
DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

1

Joint Common Architecture (JCA) Demonstration Architecture Centric Virtual

Integration Process (ACVIP) Shadow Effort

Alex Boydston
Electronics Engineer

US Army ADD/JMR

Redstone Arsenal, AL

Dr. Peter Feiler
Principal Researcher

AADL Tech Lead

CMU SEI

Pittsburgh, PA

Dr. Steve Vestal
Distinguished Scientist

Adventium Labs, Inc.

Minneapolis, MN

Bruce Lewis
AADL Chair

US Army SED

Redstone Arsenal, AL

ABSTRACT

Challenging problems associated with system software complexity growth are threatening industry’s ability to build next

generation safety critical embedded systems including helicopter avionics systems. Contributors to these problems

include the growth of software, system integration, and interaction complexity exacerbated by ambiguous, missing,

incomplete, and inconsistent requirements. Problems continue to hamper systems in the areas of resource utilization,

timing, safety and security. A new approach called Architecture Centric Virtual Integration Process (ACVIP) which is

based on the Society of Automotive Engineers (SAE) Standard AS5506A Architecture Analysis and Design Language

(AADL)

is being developed and investigated by the US Army to address these challenges. ACVIP is a quantitative,

architecture-centric, model-based approach enabling virtual integration analysis in the early phases and throughout the

lifecycle to detect and remove defects that currently are not found until software and systems integration and acceptance

testing. In an effort to investigate such an approach, the Government, in conjunction with researchers from Carnegie

Mellon University (CMU) Software Engineering Institute® (SEI) and Adventium Labs®, are conducting ACVIP

requirements, safety, and timing analyses in parallel with the Joint Common Architecture (JCA) Demonstration (Demo).

INTRODUCTION

The United States Army Aviation Development Directorate

(ADD) and Software Engineering Directorate (SED), teamed

with Carnegie-Mellon University (CMU) Software

Engineering Institute® (SEI) and Adventium Labs®, are

currently conducting Science and Technology (S&T)

research on the Joint Multi Role (JMR) Technology

Demonstrator effort’s Joint Common Architecture

Demonstration (JCA Demo) Project (Ref. 1) to investigate

and mature a concept called Architecture Centric Virtual

Integration Process (ACVIP). ACVIP is a DoD process

fashioned after the aviation research study called System

Architecture Virtual Integration (SAVI) (Ref. 2) performed

by a consortium of aerospace organizations led by

Aerospace Vehicle Systems Institute (AVSI). Like SAVI,

the purpose of the ACVIP is to address the affordability and

associated risks of developing complex software intensive

systems through early virtual integration and analysis before

implementation. The JCA Demo provides a first look for the

Government to gain experience with several analyses and

tools to determine if a subset of ACVIP analyses detect any

integration issues or software defects prior to or during their

manifestation in the JCA Demo effort. ACVIP analyses were

Presented at the AHS 71st Annual Forum, Virginia Beach,

Virginia, May 5–7, 2015. Copyright © 2015 by the

American Helicopter Society International, Inc. All rights

reserved.

conducted as a shadow effort during the demo and did not

constitute the execution of an ACVIP review process.

The JCA Demo was designed to exercise the Future

Airborne Capability Environment (FACE™) (Ref. 3)

Technical Standard and Tools and Joint Common

Architecture (JCA) by producing and integrating a standard

conformant Data Correlation & Fusion Manager (DCFM)

software component into an unidentified system (i.e., later

revealed as the Modular Integrated Survivability (MIS)

system). The ACVIP Shadow effort involves the modeling

of the MIS system architecture, the DCFM component and

their associated requirements using the Architecture

Analysis and Design Language (AADL) (Ref. 4) and Open

Source AADL Tool Environment version 2 (OSATE2) (Ref.

5). The analyses are similar to, but more advanced than,

what has been demonstrated during the SAVI program.

SAVI conducted a return on investment (ROI) study citing

that for a new aviation system with the complexity of 27

million software lines of code (SLOC),an estimated nominal

savings of about $2.4B out of $9.2B, i.e., about 25%, could

be realized from using a systems architecture virtual

integration process to reduce software rework (Ref. 6). This

represents the complexity level of advanced aircraft in 2010

which suffered significant software system integration

issues.

