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ABSTRACT 

Challenging problems associated with system software complexity growth are threatening industry’s ability to build next 

generation safety critical embedded systems including helicopter avionics systems. Contributors to these problems 

include the growth of software, system integration, and interaction complexity exacerbated by ambiguous, missing, 

incomplete, and inconsistent requirements.  Problems continue to hamper systems in the areas of resource utilization, 

timing, safety and security. A new approach called Architecture Centric Virtual Integration Process (ACVIP) which is 

based on the Society of Automotive Engineers (SAE) Standard AS5506A Architecture Analysis and Design Language 

(AADL)
 
is being developed and investigated by the US Army to address these challenges. ACVIP is a quantitative, 

architecture-centric, model-based approach enabling virtual integration analysis in the early phases and throughout the 

lifecycle to detect and remove defects that currently are not found until software and systems integration and acceptance 

testing.  In an effort to investigate such an approach, the Government, in conjunction with researchers from Carnegie 

Mellon University (CMU) Software Engineering Institute® (SEI) and Adventium Labs®, are conducting ACVIP 

requirements, safety, and timing analyses in parallel with the Joint Common Architecture (JCA) Demonstration (Demo). 

 

INTRODUCTION  

The United States Army Aviation Development Directorate 

(ADD) and Software Engineering Directorate (SED), teamed 

with Carnegie-Mellon University (CMU) Software 

Engineering Institute® (SEI) and Adventium Labs®, are 

currently conducting Science and Technology (S&T) 

research on the Joint Multi Role (JMR) Technology 

Demonstrator effort’s Joint Common Architecture 

Demonstration (JCA Demo) Project (Ref. 1) to investigate 

and mature a concept called Architecture Centric Virtual 

Integration Process (ACVIP). ACVIP is a DoD process 

fashioned after the aviation research study called System 

Architecture Virtual Integration (SAVI) (Ref. 2) performed 

by a consortium of aerospace organizations led by 

Aerospace Vehicle Systems Institute (AVSI).  Like SAVI, 

the purpose of the ACVIP is to address the affordability and 

associated risks of developing complex software intensive 

systems through early virtual integration and analysis before 

implementation.  The JCA Demo provides a first look for the 

Government to gain experience with several analyses and 

tools to determine if a subset of ACVIP analyses detect any 

integration issues or software defects prior to or during their 

manifestation in the JCA Demo effort. ACVIP analyses were 
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conducted as a shadow effort during the demo and did not 

constitute the execution of an ACVIP review process.   

The JCA Demo was designed to exercise the Future 

Airborne Capability Environment (FACE™) (Ref. 3) 

Technical Standard and Tools and Joint Common 

Architecture (JCA) by producing and integrating a standard 

conformant Data Correlation & Fusion Manager (DCFM) 

software component into an unidentified system (i.e., later 

revealed as the Modular Integrated Survivability (MIS) 

system). The ACVIP Shadow effort involves the modeling 

of the MIS system architecture, the DCFM component and 

their associated requirements using the Architecture 

Analysis and Design Language (AADL) (Ref. 4) and Open 

Source AADL Tool Environment version 2 (OSATE2) (Ref. 

5). The analyses are similar to, but more advanced than, 

what has been demonstrated during the SAVI program. 

SAVI conducted a return on investment (ROI) study citing 

that for a new aviation system with the complexity of 27 

million software lines of code (SLOC),an estimated nominal 

savings of about $2.4B out of $9.2B, i.e., about 25%, could 

be realized from using a systems architecture virtual 

integration process to reduce software rework (Ref. 6). This 

represents the complexity level of advanced aircraft in 2010 

which suffered significant software system integration 

issues. 

This paper will address the following: 

1) JCA Demo Background  

2) Overview of the AADL and OSATE2  
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3) ACVIP in the context of lifecycle acquisition  

4) Discussion of the ACVIP Requirements, Safety and 

Timing Analyses Methods along with JCA Demo 

Experience with each  

5) Findings and lessons learned from the JCA Demo 

ACVIP Shadow effort.  

6) Projection of future maturation and plans for 

ACVIP beyond the shadow effort  

JCA DEMO BACKGROUND 

In February 2013, the JCA Demo Broad Agency 

Announcement (BAA) was released on FedBizOps.gov 

without the incorporation of the ACVIP Shadow task.  The 

JCA Demo is a Technology Investment Agreement (TIA) 

requiring the delivery of a Data Correlation and Fusion 

Manager (DCFM) software component built to minimal 

textual requirements and a data model that contained 

information per the FACE Standard. The DCFM was to be 

integrated into the Modular Integrated Survivability (MIS) 

system with the MIS team acting as the system integrator. 

TIAs were awarded to two separate DCFM vendors, 

Honeywell Aerospace® and Sikorsky®-Boeing® Teams.  

The US Army’s Aviation and Missile Research 

Development and Engineering Center (AMRDEC) Aviation 

Development Directorate (ADD) and Software Engineering 

Directorate (SED) contracted with CMU SEI and Adventium 

Labs after the JCA Demo BAA was released to conduct 

shadow analyses with the AADL related to ACVIP.  The 

focus of the JCA Demo ACVIP Shadow effort was to 

conduct requirements, safety and timing analyses to identify 

issues in each of these areas prior to DCFM integrations into 

the MIS architecture.  

