
Automatic Generation of Static Fault Trees from AADL Models

Anjali Joshi
University of Minnesota

Minneapolis, U.S.A.
ajoshi@cs.umn.edu

Steve Vestal
Honeywell Laboratories

Minneapolis, U.S.A.
steve.vestal@honeywell.com

Pam Binns
Honeywell Laboratories

Minneapolis, U.S.A.
pam.binns@honeywell.com

Abstract

Safety-critical systems, such as avionics systems and
medical devices, are developed with stringent safety re-
quirements. System safety analysis provides assurance
that the system in consideration satisfies these safety con-
straints. Traditionally, safety analysis is performed man-
ually based on various informal requirements and design
documents. Recent work in the area of model-based safety
analysis,where safety analysis is based on a central formal
model of the system, has helped demonstrate some key ad-
vantages of this methodology, including automatic genera-
tion of safety artifacts. Although most of this work is still far
from being mature, we believe that this methodology holds
promise in making the safety analysis process more for-
mal, automated, consistent, and most importantly in help-
ing tightly integrate the safety and systems engineering pro-
cesses. We also believe that it is crucial to have a flexible
modeling notation to capture both the system and the failure
information to be able to derive “realistic” safety analysis.
To corroborate our position, in this paper, we describe our
prototype tool for automatically generating static fault trees
based on architectural AADL models that can be input into
a commercial fault tree analysis tool, CAFTA. We also put
forth some challenges that we encountered that are poten-
tially applicable to other approaches to automating gener-
ation of safety artifacts.

1. Introduction

Safety-critical systems are those systems where incor-
rect operation could lead to loss of life, substantial material
or environmental damage, or large monetary losses; e.g.,
avionics systems, medical devices, and automobiles. Sys-
tem safety analysis provides assurance that the system in
consideration satisfies certain safety constraints even in the
presence of certain component failures. Safety engineers
traditionally perform the safety analysis activities manually
based on informal design models and various other docu-
ments such as requirements documents. This informal man-
ual process makes these analyses subjective and dependent

on the skill of the practitioner. Fault trees are one of the
most common cause consequence models used by safety
engineers; yet different safety engineers will often produce
fault trees for the same system that differ in substantive
ways. The final fault tree is typically produced only through
a process of review and consensus building between the
system and the safety engineers. Manually exposing the
complex interactions between system components that af-
fect safety is a non-trivial task and could result in missing
information even in the final fault tree.

Model-based approaches to safety analysis have been
proposed [5] [6] [2] [1] [3] [4] to address some of these
issues by consolidating the information spread across var-
ious informal documents into a system model and deriv-
ing the safety artifacts automatically based on this system
model. Some of the differences between the various ap-
proaches originate due to the type of the system model they
consider as a basis for their analysis. The system model can
be in the form of a high-level architectural model, a low-
level system behavior model, or some combination of the
two, based on various factors such as the current phase in
the development cycle, granularity of the analysis, and so
on. There exist tools for automatic fault tree generation,
where the system model is encoded in abehavioralmodel;
e.g., a NuSMV model for FSAP [2], a Simulink model us-
ing HiP-HOPS methodology for SAM [7], or an Altarica
model [1].

Since safety analysis is performed in context of the en-
tire system, it also needs to take into account the physical
components of the system. One drawback of using the for-
mal behavioral languages, from the safety analysis point of
view, is that there is little inherent support for represent-
ing the system architecture in comparison to architecture
description languages. The flexibility of the notation used
for modeling the failure information is also crucial to de-
riving realistic safety analyses. The architecture description
language, AADL (Architecture Analysis and Design Lan-
guage) [9], an SAE standard, has inherent support for de-
scribing and binding various system components through
the core language. The AADL standard also provides a Er-
ror Model Annex [10] sub-language that supports specifi-
cation of fault and failure information. One of the advan-
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Figure 1. Snippet of a Simple Dually Redundant System in AADL

tages of the Error Annex is that it enables specification of
error annotations on the original AADL architecture model,
hence enabling the safety analysis to consider the compo-
nent error models and their interactions in context of the
system architecture.

