point numbers with associated units.
Using our concept of language extension, FUSED provides
additional information to this pub/sub process. For example,
we extend the Modelica language slightly to include the
concept of a frame of reference, in which case FUSED
provides more semantics and type checking than standard
Modelica.

In any particular FUSED installation, a set of common
abstract types are defined. This means there are abstraction
relations from types of objects in the various supported
modeling environments to and from these common abstract
types, made concrete in tools that can extract objects from
various modeling languages and convert them to and from
a common representation. In principle, the semantics of
a pub/sub relation in a FUSED specification involves a
mapping to a mathematical domain common to the two
modeling environments, plus an abstraction relation for each
of the two modeling environments based in theories of
abstraction that would typically be different for the two
modeling environments. Arguments then need to be made
that operations on a subscribing model are correct; i.e.,
information lost in the abstraction process does not render
model analysis results invalid. In current practice, we just
write Silver specifications for the common representations
and conversion tools. This is an area rife with opportunity
for further theoretical research and improved rigor.

Figure 1 depicts a usage scenario and FUSED model
composition specification that illustrate some of these con-
cepts. In this scenario, the system engineer would like some
assurance that the solid model of an aircraft is consistent
with the avionics model. In particular, the engineer would
like assurance that the logical hardware resources and con-
nections in the avionics model are consistent with electronics
boxes and cables in the solid model.

Using the FUSED composition language, the system
engineer specifies that an abstract representation of the static
structure of a model be published for both models. This is
a graph in which nodes and edges may have one or more
types specified, where the set of node and edge types is just
a list of identifiers specified in each model. (It is typical
to provide language extensions that allow model developers
to specify additional typing information if the standard
language mechanisms are not sufficient.) For example, in
the published abstraction of a solid model, nodes represent
parts and assemblies and edges represent containment and

attachment relations.
What the system engineer wants is assurance that there

is a subgraph isomorphism between the logical hardware
elements and connections in the avionics model and parts in
the solid model, where the types of corresponding nodes
and edges satisfy a specified type compatibility relation
(e.g., logical processors and buses in the avionics model
map to LRU and cable parts in the solid model). This
property can be concisely specified in SMTLib, a standard
language agreed upon by the Satisfiability Modulo Theo-
ries research community for which there are a number of
tools. This specification subscribes to two abstract model
structures, and the SMTLib modeling environment provides
a “check satisfiability” operation. By periodically running
this FUSED composition specification, the system engineer
receives ongoing assurance that this consistency property is
maintained between the two models as they evolve during
development.

IV. MODEL ENVIRONMENTS AND COMPOSITIONS

A model environment is a set of languages and a set
of tools that support a particular engineering discipline. An
example is OpenModelica [6], to which the primary human
input language is standard Modelica, and whose toolset in-
cludes a compiler and a simulator/solver. Any representation
that holds data of interest at the system engineering level is
also a language that FUSED at least needs to be able to
read. For example, simulation trajectories and linearizations
contain data of interest.

A specific model or related set of models is stored in a
folder or project that is associated with a particular modeling
environment. For example, the concepts of a modeling
environment and an Eclipse project type are effectively
synonymous, and there is an Eclipse plugin to support the
OpenModelica project type.

Extending FUSED to support a particular modeling envi-
ronment involves the following activities.

• Identify types of model elements that should be made
visible at the system engineering level (in FUSED
composition specifications). Ideally, many of these will
already exist in the FUSED common type system;
otherwise, they must be added.

• Define extensions to the primary language to support
FUSED capabilities. Two near-universal extensions are
the ability to declare that elements of a model are
to be published (i.e., made visible for use in FUSED
composition specifications) or subscribed (i.e., provided
to a model when it is used in the context of a particu-
lar FUSED composition specification). Other common
extensions allow additional typing information to be
declared or support parametric/configurable models.

• Identify operations that can be performed on the model
using the available modeling environment tools. (Mixed
initiative operations that require some interaction with

Figure 1. Model consistency usage scenario and FUSED composition specification

a domain expert should be permitted, although we have
not demonstrated that to date.)

• Develop wrapper specifications in the FUSED language
to present a set of convenient interfaces to higher-level
FUSED programmers. This is not essential, but often
makes the model more easily used by system engineers
who are not familiar with either the model structure or
the modeling environment.