This paper will address the following:

1) JCA Demo Background

2) Overview of the AADL and OSATE2

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

2

3) ACVIP in the context of lifecycle acquisition

4) Discussion of the ACVIP Requirements, Safety and

Timing Analyses Methods along with JCA Demo

Experience with each

5) Findings and lessons learned from the JCA Demo

ACVIP Shadow effort.

6) Projection of future maturation and plans for

ACVIP beyond the shadow effort

JCA DEMO BACKGROUND

In February 2013, the JCA Demo Broad Agency

Announcement (BAA) was released on FedBizOps.gov

without the incorporation of the ACVIP Shadow task. The

JCA Demo is a Technology Investment Agreement (TIA)

requiring the delivery of a Data Correlation and Fusion

Manager (DCFM) software component built to minimal

textual requirements and a data model that contained

information per the FACE Standard. The DCFM was to be

integrated into the Modular Integrated Survivability (MIS)

system with the MIS team acting as the system integrator.

TIAs were awarded to two separate DCFM vendors,

Honeywell Aerospace® and Sikorsky®-Boeing® Teams.

The US Army’s Aviation and Missile Research

Development and Engineering Center (AMRDEC) Aviation

Development Directorate (ADD) and Software Engineering

Directorate (SED) contracted with CMU SEI and Adventium

Labs after the JCA Demo BAA was released to conduct

shadow analyses with the AADL related to ACVIP. The

focus of the JCA Demo ACVIP Shadow effort was to

conduct requirements, safety and timing analyses to identify

issues in each of these areas prior to DCFM integrations into

the MIS architecture.

The JCA Demo project schedule and funding limitations

prevented implementing a full ACVIP process. Two AADL

models were created, a conceptual architecture model for

requirements and safety analyses, and a runtime architecture

model reflecting the timing of the intended operational

system. Normally the ACVIP process would refine a single

conceptual model to create the runtime model and analyses

would be generated from the same model incrementally. If

ACVIP were fully implemented the JCA Demo analysis

would have begun before solicitation release and continued

throughout employing a single source of truth architectural

model.

For JCA Demo, communication between the DCFM

developers, the system integrator and the ACVIP analysts

was tightly controlled. The purpose of this segregation was

to see if the ACVIP analysis would uncover issues that

would later manifest during the course of the demonstration.

It was important for ACVIP to find issues without listening

into discussions between the component developers and

system integrators. It was equally important that the DCFM

developers and integrator were not tipped off to issues

discovered by ACVIP.

The AADL modeling of requirements discovered

significant problems with minimal effort prior to award of

the TIAs. For example, a problem related to response time

requirements was discovered through early end-to-end

latency analysis of the functional architecture model targeted

to an ARINC653 platform. Since this was a shadow, the

contractors developing the DCFM had to discover and

clarify these issues to proceed with the development. From

this experiment it was evident that pre-solicitation

requirements analysis would have greatly benefited the

demonstration in reducing requirements gaps and errors.

AADL/OSATE OVERVIEW

The AADL is an Architecture Description Language (ADL)

(Ref. 7) designed from its beginnings in Defense Agency

Research Programs Agency (DARPA) studies. Its purpose is

to enable analysis across integrated components predicting

qualities of the integrated system and then the generation of

the system in accordance with the models and analyses.

AADL started life as the MetaH language at Honeywell in

the early 1990’s on the first research programs devoted to

developing ADLs. MetaH was intended for use in the

domain of embedded real-time systems where predictable

correctness is required supporting high assurance and safety

critical systems. The Government appointed Mr. Bruce

Lewis (US Army SED and one of the authors of this paper)

as the lead for this project after it was started by the US

Navy. The concepts were refined over three DARPA

programs, but from the beginning, the language stressed

component-based, analysis-driven, architecture centric

development with automated compliant implementation, as

developed by the Principle Investigator, Dr. Steve Vestal,

also an author of this paper. In Army internal projects, the

concepts and capabilities proved so valuable that the

language was taken to the SAE to create an international

standard (i.e., SAE Aerospace Standard 5506) and to

enhance the language to meet additional research and

industrial requirements. Dr. Peter Feiler, also an author of

this paper, became the Lead Architect for this SAE language

standard, known as AADL. AADL incorporates an extended

set of MetaH concepts with concepts from the DARPA

funded CMU architecture interchange notation, ACME, to

achieve extensibility to accommodate multiple analysis

dimensions from the same model.

