
An Architecture for Scalable Network Defense 
Tim Strayer, Walter Milliken, Ronald Watro, 

Walt Heimerdinger†, Steve Harp††, Robert P. Goldman†††, Dustin Spicuzza, 
Beverly Schwartz, David Mankins, Derrick Kong, Peiter Mudge Zatko 
BBN Technologies †Honeywell ††Adventium †††SIFT, LLC 

{strayer|milliken|rwatro|dspicuzz|bschwart|dm|dkong|mudge}@bbn.com 
walt.heimerdinger@honeywell.com; steven.harp@adventiumlabs.org; rpgoldman@sift.info 

 
 

Abstract—We describe a novel architecture for network de-
fense designed for scaling to very high data rates (100 Gb/s) and 
very large user populations. Scaling requires both efficient attack 
detection algorithms as well as appropriate an execution envi-
ronment. Our architecture considers the time budget of traffic 
data extraction and algorithmic processing, provides a suite of 
detection algorithms—each designed to present different and 
complementary views of the data—that generate many “traffic 
events,” and reduces false positives by correlating these traffic 
events into benign or malicious hypotheses. 

I. SCALABLE ARCHITECTURES 
One of the most pressing challenges imposed on network 

defense mechanisms is the significant increase in network 
speeds. While the well-known Moore’s Law states that com-
pute power doubles every eighteen months, Gilder’s Law [1] 
states that communication power doubles every six, suggest-
ing that bandwidth grows at least three times faster than com-
puter power. This is a harsh reality for computer network de-
fense; the implication is that defensive strategies must be in-
herently scalable, or they become moment-in-time solutions. 

Scalable attack detection algorithms must operate effi-
ciently and effectively without regard to the bandwidth of the 
input. Since bandwidth triples with computation power, it is 
impossible to consider “scalable” algorithms without also con-
sidering the scalability of their execution environments. The 
increasing volume of input also implies that there is less time 
available to investigate each alert issued by the algorithms, 
precipitating the need to have fewer, higher valued alerts. A 
truly scalable network monitoring solution, therefore requires 
innovation in the scalable algorithms themselves, the ability to 
extract and process traffic features at line speed, and reduction 
and aggregation of the output into high value alarms. 

In the abstract, algorithms take some input, process it, and 
then generate some output. Network defense algorithms take 
as input features extracted from the network traffic. There are 
physical limits to hardware, and the most important one is the 
speed of accessing memory. As the network line rate in-
creases, DRAM memory access latency dominates many net-
work processing algorithms. While algorithms may have in-
herent theoretical properties that govern how well they scale, 
until those algorithms are applied to a real execution environ-
ment, their scalability remains only theoretic.  

An effective monitoring solution must also consider how to 

handle the output of the algorithms. Attack detection algo-
rithms with a single, myopic view of the network tend to issue 
many more false alarms than true ones, causing the operators 
to either ignore the alarms (guaranteeing that all attacks evade 
detection), or raise the alarm threshold (allowing some attacks 
to pass that would have otherwise been caught). 

An attack detection algorithm’s output—the alarms it gen-
erates—is a product of the algorithm’s internal model of the 
network and actions of the attack. Most of the time these mod-
els are implicit in the algorithm itself; when the algorithm 
makes a choice about the maliciousness of network activity, it 
is applying its internal models, and therefore the results are 
limited to the model’s accuracy and coverage. A better ap-
proach is to employ explicit network and attack models at a 
correlation point, where events (not yet alarms) from multiple 
algorithms can be reinforced to provide high value alarms, or 
explained away to reduce false positives. 

Current network monitoring algorithms face strong chal-
lenges when their use is intended for very high speeds. Several 
approaches have attempted to address these challenges. Broder 
and Mitzenmacher [2] describe the use of Bloom filters to 
speed up the accounting of network data traffic; Estan and 
Varghese [3] describe research directions in the context of 
gathering information from high speed net-works; Iannaccone 
et al. [4] describe an effort for basic measurements of relative 
high-speed links (e.g., OC-12 and OC-48) employing special 
network interface cards (NICs). 