The final section of this paper outlines how we implement
these extensions. Basically, we do this by extending the
existing build procedure to perform the identified operations
automatically. Invocations of existing tools are wrapped
with invocations of preprocessors and postprocessors that
implement new FUSED capabilities and provide a proper
interface into the FUSED framework.

When models are composed in a FUSED specification,
that specification declares a pattern of publish and subscribe
relationships between models together with other informa-
tion such as scripting of operations to be performed. It would
be quite tedious to declare this for every individual model
element, and declaring a dependency for every individual
element would also make composition specifications less
robust to model edits. FUSED publishes structured sets of
model elements, and FUSED subscribes are satisfied using
a name space search procedure. The FUSED composition
language includes a set of operations to perform restruc-
turings, renamings, etc. (in the figures that show FUSED
composition specifications, that is what the boxes labeled
“FUSED” represent).

There is always a risk of mismatch, but this risk exists
even if dependencies were manually specified for every
individual scalar (which adds risk due to losing information
about structural relationships between elements). FUSED
mitigates this risk by providing a fairly powerful type
system. In addition to basic types and type constructors like
floats, integers, and arrays, FUSED supports the concept of
a type qualifier. A type qualifier is additional information
such as units, frames of reference, or uncertainties, that can
also be associated with a model element. Modeling language

extensions can be used to increase the amount of typing
information provided and checked, and type qualifier opera-
tions are available in the FUSED composition specification
language.

Figure 2 depicts a usage scenario and FUSED model
composition specification that illustrate some of these con-
cepts. In this scenario, three domain-specific models are
developed to represent a UAV from three viewpoints. A
solid model is used to capture and analyze the physical
structure, a computational fluid dynamics model is used to
analyze aerodynamic forces on the vehicle, and a dynamical
systems model is used for flight dynamics. The models are
configurable, so that system engineers can explore various
combinations of design parameter choices.

The vehicle dynamics model needs data that can be
obtained from a mass properties analysis of the physical
structure, such as mass, moment-of-inertia tensor, and con-
trol surface areas. The vehicle dynamics model also needs a
set of stability derivatives computed at a number of trim
points, which can be obtained by CFD analysis. Rather
than cut-and-paste for each UAV configuration, the vehicle
dynamics model is modified slightly so that it subscribes to
these values, which can be published by the other models.
When the FUSED composition specification is executed,
the models are configured, analyses executed, and data
converted and copied as needed to obtain the specified
vehicle dynamics analysis results; e.g., a set of simulation
traces. (This is similar in principle to what can be done
with some existing commercial tools. A difference in this
example is that FUSED supports complex object types with
strong type checking.)

V. DEVELOPMENT PROCESSES

Models and associated assets are traditionally managed
using revision control systems such as Subversion or Git.
The design of FUSED also supports remote model servers.
In order to execute a FUSED composition script, all that
is needed is the ability to send a block of data to satisfy
model subscriptions and receive a block of data published

Figure 2. Model configuration and pub/sub scenario with FUSED composition specification

by a selected operation. To make full use of FUSED (e.g.,
modeling language extensions), the model servers should
also host a FUSED framework.

The set of all FUSED composition specifications in a
development project captures much semantically rich infor-
mation about the relationships and dependencies among all
the models. Moreover, we conjecture that this information
is captured much more concisely and manageably — the
number of keystrokes needed to enter publish and subscribe
declarations in models and abstract pub/sub dependencies
in composition specifications is relatively small compared
to the list of detailed element-to-element dependencies enu-
merated by the FUSED tools as it processes composition
specifications. Moreover, abstract pub/sub relationships are
robust with respect to changes in the individual models and
thus more easily maintained. Finally, the fact that FUSED
composition specifications are subjected to a variety of auto-
mated analyses provides some assurance of the correctness
of these relationships.

The dependency relationships between models that are
captured in FUSED composition specifications can be used
in a variety of ways. Firstly, FUSED builds on traditional
build/make dependency tracking technology. As FUSED
composition specifications are executed, operations on in-
dividual models are only invoked as needed to provide up-
to-date published data. Secondly, FUSED encourages and
supports the use of configurable models. When an operation
is performed on a model, this means the results depend
on the values used to satisfy subscriptions in that model.
We have prototyped results caching, so that repeats of an
operation need not be done if the results of an earlier
matching analysis have been cached.