The AADL was specifically designed to support

incremental refinement and analysis of a system from its

conceptual architecture to its implementation runtime

architecture. AADL is a strongly typed language with well-

defined semantics. Strong typing provides consistency

within the model, e.g., ensures that only components of the

appropriate type are connected. Well-defined semantics

ensures analysis tools interpret the model the same way and

produce consistent results. For example, the execution

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

3

behavior of tasks is defined in the standard with a hybrid

automata specification that allows for formal analysis using

temporal logic. As a result, AADL achieves portability

across model editing tools and integration across contractors

into a single specification captured in AADL. The

extensibility mechanisms of AADL, annexes and property

sets, ensure that this model consistency is maintained. These

extensions allow new domains of analysis to be supported by

annotating the core language that is converted into

representations for specific analysis tools, e.g., into timing

models or fault tree representations.

Because the AADL is an architecture language intended

to support each phase of system development, it was

designed to explicitly support incremental refinement and

analysis throughout the system lifecycle. Early analysis can

be run on conceptual architecture models that may be

incomplete. These models can still be checked for consistent

integration. Any aspect of the architecture can be refined to

the level required for that subsystem’s level of development.

The AADL directly supports modeling and analysis of

functional architectures as well as component, task and

communication architectures of software systems, their

deployment onto distributed hardware platforms, and their

interfaces with the physical system. The functions are

mapped to components during the development process.

These aspects are necessary to analytically predict

operational quality attributes, i.e., the effects of software

running on hardware to control physical system elements, to

ensure they meet non-functional requirements.

To find the system integration issues virtually, before

physical integration, we need not only early analysis, but

also analysis at each stage of development, at higher and

higher levels of fidelity, to discover and correct issues

through analysis and verification. The actual system

implementation can then be integrated in accord with the

verified model. This is critical for trusted integration, a

research objective of AADL and ACVIP. The system can be

integrated before the components have been populated with

code, providing a very early prototype of the architecture

structure and behavior. Then as code is developed, via code

generators for components (like Mathworks®

MATLAB/Simulink™ and Esterel® SCADE™), the

architecture can be populated and re-integrated for

integration testing and refinement of the predictive models.

The AADL component categories include software

components (e.g., processes, threads (tasks), subprograms,

and data, as well as thread groups and subprogram groups),

hardware components (e.g., processors, buses, memory,

devices, as well as virtual processors (e.g., partitions and

multi-core hypervisors) and virtual buses (e.g., protocol

layered buses). AADL also has specific semantics for types

of ports and connections. At the next level up, the AADL

has system components that encapsulate hardware and

software components, into subsystems at multiple levels up

to the system itself. The AADL also supports abstract

components which can be specified before a decision is

made relative to the component category. The abstract and

system components provide a level for conversion from

System Modeling Language (Ref. 8) (SysML, i.e., an

extension of UML used for systems engineering) to AADL.

Then the architecture can be extended related to its real-time

attributes and its component categories in the AADL in a

standard way designed for analysis and implementation.

AADL components have both an external view (Type)

and an internal view (Implementation). Both can be

extended and refined to create new components, reuse

existing components and specify the components more

completely, incrementally refining until the final component

is fully specified. Properties and annexes can be associated

with each component category, as allowed in the language.

These properties provide information about the component

related to many aspects and domains of analysis. The

AADL ARINC653 Annex (Ref. 9) can be used to model

ARINC653 (Ref. 10) partitioned architectures and

properties; the AADL Behavior Annex (Ref. 9) can be used

to model the internal behavior of the component; and the

AADL Data Modeling Annex (Ref. 9) can be used to define

the data types to support code generation. Properties can be

associated related to safety, security, timing, binding to

hardware, etc. AADL Standard annexes and properties

provide a very rich set of capabilities for analysis. More

recently, AADL has added functional components to support

requirements and hazard analysis as well as refinement into

the standard software, hardware, and system components for

analysis and system building.