In our current exercise, we use AADL as the notation for
capturing the system architecture model and use the Error
Model annex to capture the component faults and failure
modes. We implemented a tool that automatically gener-
ates static fault trees that can be input into the commercial
fault tree analysis tool, CAFTA [11]. For deriving other
types of dependability artifacts from AADL and the Error
Model Annex, the interested reader is referred to the work
on automatically deriving GSPN (Generalized Stochastic
Petri Net) [8].

The rest of the paper is organized as follows. The next
Section gives a background in modeling using AADL and
the Error Model Annex with the help of a small example.
The following Section discusses the high-level approach
to automatically generating static fault trees based on the
AADL models. We conclude the paper with a discussion of
some of the advantages and challenges of this approach.

2. Background

In this Section, we give a brief overview of the AADL
standard [9] and then introduce a small running example to
illustrate system and error modeling using AADL and the

Error Model Annex.

2.1. AADL Overview

Components form the central modeling construct in
AADL 1. Components are defined through thetype and
implementationdeclarations. A component type dec-
laration defines a component’s interface elements and
externally observable attributes (e.g.,features that are
interaction points with other components,properties
that define intrinsic characteristics of a component). A
component implementation declaration defines a compo-
nent’s internal structure in terms ofsubcomponents ,
connections among the features of those subcompo-
nents,properties , etc. There are three distinct sets
of component categories: 1. application software (e.g.,
thread , process , data ), 2. execution platform (e.g.,
processor , memory, bus ), 3. composite (system ,
which is a composite of software, execution platform,
or system components). The AADL standard includes
predefined binding properties to specify mappings between
the relevant execution hardware components and the
software components and connections. The AADLSystem
Instance Modelis generated from the declarative model
by specifying a system implementation as the root of the
system instance and recursively instantiating the subcom-

1Due to lack of space, we will only explain the relevant AADL and
Error Model Annex constructs. Please refer to the standard for details.



package Standard_Errors
public annex error_model
{ **
error model Basic

features
err_free: initial error state;
loss_avail, loss_int: error state;
fail_stop, fail_babble: error event;
loss_data, corrupt_data: in out error propagation;

end Basic;

error model implementation Basic.Hardware
transitions

err_free -[fail_stop, in loss_data]-> loss_avail;
err_free -[fail_babble, in corrupt_data]-> loss_int;
loss_avail -[fail_babble]-> loss_int;
loss_avail -[in loss_data, out loss_data]-> loss_avail;
loss_int -[in corrupt_data, out corrupt_data]-> loss_int;

end Basic.Hardware;

error model implementation Basic.Software
transitions

err_free -[in loss_data]-> loss_avail;
err_free -[in corrupt_data]-> loss_int;
loss_avail -[fail_babble]-> loss_int;
loss_avail -[in loss_data, out loss_data]-> loss_avail;
loss_int -[in corrupt_data, out corrupt_data]-> loss_int;

end Basic.Software;
** };
end Standard_Errors;

Figure 2. Error Model Specification using the
Error Model Annex

ponents. The system instance is bound by identifying all
the actual binding properties defined in the components.
The Software Engineering Institute (SEI) has developed
an open source AADL Tool Environment, OSATE, as a
set of plug-ins on top of the open source Eclipse platform.
OSATE provides a toolset for front-end processing of
AADL models, such as parsing and semantic checking
for textual AADL. OSATE also has support to generate a
bound System Instance Model.

Example: Simple Dually Redundant System in AADL
Consider a trivial dually redundant system (Figure 1) com-
posed of two software processes and two processors con-
nected via a data bus. The highest-levelDualSystem
system component is composed of two subcomponents
- HWand SW, instances of the system implementations
Duplex.Basic andDual.Basic , respectively.HWand
SWsubcomponents are in turn composite components, as
shown in Figure 1. TheDualSystem implementation also
includes properties that bind the two software processes to
the two processors and the connections between the two
software processes to the hardware bus. We can then create
the system instance by instantiating the highest-level com-
ponent implementation,DualSystem.Basic .