The JCA Demo project schedule and funding limitations 

prevented implementing a full ACVIP process. Two AADL 

models were created, a conceptual architecture model for 

requirements and safety analyses, and a runtime architecture 

model reflecting the timing of the intended operational 

system.  Normally the ACVIP process would refine a single 

conceptual model to create the runtime model and analyses 

would be generated from the same model incrementally. If 

ACVIP were fully implemented the JCA Demo analysis 

would have begun before solicitation release and continued 

throughout employing a single source of truth architectural 

model.  

For JCA Demo, communication between the DCFM 

developers, the system integrator and the ACVIP analysts 

was tightly controlled.  The purpose of this segregation was 

to see if the ACVIP analysis would uncover issues that 

would later manifest during the course of the demonstration.  

It was important for ACVIP to find issues without listening 

into discussions between the component developers and 

system integrators. It was equally important that the DCFM 

developers and integrator were not tipped off to issues 

discovered by ACVIP. 

The AADL modeling of requirements discovered 

significant problems with minimal effort prior to award of 

the TIAs.  For example, a problem related to response time 

requirements was discovered through early end-to-end 

latency analysis of the functional architecture model targeted 

to an ARINC653 platform. Since this was a shadow, the 

contractors developing the DCFM had to discover and 

clarify these issues to proceed with the development. From 

this experiment it was evident that pre-solicitation 

requirements analysis would have greatly benefited the 

demonstration in reducing requirements gaps and errors. 

AADL/OSATE OVERVIEW 

The AADL is an Architecture Description Language (ADL) 

(Ref. 7) designed from its beginnings in Defense Agency 

Research Programs Agency (DARPA) studies. Its purpose is 

to enable analysis across integrated components predicting 

qualities of the integrated system and then the generation of 

the system in accordance with the models and analyses.  

AADL started life as the MetaH language at Honeywell in 

the early 1990’s on the first research programs devoted to 

developing ADLs.  MetaH was intended for use in the 

domain of embedded real-time systems where predictable 

correctness is required supporting high assurance and safety 

critical systems.  The Government appointed Mr. Bruce 

Lewis (US Army SED and one of the authors of this paper) 

as the lead for this project after it was started by the US 

Navy.  The concepts were refined over three DARPA 

programs, but from the beginning, the language stressed 

component-based, analysis-driven, architecture centric 

development with automated compliant implementation, as 

developed by the Principle Investigator, Dr. Steve Vestal, 

also an author of this paper.  In Army internal projects, the 

concepts and capabilities proved so valuable that the 

language was taken to the SAE to create an international 

standard (i.e., SAE Aerospace Standard 5506) and to 

enhance the language to meet additional research and 

industrial requirements.  Dr. Peter Feiler, also an author of 

this paper, became the Lead Architect for this SAE language 

standard, known as AADL. AADL incorporates an extended 

set of MetaH concepts with concepts from the DARPA 

funded CMU architecture interchange notation, ACME, to 

achieve extensibility to accommodate multiple analysis 

dimensions from the same model. 

The AADL was specifically designed to support 

incremental refinement and analysis of a system from its 

conceptual architecture to its implementation runtime 

architecture.  AADL is a strongly typed language with well-

defined semantics. Strong typing provides consistency 

within the model, e.g., ensures that only components of the 

appropriate type are connected. Well-defined semantics 

ensures analysis tools interpret the model the same way and 

produce consistent results. For example, the execution 
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behavior of tasks is defined in the standard with a hybrid 

automata specification that allows for formal analysis using 

temporal logic.  As a result, AADL achieves portability 

across model editing tools and integration across contractors 

into a single specification captured in AADL. The 

extensibility mechanisms of AADL, annexes and property 

sets, ensure that this model consistency is maintained.  These 

extensions allow new domains of analysis to be supported by 

annotating the core language that is converted into 

representations for specific analysis tools, e.g., into timing 

models or fault tree representations. 

Because the AADL is an architecture language intended 

to support each phase of system development, it was 

designed to explicitly support incremental refinement and 

analysis throughout the system lifecycle.  Early analysis can 

be run on conceptual architecture models that may be 

incomplete. These models can still be checked for consistent 

integration. Any aspect of the architecture can be refined to 

the level required for that subsystem’s level of development. 

The AADL directly supports modeling and analysis of 

functional architectures as well as component, task and 

communication architectures of software systems, their 

deployment onto distributed hardware platforms, and their 

interfaces with the physical system.  The functions are 

mapped to components during the development process. 

These aspects are necessary to analytically predict 

operational quality attributes, i.e., the effects of software 

running on hardware to control physical system elements, to 

ensure they meet non-functional requirements. 

To find the system integration issues virtually, before 

physical integration, we need not only early analysis, but 

also analysis at each stage of development, at higher and 

higher levels of fidelity, to discover and correct issues 

through analysis and verification. The actual system 

implementation can then be integrated in accord with the 

verified model.  This is critical for trusted integration, a 

research objective of AADL and ACVIP.  The system can be 

integrated before the components have been populated with 

code, providing a very early prototype of the architecture 

structure and behavior.  Then as code is developed, via code 

generators for components (like Mathworks® 

MATLAB/Simulink™ and Esterel® SCADE™), the 

architecture can be populated and re-integrated for 

integration testing and refinement of the predictive models. 

The AADL component categories include software 

components (e.g., processes, threads (tasks), subprograms, 

and data, as well as thread groups and subprogram groups), 

hardware components (e.g., processors, buses, memory, 

devices, as well as virtual processors (e.g., partitions and 

multi-core hypervisors) and virtual buses (e.g., protocol 

layered buses).  AADL also has specific semantics for types 

of ports and connections.  At the next level up, the AADL 

has system components that encapsulate hardware and 

software components, into subsystems at multiple levels up 

to the system itself.  The AADL also supports abstract 

components which can be specified before a decision is 

made relative to the component category.  The abstract and 

system components provide a level for conversion from 

System Modeling Language (Ref. 8) (SysML, i.e., an 

extension of UML used for systems engineering) to AADL.  