II. SMITE 
With research funding from the US Government, we are 

developing a network monitoring solution called SMITE: 
Scalable Monitoring in the Extreme. The SMITE architecture 
design reflects three key observations on building for scale. 
First, very high data rates necessarily cause changes in the 
way traffic features are extracted from the network. Second, 
the features that are extracted must be appropriate to support a 
broad range of attack detection algorithms. Third, the algo-
rithms should be viewed as contributing evidence about at-
tacks, where the evidence is correlated to prove (or disprove) 
an attack hypothesis. 

A. Layered Approach 
Figure 1 shows the three levels of the SMITE architecture: 

Sensors, Algorithms, and the Correlator. The sensors extract 
simple traffic features and other information from the network This material is based upon work supported by DARPA under contract 

N66001-08-C-2050 with SPAWAR. Approved for Public Release, distribu-
tion unlimited. 



traffic and place that data into temporary data structures. 
Here, very close to the actual traffic, there is no time 
budget for complex analysis or careful culling of the alerts 
generated. Instead, the sensors perform very fast 
processing to build the data structures that act as a first 
pass aggregation of the traffic features. 

Data collected at one or more sensors is passed to the 
Algorithms Layer, where various algorithms do more 
complex processing of the extracted traffic features and 
build more complex data structures. The time budget at 
this layer is not as constrained because the algorithms are 
operating on aggregated data periodically collected from 
the Sensors Layer. 

The top layer in the architecture, the Correlation Layer, 
holds the Event Correlation Analyzer. It takes as input the 
events generated by the various algorithms and, using 
models of both attack profiles and normal network behav-
ior kept in the correlation knowledge base, explores a 
space of hypotheses to determine which events are truly 
high value alerts. 

Note that most intrusion detection systems do not ex-
plicitly separate the Sensors and Algorithms Layers be-
cause both functions—feature extraction and feature 
analysis—are performed on the same computational 
platform. However, the two layers require very different 
execution environments, especially at high data rates. The 
number of memory accesses is the key driver for the design of 
a sensor, since memory is by far the slowest aspect of process-
ing the traffic, while the time budget allows algorithms to run 
on a more conventional computational platform. 

Also note that a feature of this architecture is that it sup-
ports algorithms that operate on different temporal and spatial 
scales. Sensors operate on very little context—that of the 
packet only—and have very little time to process the features. 
The algorithms operate on features collected from many pack-
ets, allowing detection of events that occur within flows and 
even over several flows. Since data can be stored much longer 
at the Algorithms Layer, algorithms that employ long-term 
trend analysis can be used here as well. 

This layered architecture provides an extensible framework 
for adding new algorithms and expanding the deployment 
footprint, supporting both singular and distributed deploy-
ment. 

B. Scaling Issues 
The primary place to address scaling is at the Sensor Layer, 

where the sensors meet the traffic, and where lessons from 
router design can be applied. The key driver in high-speed 
network processing system design is the duration of a mini-
mum-size packet at link speed; any operation that takes longer 
than this time must be parallelized either by breaking the op-
eration down into smaller steps (e.g., pipelining), or by spread-
ing the load over multiple processing elements (e.g., cluster 
parallelism). 

Successful high-speed router designs generally employ 
pipelining rather than load splitting because pipelining rarely 

changes the behavior of the processing, while load-splitting 
can introduce ordering and state-sharing complications. Load-
splitting designs usually depend on flow bandwidth being 
small relative to a single processing element, and on passing 
all packets of all flows that share state through a single proc-
essing element. These characteristics do not necessarily hold 
for the target environment for a network monitor—single 
flows can be multiple gigabits in bandwidth, and many detec-
tion algorithms of interest must examine traffic across multi-
ple flows. 