Models are created for parts of the system in order to
understand their properties from a particular viewpoint (e.g.,
a Modelica model) to understand certain kinds of dynamical
behaviors. We also want to support models that can be used

as part of the design process itself, models that can be
applied to other models. Examples of this are trade space
models to support trade space exploration and Pareto frontier
identification, various kinds of design optimization methods,
and model and multi-model verification and validation ac-
tivities. In cases like this, a FUSED composition is not an
assembly of parts that is analyzed to determine properties
of the assembly; it is executed to carry out a design activity
on a model or composition of models. To support this,
FUSED can publish and subscribe types of elements that are
abstractions of models themselves; e.g., the abovementioned
typed object graph, as well as constraints and properties.

A variety of process models have been developed to
perform uncertainty propagation and global sensitivity anal-
ysis to understand how model evaluation metrics depend
on model design configuration parameters [3]. We are par-
ticularly interested in combining this sort of analysis with
our dependency tracking capabilities to perform smart ripple
effects analysis — is a change in a model big enough to
significantly impact other models that relate to it in some
way?

Figure 3 depicts a usage scenario and FUSED model
composition specification that illustrate some of these con-
cepts. In this scenario, the requirements engineering team
is wrestling with the trade-offs between quality metrics like
range, endurance, payload capacity, and cost. They are also
still uncertain about what the available technology will make
possible. What they would like to do is use a tool like Trade
Space Visualizer [4] to explore the trade space and identify
the Pareto frontier for the range of possibility given current
technology.

The aeronautical engineering team has created an initial
equational model (a spreadsheet) that allows these metrics
to be estimated for a variety of design alternatives; e.g.,
different choices of wing structure, batteries, motors, and
propellers. If the aeronautical engineers knew the final re-

Figure 3. Mixed initiative design optimization scenario and FUSED composition specification

quirements for range, endurance, etc., then they could select
design choices that optimize the vehicle for the selected
requirements. In fact, the aeronautical engineers constructed
an optimization model (written in the widely-used MiniZinc
language [5], for which a number of tools are available) that
automatically makes good choices when given a final set
of requirements. Such design decisions are irrelevant to the
work of the requirements engineering team, who are merely
interested in what could be achieved in terms of cost and
endurance if they decided that low cost and high endurance
are the dominant concerns of the end users.

To support these activities, the system engineering team
creates a FUSED specification that composes the MiniZinc
design optimization model with the requirements and equa-
tional models to create what is essentially a self-optimizing
aircraft model that is parameterized by range, endurance,
payload and cost — the parameters the requirements en-
gineering team wants to explore. Trade Space Visualizer
provides a variety of sampling methods that can be applied
to an abstraction of a design model in which that model is a
function that can be evaluated for a set of input parameters
to determine the values of a set of evaluation metrics. In
this FUSED composition specification, this is an abstraction
that can be published by a model. The Trade Space Vi-
sualizer model subscribes to the functional abstraction that
is published by the design optimization model. When this
FUSED specification is executed, the Trade Space Visualizer
will perform a statistical sampling of the design space by
invoking the design optimization model/function, identify
the points on the Pareto frontier, and provide a variety
of graphical display formats that allow the requirements
engineering team to explore this space.

VI. EXTENSIBLE FRAMEWORK

In this section, we briefly overview the current FUSED
framework implementation architecture and technologies.

We currently use TOPCASED [7] for both its SysML

and AADL modeling environments. TOPCASED is based
on Eclipse, and one can think of an Eclipse project type as
a modeling environment type. Figure 4 illustrates a set of
model projects for a variety of modeling environments.

A central abstraction for a model is a set of operations
that map a set of subscribed values to a set of published
values. (This is an abstraction that can itself be published,
e.g. for use by sampling-based uncertainty propagation mod-
els or gradient-search design optimization models.) These
operations are implemented as a set of targets in a build
script template that is created when FUSED is extended to
support a particular modeling environment. The build scripts
wrap calls to existing modeling tools with calls to prepro-
cessors and postprocessors to handle language extensions,
publish and subscribe operations, etc. Development of these
preprocessors and postprocessors is another task performed
when extending FUSED to support a particular modeling
environment. There are currently cases where build scripts
need to be tweaked manually to handle configurable models

Figure 4. FUSED Project Types and Relationships

(acceptable to a software engineer but not to a system
engineer), but eventually such configuration, when needed,
should be generated automatically from a FUSED wrapper
specification for a configurable model.