Then the architecture can be extended related to its real-time 

attributes and its component categories in the AADL in a 

standard way designed for analysis and implementation.  

AADL components have both an external view (Type) 

and an internal view (Implementation).  Both can be 

extended and refined to create new components, reuse 

existing components and specify the components more 

completely, incrementally refining until the final component 

is fully specified.  Properties and annexes can be associated 

with each component category, as allowed in the language.  

These properties provide information about the component 

related to many aspects and domains of analysis.  The 

AADL ARINC653 Annex (Ref. 9) can be used to model 

ARINC653 (Ref. 10) partitioned architectures and 

properties; the AADL Behavior Annex (Ref. 9) can be used 

to model the internal behavior of the component; and the 

AADL Data Modeling Annex (Ref. 9) can be used to define 

the data types to support code generation. Properties can be 

associated related to safety, security, timing, binding to 

hardware, etc.  AADL Standard annexes and properties 

provide a very rich set of capabilities for analysis.  More 

recently, AADL has added functional components to support 

requirements and hazard analysis as well as refinement into 

the standard software, hardware, and system components for 

analysis and system building. 

The AADL language very naturally supports the ACVIP 

process. The SAVI international industrial (aviation 

integrators and suppliers) and Government (DoD, NASA, 

FAA) consortium determined that the key problem driving 

very high costs and high risks in aviation systems was the 

need to be able to keep the system integrated throughout the 

development process.  Their mottos, “Integrate, Analyze, 

then Build” and “Keep the system integrated throughout the 

development process”, lead to a virtual integration process 

throughout development, as well as keeping models 

consistent as development proceeds.  SAVI selected the 

AADL after reviewing all ADL’s for this purpose, especially 

related to the software-reliant part of the system.  The 

ACVIP is a subset of the SAVI process we can build on 

today.  Both SAVI and ACVIP are centralized on virtual 

integration, conducted incrementally, across suppliers and 

the system integrator, covering multiple domains of system 

analysis.  The AADL directly supports integration analysis 

against a single truth model (integrating the most recent 

data) for software reliant systems, incrementally, 

predictably, across critical analysis domains (such as safety, 

security, timing, scheduling, latency, utilization, etc) for 

aviation (and medical/nuclear/automotive, etc) systems.  It 

then supports advanced approaches to system 

implementation.  ACVIP and SAVI support contractor 

freedom to select their languages, analysis methods, tools 
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and models but then integrate the results into the integrated 

model expressed in the standard semantics of AADL and 

other languages for incremental integration analysis. 

AADL specifications can be processed in the OSATE2 

toolset which provides both a textual and graphical user 

interface for editing.  OSATE2 is an open source freeware 

product based on Eclipse that provides the reference 

implementation of AADL.  OSATE2 also integrates multiple 

analysis tools that can be used within the toolset.  OSATE2 

can export data to other analysis tools and has integrated 

capability for code generation, just recently demonstrated for 

ARINC653.  In the near future, OSATE will also support a 

user friendly form based input to assist engineers serving 

different roles 

The AADL Inspector (Ref. 11) is another toolset that 

can be used to develop AADL specification with a number 

of analysis methods, most of which have been developed in 

Europe.  It is a commercial toolset and includes simulation 

capability.  STOOD is an established commercial toolset that 

supports development in HOOD and AADL (Ref. 12). 

Another AADL toolset has been developed in Russia by 

the Russian Academy of Science in partnership with the 

GosNIIAS (Russian State Research Institute of Aviation 

Systems) aviation systems lab for Integrated Modular 

Avionics (IMA) architectures (Ref. 13).  This toolset has 

been partially released for public use, providing the AADL 

graphical and textual editor, but not releasing advanced 

analysis methods for IMA development and implementation. 

Each of these toolsets can exchange AADL models for 

selecting specific analysis tools of interest supported.  So by 

chaining tools, the developer can leverage strengths of each.  

There are also a number of other AADL tools, like the 

TASTE, COMPASS, and the D-MILS toolsets (Ref. 14). 

COMPASS and D-MILS extended the AADL language and 

are limited to European Union (EU) use. TASTE developed 

a “zero coding” approach to satellite system development 

and upgrades using a system engineering level interface, 

transformation into AADL, domain specific component code 

generators, analysis, and then automated AADL integration 

and generation of complete load images for the system. 

ACVIP IN THE CONTEXT OF 

ACQUISITION 

DOD 5000.02 Instruction for the “Operation of the Defense 

Acquisition System” (Ref. 15) addresses the acquisition 

process as shown in Figure 1.  From the earliest stages of 

acquisition requirements are formulated from stakeholders in 

the Initial Capabilities Document (ICD) and Capability 

Development Document (CDD) and derived to system, 

hardware and software requirements.  It is important that the 

validity and completeness of these requirements be checked 

early, for it is through the derivation of these requirements 

that mistakes are made which result in increasing cost of 

systems that can go all the way through to the Operations & 

Support phase. 