2.2. Error Model Annex Overview

AADL is designed to be extensible (using Properties and
Annex libraries) to accommodate analyses of the runtime
architectures that the core language does not completely

support. The Error Model Annex [10] of the AADL stan-
dard provides a mechanism to allocate error annotations
to AADL components and connections. The Annex sub-
language allows the specification of individual error models
on components, interaction between error models through
error propagations, rules determining error propagations be-
tween various types of components, filtering and masking
error propagations, and hierarchical composition of sub-
component error models.
Example: Error Model Specification We now define a
generic error model type and two slightly different imple-
mentations for the software and the hardware components
in our example architecture model as shown in Figure 22.
The error model typeBasic defines error states (repre-
senting failure modes), an initial error state, error events
(representing intrinsic faults), and input/output error propa-
gations. Error events are not only used to model component
fault events; they can also model repair events (we did not
include repair events in our current prototype). The error
implementation defines error model transitions that change
the error state of the component based on the error events
and propagations. Occurrence properties can be defined for
the error events and out propagations that specify their oc-
currence rates (fixed, poisson, or a user-defined rate).
Example: Error Model Association Once we have the
error models defined, we can associate them to the rele-
vant components and connections in the system model via
the annex subclause defined as an extension point in the
core AADL language, as shown in Figure 3. TheModel
property associates the given component to a particular er-
ror model type or implementation. Error models associ-
ated with components can either be derived from their sub-
component error models (Model Hierarchy property
value Derived and Derived State Mapping prop-
erty maps the subcomponent error states to the component
error states), or they can be abstractions of the subcom-
ponent error models, in which case the subcomponent er-
ror models will be ignored (Model Hierarchy property
valueAbstract , which is the default value). In the case
of Derived hierarchy, the use of theModel property is
only to identify the component error states defined in the
associated error model that get used in the mapping. For
components withAbstract error models, we can also as-
sociateGuard In andGuard Out properties that provide
guard conditions for thein andout error propagations, re-
spectively. TheGuard In property enables the component
defining it to mask (i.e., ignore) or translate the incoming
error propagations at the receiving interface. In our exam-
ple AADL model, we associate theHWsubcomponents (P1,
P2, Data Bus) with the Basic.Hardware implemen-
tation, and the all the software components (SW, P1, P2)
with theBasic.Software implementation, withSWde-
fined with aDerived error model.

2lossof availability, lossof integrity, lossof data, corrupteddata, er-
ror free shortened to lossavail, lossint, lossdata, corruptdata, errfree
respectively



system implementation Dual.Basic
...
annex error_model { **

model => Standard_Errors::Basic.Software;
model_hierarchy => Derived;
derived_state_mapping =>

err_free when P1 or P2,
loss_avail when P1[loss_avail] or P2[loss_avail],
loss_int when others;

report => loss_avail, loss_int;
** };
end Dual.Basic;

process implementation SW_Proc.Basic
annex error_model { **

model => Standard_Errors::Basic.Software;
occurrence => fixed 1E-4 applies to error fail_stop;
guard_in =>

mask when Input_1[err_free] or Input_2[err_free],
corrupt_data when Input_1[loss_int] and

Input_2[loss_int],
loss_data when others

applies to Input_1, Input_2;
** };
end SW_Proc.Basic;

Figure 3. Error Model Associations

3. Static Fault Tree Generation

In this Section, we will describe our approach of auto-
matically extracting static fault trees from the AADL model
annotated with the relevant error models. This tool is a plug-
in into the existing OSATE framework. The fault tree gen-
eration tool is designed to be flexible and can be re-targeted
to more than one fault tree analysis tool. The portion of the
tool that extracts the System Instance Error Model can be
reused to generate different types of safety artifacts, such
as Markov Chains. To analyze our generated fault trees we
used CAFTA, a commercial fault tree tool that was available
and widely-used within Honeywell.

3.1. Our High-level Approach

We divide our fault tree generation approach into three
high-level steps: extracting a system instance error model,
generating an intermediate fault tree, and formatting the
intermediate fault tree for a specific analysis tool.

1. System Instance Error Model Extraction
The System Instance Error Model consists of a set of error
model instances for component and connection instances
and client/server bindings within that system. Though
OSATE provides support to generate a bound system
instance Model, it does not create the system instance error
model. Hence, we need to extract the system instance
error model based on the system instance model and the
individual error models referenced in the system instance
model. There are two types of instances in the system
instance model - Component instances and Connection
instances (semantic connections). The component and
connection declarations can be directly associated with
an error model (via theModel property). These can

be directly retrieved for the instances. If there is no
directly associated error model for a connection instance,
then the error model of the ultimate source applies to
that connection instance. For component instances, in
addition to theModel property, we also need to retrieve
Model Hierarchy , Derived State Mapping ,
Occurrence , and Guard In property values. For
connection instances, onlyOccurrence properties
other that theModel property apply. We also need to
identify the error propagation sources for the component
and connection instances. For simplicity, we distinguish
component instance error propagation sources as:Direct
propagations- These are the error propagations that occur
through port connections, either due to the error model
on the connection, or the error model of the connected
component instance, andIndirect propagations- These are
the error propagations that occur from other component
instances through access connections or due to binding
properties.