Specifications written in the FUSED composition lan-
guage are models just like any other; e.g., they can them-
selves be composed with other models. There is a modeling
environment for the FUSED composition specification lan-
guage itself. The build scripts here are not taken from a
library, however; they are entirely generated from FUSED
specifications by a FUSED compiler. When executed, these
scripts mix calls to other model project builds with calls
to various FUSED operations; e.g., to perform restructur-
ings on structured sets of published and subscribed model
elements. Data is exchanged using an XML common type
representation format, with conversions and type checking
being performed by the preprocessors and postprocessors
associated with each modeling environment.

The common types and their representations and con-
version routines, and the preprocessors and postprocessors,
are specified in the attribute grammar specification lan-
guage, Silver. Attribute grammars are well-suited to concise
specification of complex languages and data representation
structures. Silver provides a rich typing system (e.g., at-
tributes on nodes of syntax trees may themselves be syntax
trees, and generic attribute types are supported), so there
is plenty of power to specify complex checks and conver-
sions. Silver also has features supporting seamless language
extension. This is chiefly done by specifying additional
rules that recognize extensions to a language, and then
placing “forwarding” constructs within those rules to specify
a translation from the extended language back to the original.
For example, a Silver-specified preprocessor would handle a
subscribe declaration (an extension to the original language)
by forwarding it to (rewriting it as) a declaration containing
a literal value in the syntax of that language, after doing the
appropriate look-ups and type-checks and conversions from
a FUSED XML file. This re-writing is performed at the
level of abstract syntax trees, rather than strings, allowing
for more precise and fine-grained translations.

In summary, extending FUSED to support a specific
modeling environment entails developing three kinds of new
assets.

• Preprocessors and postprocessors for selected language
representations, written in Silver. These implement
language extensions such as publish and subscribe
declarations.

• An ANT build template whose targets correspond to all
the operations supported on models of that type. The
template may contain subscriptions as needed to handle
configurable models and parametric analyses.

• New common abstract types, including type-checking
and conversion algorithms, may need to be specified in
Silver and added to the FUSED common type system.

VII. DISCUSSION

There is a trade-off involved in providing FUSED with
a relatively powerful typing and language processing capa-
bility. This makes extending the framework more complex
than if all it did was automate cut-and-paste of strings. On
the other hand, it provides much more power. In our own
demonstration exercises, we had unintended mismatches of
units and frames of reference detected by our own frame-
work. (Both of these classes of design defects are known to
have resulted in a number of engineering failures and are
still considered by many to be a source of significant risk.)
More than this, though, is the potential for new capabil-
ities like verification of non-trivial consistency conditions
between models and support for more general mix-and-
match of design process methods such as mixed-initiative
multi-disciplinary design optimization. We conjecture that
the potential benefits outweigh the additional extension
complexity, which is a one-time overhead for each modeling
environment in any case.

We believe that our choice of higher-order attribute gram-
mar and language extension technologies was a good one,
as they provide the added ability to compose models written
in different languages by simply augmenting models slightly
using simple syntax. We have not found it inconvenient to
deal with UML languages via their XMI representations,
and we have at least as much power to work at the meta-
language and meta-type levels. Our language extension and
pub/sub methods seem able to handle fairly complex model
synchronization problems. The relationship to (semantic)
web technologies is a bit more nuanced, and we currently
tend to think of the relationship as one that invites synergistic
integration. It is a combination that is needed to provide
good support for distributed, concurrent, collaborative de-
velopment. As one might expect, Silver is best suited for
handling textual languages and representations having well-
defined syntax, but relatively weaker for languages defined
informally by the GUI or API of a specific tool.

Additionally, the overhead introduced by FUSED is mini-
mal. While we have not conducted a thorough evaluation of
the overall runtime impact, we observe that the time taken
to translate FUSED-extended models to their equivalent
base language is negligible and there is no impact on
the simulation runtimes for these translated models when
compared to the originals. Furthermore, while the process
to extend FUSED to support a new modeling environment
is in itself time consuming, it is a one-time effort. Assuming
the software engineer develops a robust set of ANT build
templates, their invocation will require no additional changes
except for special cases. In these special circumstances,
the software engineer only needs to modify the existing
template rather than creating a new build script from scratch
(a common process today).