 

Figure 1: DoD 5000.02 Acquisition Lifecycle  

(Ref. 15) 

Embedded within this lifecycle are standard reviews 

such as System Requirements Review (SRR), Preliminary 

Design Review (PDR), Critical Design Review (CDR), Test 

Requirements Review (TRR), and Production Readiness 

Review (PRR).  In a model based ACVIP approach, it is 

envisioned that as the requirements lead to conceptual 

architecture(s) that virtual analyses, trades and verification 

can be conducted on the system as early as the Technology 

Maturation & Risk Reduction Phase and perhaps earlier. 

Stakeholder and system requirements documents often 

contain an implied architecture. Such conceptual 

architectures could be analyzed virtually to mitigate 

requirement issues.  There have been numerous examples of 

acquisition programs where requirements analysis has been 

deficient resulting in inadequate resources (memory, storage, 

processing bus bandwidth, and ample timing boundaries), 

residual safety risks, deficient security, and incomplete 

qualification.  Oftentimes, the errors that exist within the 

requirements result in a system full of risks and too 

expensive to fix, and ultimately driving to a Nunn-McCurdy 

program breech. 

The DoD 5000.02 instruction states, “… the Program 

Manager will integrate modeling and simulation activities 

into program planning and engineering efforts. These 

activities will support consistent analyses and decisions 

throughout the program’s life-cycle. Models, data, and 

artifacts will be integrated, managed, and controlled to 

ensure that the products maintain consistency with the 

system and external program dependencies, provide a 

comprehensive view of the program, and increase efficiency 

and confidence throughout the program’s life-cycle.”  It is 

envisioned by SAVI and ACVIP that these problems can be 

averted through early virtual integration and analysis via an 

architectural centric model based approach. 
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Figure 2: Defense Unique Software Intensive 

Program (Ref. 15) 

The acquisition approach for software intensive mission 

systems, as shown in Figure 2, can and should be augmented 

through solicitation via a specification model.  Prior to the 

solicitation, high level analysis of requirements, timing, 

resources, safety and security can be conducted using the 

specification model.  After release, the responders to the 

solicitation can utilize the specification model to create 

potential early system solutions in a very preliminary design 

model that can be used by the Government to conduct more 

refined analyses and trade studies to determine the best 

approach(s) to meet the requirement.  The system integrator 

can continue to communicate the model specification to its 

component suppliers to obtain their respective component 

models.  These component models will act as the component 

specifications and interface descriptions and allow the 

integrators to perform virtual integration and analysis.  Once 

selection is made by the Government the winning solution 

can be even further refined and analyzed.  As the model is 

matured it can be evaluated and analyzed at different 

program phases in an increasingly hierarchical manner to 

identify issues for correction before anything is actually 

built, coded or integrated.  The architectural model(s) would 

be contained in a model repository remaining integrated, up-

to-date and under configuration management to be available 

to multiple engineering disciplines that could rely on this as 

the single source of truth. 

Challenges exist with this vision that must be addressed.  

This includes determining the appropriate time in the 

acquisition lifecycle to apply ACVIP (e.g., Material Solution 

Phase, Technology Maturation & Risk Reduction Phase, 

Engineering & Manufacturing Development Phase, etc.).  

Also, translation and exchange of models among different 

languages (e.g., UML, SysML, AADL, MatLab/Simulink 

and SCADE) and tools needs to be worked to allow 

government, integrators, and component suppliers to 

communicate seamlessly.  Business issues like protection of 

intellectual property and the formulation of new profit 

models must be overcome as well.  Lastly, and most 

importantly, the tools must be matured to a Technology 

Readiness Level (TRL) to enable users to adapt and use the 

analysis processes and tools effectively. 

JCA Demo was a first demonstration for Army Aviation 

to acquire software using a model to communicate most of 

the requirements. In addition, AADL was used post-BAA 

release to analyze the requirement documents, and to 

perform safety and timing analyses on a model of the 

virtually integrated component within the MIS system to 

discover potential issues before actual system integration.  

JCA Demo provided the first step for the Army toward 

maturing the tools for ACVIP. 

ACVIP ANALYSES 

Architecture Capture Guidelines for ACVIP 

As part of the JCA Demo effort, the ACVIP research team is 

documenting guidelines to help engineers develop and 

analyze AADL models in support of an architecture centric 

virtual integration process.  ACVIP applies across 

development phases, starting with requirements engineering 

and going through verification and qualification.  Different 

kinds of information at different levels of detail are used in 

the different phases.  The AADL ACVIP modeling 

guidelines support this by identifying four general levels of 

abstraction for AADL models: 

 Functional architectures capture functional 

requirements but with little or no information about 

how those functions will be encapsulated in 

components. 

 Conceptual architectures specify how a system is 

decomposed into software and hardware 

components and the interfaces between them.  

Conceptual architectures are used during 

architecture trade studies and acquisition planning. 

 Design architectures specify detailed performance 

characteristics of individual components, including 

internal design detail to the level required to 

support the analyses desired.  

 Implementation architectures specify details needed 

to integrate and verify an overall system; for 

example, data that can be used to automatically 

generate configuration files or perform model-

based testing. 

The guidelines provide advice to technical project 

management and engineers as they make decisions about 

milestones at which models are developed and exchanged, 

the level of detail to be captured, the analyses to be carried 

out at each milestone, ways to capture information in AADL 

and methods for analysis.  The guidelines also discuss some 

supporting processes: configuration management and model 

exchange, trade space exploration and architecture 

optimization, and liaison with airworthiness and security 

approval authorities. 
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Architecture Led Requirements Specification (ALRS) 

Analysis Overview 

Current requirement engineering practice results in textual 

stakeholder and system requirement documents. Studies 

show that ambiguous, missing, incomplete, and inconsistent 

requirements lead to sizeable effort in clarifying them. Often 

the system boundary is not clearly specified and different 

requirement statements may refer to a system or one of its 

subsystems. The objective is to turn a system requirement 

specification into a contract that a system implementation 

must meet. This is then demonstrated through virtual 

validation and verification. 