The minimum packet duration (Tmin) constrains the design 
choices for hardware implementation at multi-gigabit speeds. 
At 1 Gb/s, Tmin is about 500 ns, depending on the link layer 
used. A Tmin of 500 ns allows thousands of instructions per 
packet in a single conventional 3 GHz CPU core, but only 
about 10 random memory references to main (DRAM) mem-
ory. Six of these 10 memory accesses are used just to read the 
packet into memory and selected fields into the CPU registers. 
This leaves a scant 4 memory accesses per packet for sensor 
data structures. These large structures usually will not fit into 
CPU L1 or L2 caches, and exhibit no locality of reference, so 
access to main memory is typical. It is worse, of course, at 
higher line rates. 

Thus, conventional processors are marginal at processing 
packets at 1 Gb/s line rate, so load-splitting parallelism would 
be required. Since this restricts algorithm choice, may require 
additional bookkeeping about packet ordering, and scales 
poorly to 100 Gb/s (requiring hundreds of CPUs, each with its 
own main memory), we use high-performance pipelined 

 

Figure 1—SMITE Layered Architecture 



hardware, the approach that has proven itself successful in 
router applications [5]. 

Despite the advances in the area of network monitoring, the 
current state of the art does not achieve the monitoring at very 
high speeds. Monitoring network traffic with the intention of 
feeding network defense algorithms operating at these speeds 
requires special platform designs, and many approaches are 
based on research into high-speed routers [6]. Special purpose 
network processors, such as Intel’s IXP line [7], are capable of 
high speed switching but fail at more complex processing due 
to memory limitations. 

The SMITE platform is therefore a high-performance pipe-
lined FPGA hardware design that can support a wide variety 
of sensors that examine the traffic stream flowing past each 
sensor in the processing pipeline. In general, computation is 
not a limiting factor; the primary limitations on sensors are 
memory access time and memory table size. 

C. Event Correlation 
Any system that seeks to provide high value alarms that are 

actionable and accurate with few false alarms must aggregate 
and fuse as much detector information as possible. Individual 
detection algorithms will report suspicious or malicious activ-
ity with varying degrees of detail or confidence. Yet data from 
as many detection alerts as possible must be included in the 
process of generating high value alarms. The reasoning proc-
ess must analyze detection events with widely varying scope 
and credibility in a single framework. 

Our approach for building the Event Correlation Analyzer 
component is to leverage the successful Scyllarus event corre-
lation engine [8]. Scyllarus synthesizes high value alarms from 
these events in a three-step process: First, events from indi-
vidual detection algorithms are clustered with events sharing 
common attributes such as time of arrival or locality in ad-
dress space. Next, based on these clusters, event explanations 
are hypothesized, some as malicious, and some as benign. 
Since some of the events represent competing hypotheses to 
explain the same reports (e.g., what looks like malware trans-
fer might be simply software update), the final stage of the 
process weighs evidence for and against different event hy-
potheses. 

D. Attack Detection Algorithms 
Informed by these architectural considerations, SMITE 

employs algorithms covering the major forms of attack: mali-
cious behavior, malicious code infections, information gather-
ing, and covert control of assets. These algorithms are not a 
canonical set of algorithms; while they do cover an interesting 
set of attacks, the SMITE architecture is designed to be exten-
sible to new sensors and algorithms. 

It is important to note that there is some overlap in the at-
tacks these algorithms can detect. This is a feature we exploit 
in SMITE. Reducing the number of false alarms, and conse-
quently increasing the number of high value alerts, requires 
corroboration and correlation of data gathered by the various 
algorithms. 

III. WORKED EXAMPLE 
Figure 2 shows a worked example of the SMITE detection 

architecture. The monitor is placed at the gateway of an enter-
prise network, where there are two well-known web servers. 
In this attack, one of the internal servers has been compro-

A: New Server Detected 

B: Entropy Too High 

 

C: Client Acts Like a Server 

 

Figure 2—Detection Algorithms 



mised and BitTorrent has been installed. Bit-
Torrent is a peer-to-peer network where files are 
distributed among various hosts, and hosts both 
get and serve these files, so BitTorrent nodes are 
simultaneously both clients and servers. 