FUSED is a work in progress. Our initial set of exten-

Table I
MODELING ENVIRONMENT EXTENSIONS

Category Language Toolset

requirements SysML TOPCASED

trade-off studies (tool-specific) Trade Space Visualizer

design optimization MiniZinc minizinc, ECLiPSe

spreadsheet (tool-specific) Excel

solid/geometric (tool-specific) Creo/ProE

fluid dynamics (tool-specific) Athena Vortex Lattice

dynamical systems Modelica OpenModelica

avionics/vetronics AADL TOPCASED/OSATE

model verification SMTLib Z3

sions supports nine domain-specific modeling environments
(shown in Table I), but the set of language extensions and the
set of common FUSED types is not what would be desired
in a full system engineering project. The current tools for the
FUSED model composition language only support publish
and subscribe relations between models and combinations of
operations provided by the associated environments, which
supports only some of the various kinds of compositions dis-
cussed earlier. The FUSED implementation needs additional
features — e.g., occasional hand-configuration of build tem-
plates, acceptable to a software engineer but probably not
to a system engineer — should be automated. As with all
development projects at this phase, maturation is needed in
the areas of documentation, error reporting, refactoring to
facilitate easier extension, and general defect reduction.

Additionally, FUSED composition specifications capture
much detailed information about dependencies between
models, and we are developing ways that FUSED can use
this data. We want to support specification and use of
configurable models — component suppliers should pro-
vide a space of capabilities to system engineers who are
making system-level trade-offs [1]. We want to support
smart inter-model ripple effects analysis in which developers
can analyze the magnitude and significance of changes or
uncertainties in one model on other models. We want to
support verification of consistency between models. We want
to support highly parallel development processes, to the
point that requirements engineering may be just another
activity that goes on throughout a product and product line
life cycle.

We have mentioned several areas where we believe that
further research could yield significant benefits. Among
these are an improved theory of semantics and abstrac-
tion, methods for smart change propagation analysis based
on uncertainty and other “close enough” type qualifier
information, experience with and improvement of inter-
model consistency verification methods, improved caching
of subscription-dependent model analyses, and more syner-
gistic integration with advanced configuration management

and model server and program management technologies.

VIII. ACKNOWLEDGMENTS

We would like to thank the Minnesota Extensible Lan-
guage Tools group at the University of Minnesota for
their Silver support, Lockheed-Martin for their aeronauti-
cal engineering and model development support, and the
Defense Advanced Research Projects Agency (DARPA) for
supporting this work under the META program contract #
FA8650-10-C-7076.

REFERENCES

[1] Durward K. Sobek II, Allen C. Ward, and Jeffrey K. Liker,
“Toyota’s Principles of Set-Based Concurrent Engineering,”
Sloan Management Review, 40, 2, Winter 1999.

[2] Eric Van Wyk, Derek Bodin, Jimin Gao and Lijesh Krishnan,
“Silver: an Extensible Attribute Grammar System,” Science of
Computer Programming, Elsevier Science, January 2010. See
also http://www.melt.cs.umn.edu/.

[3] Christopher Hoyle, Irem Y. Tumer, Tolga Kurtoglu, and Wei
Chen, “Multi-State Uncertainty Quantification for Verifying
the Correctness of Complex System Designs,” Proceedings of
the ASME 2011 International Design Engineering Technical
Conferences & Computers and Information in Engineering
Conference, Washington, DC, August 2011.

[4] Stump, G.M., Lego, S., Yukish, M., Simpson, T. W., Don-
ndelinger, J. A., “Visual Steering Commands for Trade Space
Exploration : User-Guided Sampling With Example,” Journal
of Computing and Information Science in Engineering, 2009.
See also http://www.atsv.psu.edu/.

[5] Peter J. Stuckey, Ralph Becket, Sebastian Brand, Mark
Brown, Thibaut Feydy, Julien Fischer, Maria Garcia de
la Banda, Kim Marriott, and Mark Wallace, “The Evolv-
ing World of MiniZinc,” MODREF 2009. See also
http://www.g12.cs.mu.oz.au/minizinc/.

[6] OpenModelica, the Open Source Modelica Consortium,
http://www.openmodelica.org/.

[7] TOPCASED, the TOPCASED consortium,
http://www.topcased.org/.

[8] K. Czarnecki and S. Helsen, “Feature-based survey of model
transformation approaches,” IBM Systems Journal, Vol 45, No
5, 2006.

http://www.melt.cs.umn.edu/
http://www.atsv.psu.edu/
http://www.g12.cs.mu.oz.au/minizinc/
http://www.openmodelica.org/
http://www.topcased.org/

	Introduction
	Problems Addressed
	 Composition Semantics
	Model Environments and Compositions
	Development Processes
	Extensible Framework
	Discussion
	Acknowledgments
	References