ACVIP addresses requirement capture and specification 

by an Architecture Led Requirements Specification (ALRS) 

analysis process. This process is currently being matured 

with tool support and leverages the AADL Requirements 

Definition and Analysis Language (RDAL). The 

requirements analysis addresses requirement quality 

characteristics of IEEE 830-1998 (Ref. 16) and adapts the 

eleven step process outlined in the Federal Aviation 

Administration (FAA) Requirements Engineering 

Management Handbook (Ref. 17). The process leverages the 

representation of the system and its operation environment 

as an AADL model. For that purpose we adapt the CPRET 

(Ref.18 ) representation of a system defined by the 

Association Française d'Ingénierie Système which is shown 

graphically in Figure 3.  

 

Figure 3- Elements of a System Specification 

In the ALRS analysis process a user maps the 

information found in existing requirement documents to 

elements of an AADL model of the system. This model has 

captured the interactions of the system with entities in the 

operational environment with requirement specifications. 

This process clarifies whether the requirement is for the 

system or one of its subsystems, quickly identifying use of 

multiple terms for the same entity, and ambiguous or 

conflicting requirement statements. Such a mapping of 

requirement statements into the model also lets the user 

quickly see whether requirements have been specified for all 

interaction points with entities in the operational 

environment.  

In a next phase the user utilizes utility trees that are the 

output of a Quality Attribute Workshop (QAW) (Ref. 19) or 

an Architecture Tradeoff Analysis Method (ATAM) (Ref. 

20). They take non-functional properties, also known as 

operational quality attributes, and turn them into a concrete 

requirements specification that can be measured and 

verified. Prioritization of the utility tree leafs driven by 

mission goals help the user ensure that critical requirements 

are well-specified. Such a utility tree is shown in Figure 4. 

 

Figure 4: Quality Attribute Utility Tree 

A third phase addresses exceptional conditions that may 

be encountered during system operation. These exceptional 

conditions impact safety, reliability, and security of a 

system. An analysis from a safety perspective is elaborated 

on later in a discussion on safety. Note that since we have a 

model-based representation of the system specification, the 

user can utilize an ACVIP workbench, such as the OSATE2 

tool environment for AADL, to check for inconsistencies in 

the specification, e.g., check if the expected inputs and 

outputs match. The user can also perform quantitative 

analysis of the model. For example, flow latency analysis 

can be used to determine whether response time 

requirements are achievable, whether budgets for physical 

resources, such as electrical power and mass, or computer 

resources are realistic and result in sufficient margins for 

uncertainty and desired spare capacity. 

Requirements Analysis Process and Results on JCA 

Demo 

Prior to the JCA Demo DCFM awards, the ACVIP team 

from CMU SEI conducted requirements analyses based on 

the requirements and data model provided in the JCA Demo 

BAA and the MIS Stakeholder and Systems Requirements 

documents. This analysis identified shortcomings in the 

system-level and component-level requirements, some of 

which were also identified by the DCFM developers.  

Following the provision of initial derived DCFM 

developers’ requirements, further requirements analysis was 

conducted to elicit additional integration issues.  The ACVIP 

shadow effort for the JCA Demo performed analyses using 

AADL models of the DCFM integrated into the MIS system. 

In the process the team discovered inconsistencies, and 
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missing requirement information in the original documents, 

as well as defects related to safety, latency, and timing / 

resource utilization. 

In the process of performing this mapping a partial 

AADL model of the conceptual and functional architecture 

were developed including both the “architecture” of the 

system in its operational context, and the system in terms of 

its subsystems as far as they had been reflected in the 

original requirements documents and UML model. This 

model clarified issues of system and subsystem boundaries. 

The resultant architecture model was generalized into an 

aircraft survivability situational awareness (ASSA) system, 

creating a reusable reference architecture for the domain of 

use. This ASSA system incorporates the MIS and the 

DCFM, both of which provide several functional services. 

This is illustrated in Figure 5 with three services for MIS. 

Two services are infrastructure services that are provided in 

a layer below the situational awareness system, i.e., the data 

conversion service, and the data management service. The 

third service, a health monitor, resides in a layer above the 

situational awareness system to detect and report any 

exceptional conditions in the operation. 

 

Figure 5 – Layered Architecture of ASSA System 

The resultant annotated AADL model of the ASSA 

System clearly identifies how much of the system 

architecture has been prescribed by the requirement 

specification. This awareness helps clarify whether this was 

intentional, or whether requirements should be rephrased to 

become requirements of the enclosing system, leaving 

design choices to the developer.  

The resultant functional architecture also became the 

basis for quantitative analysis of the ASSA early in 

development, e.g., pre-PDR. As Figure 5 shows, the model 

included end- to-end flow specifications of a critical flow to 

represent response time requirements.  A UML sequence 

diagram from the original documentation was modeled as an 

analyzable interaction protocol across ARINC653 partitions. 

The latency analysis capability of OSATE2 informed us of 

the latency overhead contributed by this protocol, and its 

effect on the critical flow, i.e., that in the best circumstances 

the requirement can barely be met. 