We store all this information in the form of nodes of a
Directed Graph (DG). For component instances with de-
rived error models, the node points to all the hierarchically
contained subcomponents. For component instances with
abstract error models and connection instances (which only
have abstract models), the node points to all the components
that could be sources of their input error propagations. The
underlying error propagations paths can lead to potential cy-
cles in the DG that need to be broken while generating a
fault tree (details in the Discussion Section).

In our illustrative example, theSW subcompo-
nent P1 is associated to anAbstract error model
Basic.Software , with Guard In properties applied
to its two input ports. The error propagations can occur
directly through the input ports,Input 1 and Input 2,
and also indirectly from the processor that it is bound to,
HW.P1. Note here that theGuard In property does not
apply to indirect error propagations. As another example,
the HWsubcomponentData Bus is associated to the
Abstract error modelBasic.Hardware . Based on
the error propagation rule in the Error Annex that a proces-
sor can propagate errors to the bus that it is connected to,
both processorsHW.P1 and HW.P2 can propagate errors
to HW.Data Bus.

2. Intermediate Fault Tree Generation
Once we have the system instance error model informa-
tion stored in the form of a DG, we now go on to the
fault tree generation phase. The fault tree generation al-
gorithm is a recursive algorithm, with the top level event
being the error state or propagation listed in aReport
property (these are the declared system hazards to be an-
alyzed). Based on our example (Figure 3), theReport
property lists two error states,loss of availability ,
loss of integrity , which will be considered as top-
level events for generating the fault trees.

We then apply a set of optimizations to the intermediate



Figure 4. Snapshot of the Auto-generated CAFTA Subtree

representation that perform syntactic optimizations, such as,
remove redundant operators, collapse gates, etc. More com-
plex optimizations are also implemented such as, sharing of
subtrees within the same fault tree and also between sepa-
rate fault trees. This sharing may or may not be preserved
in the output fault tree depending on the support in the tar-
get analysis tool. Pruning redundant subtrees is an involved
optimization that we currently do not perform.

Optimization of the generated fault trees turned out to
be a critical and non-trivial aspect of our work. We will
discuss in detail some of the challenges associated with this
optimization in the Discussion Section.

3. CAFTA Fault Tree Generation
This will parse the intermediate representation and output
CAFTA fault trees and the corresponding basic events and
gates database files. CAFTA allows multiple top level
events, which lets us output fault trees with different top
level gates, but which can share subtrees.

Example Auto-generated CAFTA Fault Tree As an ex-
ample, consider a snapshot of a subtree for the error
state loss of integrity for HW.Data Bus, a part
of the generated output CAFTA fault tree, as shown in
Figures 4. Based on the error transitions defined in
theBasic.Hardware error model implementation (Fig-
ure 2), this error state can be reached in the following three
ways: (1) The component is in theerror free state
and a error eventfail Babble occurs, (2) The compo-
nent is in theerror free state and anin error prop-
agationcorrupted Data occurs, and (3) The compo-
nent is in theloss of availability state and a er-
ror eventfail Babble occurs. Figure 4 shows anOR
(G157) gate, with three inputs corresponding to the above
cases (the intrinsic error event is specific to the compo-
nent and a fully instantiated name is given to the event
HWData Bus fail babble ). The priority-AND
(G161) gate graphically captures the sequence defined in
the error transition. This gate is considered by CAFTA

as a regularAND gate for quantitative analysis. As we
discussed earlier, there is an error propagation path from
the two processorsHW.P1 and HW.P2 to the bus. Con-
sider error propagation fromHW.P1 - based on the er-
ror transitions, we identify that it emits theout error
propagationcorrupted data when it is in error state
loss of integrity , which can be reached either with
the intrinsic error eventfail babble , or an in error
propagationcorrupted data . Note thatHW.P1 can
be propagated error from the bus itself, considering which
causes a cycle in the fault tree and we break it by ignoring
this particular error propagation. Thuscorrupted data
can be propagated only when the intrinsic error events,
fail babble , occur in either of the two processors (as
shown with anOR(G158) gate in Figure 4). Note that this
subtree is shared (the small triangle shows the page numbers
where this subtree is referenced).