Figure 2a shows the results of the “Host 
Characterization” algorithm that detects new 
servers. At 9:08, a new service port is detected on 
Server 1. Figure 2b shows the “Entropy” algorithm 
tracking the diversity of connections from a par-
ticular host. Clients naturally show higher entropy 
because they typically initiate many connections, 
where servers do not. At 9:10, Server 2 starts 
showing many outgoing connections. Figure 2c 
measures how much a host acts like a server, 
which is part of the “Connection Analyzer” algo-
rithm. At 9:10, Server 1 starts acting like a client. 

Figure 3 shows how the Event Correlation 
Analyzer is building evidence towards a 
hypothesis of attack. When new service ports 
where added to Server 1, the Correlator made note 
of that (“Server Adds Ports” became “Observed”). 
There are two explanations, one benign (“Legit 
Svc Added”) and the other malicious (“Infected”), 
but there is not enough evidence to pick. Then 
Server 1 started connecting to many hosts (“High 
Entropy External”), not what servers do, and it 
began to act like a client (“Server to Client”), again not what 
servers do. The plausible explanation for both is that Server 1 
now “Initiates Conns”. Combined with the possibility that the 
server is “Infected”, enough evidence is present to set the 
alarm. 

IV. CONCLUSION 
This paper presents the SMITE network monitoring archi-

tecture designed specifically to scale in both network line rate 
and network size. The obvious solution to scalable monitoring 
is to develop and use algorithms that are intrinsically scalable. 
This is a good and necessary first step, but the key insight to 
scaling is not just the algorithms but having an appropriate 
platform on which to execute the algorithms. Since network 
line rates are outpacing processing speed, network features 
must be extracted from the traffic and placed into aggregating 
data structures as simply as possible. Here, at the network in-
terface, it is memory accesses and not computation that is the 
limiting factor. 

The SMITE architecture separates the feature extraction 
and processing into a Sensor Layer (running at network line 
rate) and an Algorithm Layer (processing aggregated data, so 
running with less time constraints). The architecture provides 
a suite of algorithms providing multiple views into the data. 
The algorithms produce “events,” or notification of anomalous 
behavior, and pass these events on to the Correlation Layer. 
The Correlation Layer affords the algorithms the luxury of 
being liberal with event notification—less effort is required to 
cull the events within the algorithms themselves since the 

Event Correlation Analyzer actually works better with more 
events. Without the Correlation Layer, the events would be 
alarms, and number of false positives would be overwhelming. 
With the Event Correlation Analyzer, the system builds hy-
potheses to explain the observed behavior, looking for both 
benign and malicious explanations, until one or the other is 
proved; only then is an alarm sent to the network operator. 

REFERENCES 
[1] G. Gilder, TELECOSM: How Infinite Bandwidth will Revolu-

tionize Our World, Free Press/Simon & Shuster, 2000. 
[2] A. Broder and M. Mitzenmacher, “Network Applications of 

Bloom Filters,” Internet Mathematics, 2004. 
[3] C. Estan and G. Varghese, “New Directions in Traffic Meas-

urement and Accounting,” SIGCOMM, Pittsburgh, PA, August 
19-23, 2002. 

[4] G. Iannaccone, C. Diot, I. Graham, and N. McKe-own, “Moni-
toring Very High Speed Links,” ACM Internet Measurement 
Workshop, San Francisco, CA, November 1-2, 2001. 

[5] C. Partridge, et al., “A 50-Gb/s IP Router,” IEEE/ACM Trans. 
on Networking, Vol. 6, No. 3, June 1998. 

[6] S. Kumar, et al., “Algorithms to Accelerate Multiple Regular 
Expressions Matching for Deep Packet Inspection,” SIGCOMM 
Computer Communication Review, August 2006. 

[7] Intel IXP2XXX Product Line of Network Processors. 
[8] W. Heimerdinger, “Scyllarus Intrusion Detection Report Corre-

lator and Analyzer,” Proceedings of the DISCEX-III Confer-
ence, 2003. 

 

Figure 3—Event Correlation Analyzer 