Architecture Led Safety Analysis (ALSA) Overview 

The CMU SEI also conducted a safety analysis of the ASSA 

using an Architecture Led Safety Analysis (ALSA) process 

as part of the JCA Demo shadow effort. The user annotates 

an AADL model with fault information utilizing an error 

propagation ontology as illustrated graphically in Figure 6. 

The error propagation ontology addresses issues of service 

omission, commission, value, timing, rate, sequence, 

replication, concurrency, authorization, and authentication 

errors. The propagation paths between system components 

are derived from the architecture specification itself. 

 

Figure 6- Identification of Hazard Sources and Impact 

This process leverages method and tool support through 

AADL and the AADL Error Model Version 2 (EMV2) 

Annex (Ref. 21) to support SAE ARP-4761 (Ref. 22) best 

system safety analysis practices, such as an FHA, FMEA 

and FTA. The analysis models, such as a fault tree, are 

generated from the annotated AADL model, and then 

processed by a FTA tool. In the case of FHA and FMEA the 

respective reports are generated directly from the annotated 

AADL model – as shown in Figure 7. 

Safety Analysis Process and Results on JCA Demo 

System safety analysis guidance, such as SAE ARP-4761, 

recommends that the user perform a functional hazard 

assessment (FHA), a failure mode and effect analysis 

(FMEA), and a fault tree analysis (FTA). The FHA focuses 

on hazards that may lead to catastrophic events. As a result 

of these analyses, design assurance levels (DALs) are 

assigned to different subsystem hardware and software in an 
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aircraft. While the JCA Demo BAA set the DAL to level E 

for the DCFM, this ACVIP Safety Analysis exercise used 

level C for the situational awareness system for aircraft 

survivability.   

 

Figure 7- Safety Analyses from Annotated AADL 

Models 

In the SAVI initiative the SEI recently demonstrated 

how the SAE ARP-4761 process can be supported by an 

AADL model annotated with fault information using the 

Error Model Annex standard for AADL on an aircraft wheel 

braking system. FHA, FMEA, and FTA reports as well 

reliability/availability analysis reports have been generated 

from safety analysis performed with such a model. 

An Architecture-Led Safety Analysis (ALSA) process 

was conducted for the JCA Demo ACVIP shadow project. 

For that purpose the CMU ACVIP researchers started with 

the hazards presented to the pilot by the ASSA. In addition 

to the hazard of complete failure of providing the ASSA 

service, the hazards considered included providing false 

information such as false positives in the form of alerting the 

pilot of threats and obstacles that do not exist, false 

negatives such as not alerting the pilot when these threats 

and obstacles exist. In addition the timeliness of information 

was taken into account, i.e., how much information delay is 

acceptable to the pilot. Subsequent to citing the hazards, the 

potential error sources were systematically identified that 

can propagate as one of the identified hazard categories to 

the pilot. A fault ontology provided as part of the AADL 

Standard Error Model annex was used as a checklist of fault 

propagation categories to consider in the process. 

The insights from this analysis lead to a set of derived 

safety requirements for the health monitoring system that 

were lacking in the original System Requirement document. 

These requirements were captured in the annotated AADL 

model of ASSA. The primary focus of the health monitoring 

system was on detection and reporting, i.e. it is responsible 

for recognizing when one of the identified hazard conditions 

occurs and then informs the pilot to that effect. A second set 

of requirements focused on minimizing the impact of the 

different fault contributors, i.e., to express fault isolation 

tactics as a set of derived safety requirements. A third set of 

requirements addressed the ability to recover back into a 

normal operational state. In other words, the resulting 

requirement specification provided a clearer indication of 

expected functionality. 

A hazard analysis of this form not only examined failure 

of individual components, but also whether the interaction 

between components could lead to a hazard contributor. An 

example of such a contributor in the ASSA is the fact that 

the interaction between sensors providing new data to MIS 

and DCFM requesting data concurrently could potentially 

lead to concurrency issues which result in corrupted data, 

which in turn can result in false positives or false negatives. 

Architecture Led Timing Analysis Methodology and 

Tools 

For distributed heterogeneous computer systems, specifying 

and analyzing end-to-end timing requirements that result in 

satisfactory mission performance of the overall vehicle 

remains a challenging multi-disciplinary problem that 

involves the physical sciences and human factors as well as 

computer science and engineering.  Different requirements 

models and allocation and scheduling methods are used for 

different functions and equipment.  For example, networks 

typically use a different scheduling method than processors. 

Feedback control software uses a periodic sampled data 

design pattern, while message handling software often uses 

an event driven queued data design pattern. Today there is 

no single method or tool that can analyze all of them.  Two 

broad approaches to timing analyses are simulation (testing 

executable models) and schedulability analysis (applying 

math to bound values).  The two have strengths and 

weaknesses and can complement each other.  In this project, 

schedulability analysis was the focus.   In a survey the 

ACVIP timing analysis team identified sixteen available 

schedulability analysis tools, each suited for different 

scheduling algorithms and software applications and 

computing equipment. 

The system architect must select a set of development 

methods and tools that are suitable for the subsystems and 

components selected for the mission system. The selected 

development tools need to be integrated, just as the 

components of the mission system must be integrated.  The 

ACVIP team created and used a compositional timing 

analysis framework during the JCA Demo that allowed us to 

select a set of analysis tools suited for the different kinds of 

subsystems in the mission system.  The framework 

compositionally applies the tools so that dependencies 

between subsystems are taken into account when producing 

an overall end-to-end timing analysis.  

The timing analysis framework developed by 

Adventium and applied to the JCA Demo system translates 

different parts of an AADL model into the native input 
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formats of selected back-end schedulability analysis tools. 