4. Discussion

Even with a really simple system architecture, we can
start annotating it with fairly complex and realistic error
models representing the various faults and failure modes.
This is important, as one can start performing safety anal-
ysis from the time that the system is just being conceptu-
alized and see the safety implications of the design choices
made early on. This is one of the key advantages of our ap-
proach, and of model-based safety analysis in general. The
resulting fault trees are hierarchical (one can trace through
the system architecture hierarchy by tracing through the
fault tree), consistent (different fault trees that refer to the
same intrinsic error event, will always refer to the same ba-
sic event name in the fault tree database), detect common-
mode failures (shared subtrees), and manually readable (the
gate information will help the reviewer relate to the system
and error models). Different fault trees can share subtrees
that can help the reviewer or the analysis tool identify what
basic events contribute to multiple top-level hazards. The
rerun of the analysis is easy. By developing the prototype



tool targeting CAFTA, we illustrated how one can generate
common safety artifacts, such as fault trees that can be then
fed into commercial analysis tools that safety engineers are
comfortable with.

With the obvious benefits that this approach has to of-
fer, there are still quite a few challenges that need to be
addressed to make this approach practically feasible. One
of the potential risks is in the safety artifacts completely
missing out failure modes that cannot be captured in the er-
ror model. Due to the constraints imposed by AADL and
the Error Model Annex languages, certain types of failure
modes cannot be specified in the error model and should be
considered separately.

Aggressive optimizations are crucial to automatically
generating “manageable” fault trees. Here, we discuss one
of the challenges that we encountered in performing opti-
mizations for sharing and pruning of sub-trees. To illustrate
the problem with an example, consider theSWcomponent
implemented byDual.Basic (Figure 1). Note thatP1
andP2 depend on each other for their inputs leading to a
cyclic dependency in the system architecture.SWhas an as-
sociated derived error model that refers to subcomponents
P1 andP2 error states for computing its own error state (re-
fer to Derived State Mapping property in Figure 3).
The fault tree for theSWcomponent in certain error state
will have a structure as shown in Figure 5. The subtree for
P1 in the left branch is dependent on error propagations
from P2, which in turn is dependent on error propagations
from P1, leading to a cycle in the fault tree (this error prop-
agation cycle exists in the intermediate representation DG).
Currently, we break this cycle by simply keeping track of
all the components that we have already visited (call this
list Ancestors). In this case, when we refer toP1 as the
source to our error propagation, ourAncestorslist contains
(SW, P1, P2), and we can immediately detect a cycle and
ignore the error propagation occurring fromP1. Note that,
we also share subtrees if we detect a component that has a
subtree generated for a particular error state or propagation.
In this case however, when we encounterP2 on the right
branch, we cannot share the same subtree as the one created
for P2 on the left branch, though it refers to the same error
state or propagation. This is due to the fact that the cycle
that was broken off forP2 on the left branch is not yet a
cycle on the right side (the ancestor list (SW, P2 does not
containP1 yet). Thus, we need to regenerate a new fault
tree forP2 on the right hand side. Currently, we only share
subtrees if we find that theAncestorlist is identical at the
two locations referring to the particular component.

More aggressive optimizations for pruning and handling
cycles can be applied to sub-trees that aremonotonic(sub-
trees for which both positive and negative representations
do not appear as basic events). However, we must introduce
negation operators for some constructs in the language be-
cause not all fault conditions can be represented by mono-
tonic fault trees. Aggressively pruning non-monotonic fault
trees is non-trivial and needs to be investigated further. Our
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Figure 5. Cycles and Sharing Subtrees

approach to handling cyclic error propagations is rather
simplistic and needs to be rigorously evaluated.

In conclusion, this paper discussed our approach to auto-
matically generating static fault trees for a commercial tool
based on AADL models and the advantages and challenges
of automatically generating such safety artifacts.
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