There are dependencies between these multiple tool-specific 

models, e.g. a task set hosted on a processor analyzed by one 

tool may send messages over a network that is analyzed by 

another tool.  The framework extracts analysis results from 

some tools when generating input models for others.  

Because there may be cyclic dependencies between different 

parts of the system model, analysis must be performed 

iteratively until global convergence is achieved.  The final 

analysis results from the different tools must be combined to 

check end-to-end timing requirements specified in the 

AADL system model (Simon Kunzli, 2007; Rob Edman, 

2015). 

The Modeling and Analysis Suite for Real-Time 

Systems (MAST) (Ref. 23) and the Separation Platform for 

Integrating Complex Avionics (SPICA) (Ref. 24) were 

selected as the initial tools to integrate into the timing 

analysis framework as shown in Figure 8 (the Framework 

for Analysis of Schedulability, Timing and Resources, 

FASTAR (Ref. 25)). These selections were made because 

MAST can analyze switched Ethernet networks and SPICA 

can analyze ARINC 653 style schedules.  An Ethernet 

network and ARINC 653 partitioning were used in the JCA 

Demo. 

 

 

Figure 8- Timing Analysis Tools Framework Based on 

AADL 

Although most of the workload in our demonstration 

system was hosted on an Ethernet and an ARINC 653 

compute module, there were several pieces of sensor 

equipment (some simulated, some actual) and a display 

subsystem for which the ACVIP timing analysts had no 

internal design information (and insufficient project 

resources to model them even if the ACVIP timing analysts 

did have the internal design information).  This is expected 

to be a common situation; therefore, the analysis framework 

allows “black box” modeling of subsystems.  This allows the 

developer to enter interface timing properties for these 

subsystems into the model (e.g. message send and receive 

rates and latencies through the subsystem).  The analyzer 

assumes “black box” subsystems will comply with their 

specified interface timing properties when doing end-to-end 

analysis and verification. 

Timing Analysis Process and Results on JCA Demo 

For the JCA Demo, a decision was made to perform timing 

analysis on a design architecture model.  This decision was 

made both to gain experience with multiple development 

phases and modeling guidelines and to stress-test the timing 

analysis framework. 

Both conceptual and design AADL models were 

developed.  The conceptual architecture model was 

primarily based on a Microsoft® Word™ document that 

described the overall JCA Demo system architecture, a 

Microsoft Word document that described the derived 

interface requirements for a major subsystem, a Microsoft 

Word document and a data model included as part of the 

solicitation for the DCFM software component, and the JCA 

Demo system architecture configuration contained in the 

UML. Although conceptual models were not subjected to 

schedulability analysis (other types of timing and resource 

analyses are more appropriate at the conceptual architecture 

phase), this allowed the ACVIP researchers to exercise more 

of the modeling guidelines, including guidelines for 

capturing traceability between models at different 

abstraction levels using AADL language features to extend 

and refine component models with increasing amounts of 

detail. 

 

Figure 9 Architectures are Layered 

As the ACVIP timing analysts built the AADL models 

for the JCA Demo system, they uncovered more detailed 

requirements for methods and tools needed to support 

architecture modeling and analysis.  First, architectures are 

layered as illustrated in Figure 9.  Layers introduce 

infrastructure software and affect timing properties such as 

system overheads.  AADL allows virtual resources and 

layers to be modeled, but guidelines are needed and tools 

need to support those guidelines.  Second, architectures have 

different clock synchronization domains.  For example, the 

JCA Demo system hosted portable interoperable software 

components on a FACE/ARINC653 compute module whose 

scheduling was driven by a common clock.  However, this 

subsystem communicated over a switched Ethernet with 

sensor and display equipment.  These resources were not 

clock-synchronized with the compute module.  Again, 

modeling guidelines and appropriate tool support need to be 
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provided for the AADL language features used to specify 

these aspects of systems.  Finally, there is a need to support 

mixed fidelity modeling and analysis, e.g. our earlier 

discussion on “black box” modeling and analysis. 

JCA DEMO ACVIP ANALYSIS FINDINGS 

AND LESSONS LEARNED 

Previous studies have shown that peer review is a very cost-

effective means of defect detection, partly because it was the 

only traditional method that could be applied in early 

development phases.  The ACVIP researcher’s experience is 

that many defects were detected during model development 

even before analysis tools were applied.  This is achieved by 

mapping terms in the document into concepts expressed by 

AADL. Users quickly realize different terms used in 

different sections of the documents for the same concepts, 

and conflicting statements about specific attributes of model 

elements, e.g., two different numbers for range of operation. 

Strong typing in AADL ensures that interactions between 

virtually integrated system components are consistent, e.g., 

that measurement units and interchange protocols are used 

consistently. In other words, the rigor of the AADL focuses 

attention on ambiguous and incomplete elements of a natural 

language document and eliminates potential system 

integration problems early in the process. This is consistent 

with earlier reports that a significant benefit of modeling is 

more precise specification; many defects are found during 

the model development phase (Ref. 26). 

Earlier studies showed that providing reviewers with 

structured guidelines (often called reading guidelines or 

techniques in the inspection literature) improved the quality 

of reviews.  In model-based engineering, the model 

development task could be viewed as a particularly well-

structured review method (Ref. 27) 

The ACVIP related goals for JMR Mission Systems 

Architecture Demonstrations (MSAD) such as the JCA 

Demo are to identify, validate, mature and transition 

methods and tools to support an architecture centric virtual 

integration process.  This exercise also generated new 

modeling guidelines and tool requirements (as well as bug 

reports for tool developers and errata for the AADL 

standards committee).  

The ACVIP researchers provided reports citing around 

85 findings, 70 that were attributed to requirements analyses 

and 15 to timing analyses that will be rolled up in the JCA 

Demonstration Final Report.  Some notable areas identified 

by the ACVIP team included: 

 Relationship of component states and MIS system 

state not being fully specified 

 Lack of a specification of currency/staleness for the 

data 

 No identification of end-to-end timing requirement 

for hazard data 

 Partition schedule not meeting ARINC 653 

scheduling rules 

 Non-clarity in protocol from MIS to support 

multiple or single instantiation of DCFM 

 Non-clarity in data storage requirement between the 

DCFM and MIS 

 Ambiguity on the MIS system Operational State 

when a clock timer expires   

 Lack of a requirement for the number of source 

tracks the aircraft survivability sensor provides 

 Possibility of track jitter will be seen in integration 

 Multiple sensor stream rates may have implications 

on integration. 

 Cross partition timing issues in the ARINC 653 

schedule 

 Inconsistency in the area of threat ranges  between 

the DCFM and MIS making it unclear how alerts 

would be handled 

 Potential memory leaks in MIS identified 

 Ambiguity in the requirement to correlate 50 source 

tracks within 1 second and concern over meeting 

the requirement. 

Some of these issues with relation to the DCFM were 

also cited by the DCFM vendors independently of the 

ACVIP researchers.  At the time of this paper’s writing the 

MIS team were able to confirm several of these and other 

findings by ACVIP; however, several are still to be 

confirmed in integration testing.  A spreadsheet of the 

findings by the ACVIP team was sent to the MIS team to 

confirm the findings.  Some findings were dismissed by MIS 

because the identified issues had been addressed through the 

requirements adjustment made by MIS of which the ACVIP 

was not aware.  In general, the findings by the ACVIP team 

demonstrated that in a real program that these issues would 

have been identified and corrected even prior to solicitation 

which could have led to a cost savings and / or development 

schedule reduction. 

Outside of the issues directly affecting the DCFM and 

MIS integration, there were improvements identified in the 

OSATE tools, ACVIP Modeling and Analysis Handbook, 

FACE Generic Modeling Environment (GME) to AADL 

translator, improvements needed to mature the requirements, 

safety and timing analysis capabilities. 

FUTURE MATURATION AND PLANS FOR 

ACVIP 

The ACVIP metrics analysis and evaluations are still in 

progress at the time of writing of this paper.  At the 

conclusion of the JCA Demo integration effort, retrospective 

analysis of defects detected in both the JCA Demo and the 

ACVIP Shadow effort will be completed.  This will include 

estimating such things as when defects were detected and by 

what methods in both baseline demonstration and ACVIP 

shadow, and the costs and benefits of earlier error detection 

using the various ACVIP modeling guidelines and methods 
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and tools at various phases.  These final evaluations will 

provide input into the plans and actions discussed in the 

paragraphs below. 

The JMR program has developed roadmaps both for the 

development of advanced analysis approaches that leverage 

the integrated architectural analysis strength of AADL and 

the incremental analysis approach of ACVIP.  New analysis 

methods will be added to the process incrementally as they 

emerge in the research community. These tools will be 

demonstrated to gain insight.  Then tools and documentation 

will be matured to a point where third party developers in 

research oriented teams can effectively apply the tools.  

Handbooks for the technical use of the analysis methods and 

the ACVIP process as well as acquisition guidance for 

program managers are being developed and refined in each 

phase of demonstration.  Tools to enable analyses for 

requirements, safety, security, resource utilization, timing, 

code generation and rapid integration are examples of JMR 

S&T focus areas to increase technology readiness levels 

(TRL).  The capability to translate to/from other modeling 

languages such as UML and SysML to AADL is planned to 

be added with an attempt to translate the JCA Reference 

Architecture from UML to AADL as a first step.  SAVI 

gains in tools, analyses, and processes will also be 

incrementally integrated into ACVIP.  Furthermore, 

technology transition of the ACVIP processes and tools will 

occur through offered training and future JMR Mission 

System Architecture Demonstrations.  It should be noted that 

an AADL/ACVIP training session as part of the JCA Demo 

ACVIP Shadow effort was conducted.  The session included 

both industry and Government attendees. More training 

opportunities like this will be available in the future. These 

activities provide the Government and industry with 

guidance and experience using the AADL and ACVIP in 

preparation for FVL.  The expected benefit is early 

discovery of integration issues throughout the development 

process reducing development cost, schedule and risks for 

FVL. 

CONCLUSION 

ACVIP is an architectural centric model based approach that 

will revolutionize the way in which we analyze our systems.  

Results of the JCA Demo ACVIP Shadow effort 

demonstrated that ACVIP has potential to provide strong 

architectural analysis to identify and aid in the eradication of 

issues. ACVIP and its guidance, tools, and processes are in 

its infancy and require further refinements and maturation to 

be effective for future DoD acquisition of aviation mission 

computing systems.  AADL is being used in many company 

and organization research efforts and needs to be matured 

and transitioned to development and production areas.  JMR 

Mission Systems Architecture Demonstrations will continue 

to work with the ACVIP researchers and ensure that the 

exercise, documentation and lessons learned mature these 

processes and tools so that they can effectively be used by 

avionics and systems engineers in the future.  Industry and 

Government need to work together to improve ACVIP so 

that future development / integration efforts can benefit from 

early virtual integration, validation and verification. 
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