The AADL language very naturally supports the ACVIP

process. The SAVI international industrial (aviation

integrators and suppliers) and Government (DoD, NASA,

FAA) consortium determined that the key problem driving

very high costs and high risks in aviation systems was the

need to be able to keep the system integrated throughout the

development process. Their mottos, “Integrate, Analyze,

then Build” and “Keep the system integrated throughout the

development process”, lead to a virtual integration process

throughout development, as well as keeping models

consistent as development proceeds. SAVI selected the

AADL after reviewing all ADL’s for this purpose, especially

related to the software-reliant part of the system. The

ACVIP is a subset of the SAVI process we can build on

today. Both SAVI and ACVIP are centralized on virtual

integration, conducted incrementally, across suppliers and

the system integrator, covering multiple domains of system

analysis. The AADL directly supports integration analysis

against a single truth model (integrating the most recent

data) for software reliant systems, incrementally,

predictably, across critical analysis domains (such as safety,

security, timing, scheduling, latency, utilization, etc) for

aviation (and medical/nuclear/automotive, etc) systems. It

then supports advanced approaches to system

implementation. ACVIP and SAVI support contractor

freedom to select their languages, analysis methods, tools

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

4

and models but then integrate the results into the integrated

model expressed in the standard semantics of AADL and

other languages for incremental integration analysis.

AADL specifications can be processed in the OSATE2

toolset which provides both a textual and graphical user

interface for editing. OSATE2 is an open source freeware

product based on Eclipse that provides the reference

implementation of AADL. OSATE2 also integrates multiple

analysis tools that can be used within the toolset. OSATE2

can export data to other analysis tools and has integrated

capability for code generation, just recently demonstrated for

ARINC653. In the near future, OSATE will also support a

user friendly form based input to assist engineers serving

different roles

The AADL Inspector (Ref. 11) is another toolset that

can be used to develop AADL specification with a number

of analysis methods, most of which have been developed in

Europe. It is a commercial toolset and includes simulation

capability. STOOD is an established commercial toolset that

supports development in HOOD and AADL (Ref. 12).

Another AADL toolset has been developed in Russia by

the Russian Academy of Science in partnership with the

GosNIIAS (Russian State Research Institute of Aviation

Systems) aviation systems lab for Integrated Modular

Avionics (IMA) architectures (Ref. 13). This toolset has

been partially released for public use, providing the AADL

graphical and textual editor, but not releasing advanced

analysis methods for IMA development and implementation.

Each of these toolsets can exchange AADL models for

selecting specific analysis tools of interest supported. So by

chaining tools, the developer can leverage strengths of each.

There are also a number of other AADL tools, like the

TASTE, COMPASS, and the D-MILS toolsets (Ref. 14).

COMPASS and D-MILS extended the AADL language and

are limited to European Union (EU) use. TASTE developed

a “zero coding” approach to satellite system development

and upgrades using a system engineering level interface,

transformation into AADL, domain specific component code

generators, analysis, and then automated AADL integration

and generation of complete load images for the system.

ACVIP IN THE CONTEXT OF

ACQUISITION

DOD 5000.02 Instruction for the “Operation of the Defense

Acquisition System” (Ref. 15) addresses the acquisition

process as shown in Figure 1. From the earliest stages of

acquisition requirements are formulated from stakeholders in

the Initial Capabilities Document (ICD) and Capability

Development Document (CDD) and derived to system,

hardware and software requirements. It is important that the

validity and completeness of these requirements be checked

early, for it is through the derivation of these requirements

that mistakes are made which result in increasing cost of

systems that can go all the way through to the Operations &

Support phase.

Figure 1: DoD 5000.02 Acquisition Lifecycle

(Ref. 15)

Embedded within this lifecycle are standard reviews

such as System Requirements Review (SRR), Preliminary

Design Review (PDR), Critical Design Review (CDR), Test

Requirements Review (TRR), and Production Readiness

Review (PRR). In a model based ACVIP approach, it is

envisioned that as the requirements lead to conceptual

architecture(s) that virtual analyses, trades and verification

can be conducted on the system as early as the Technology

Maturation & Risk Reduction Phase and perhaps earlier.

Stakeholder and system requirements documents often

contain an implied architecture. Such conceptual

architectures could be analyzed virtually to mitigate

requirement issues. There have been numerous examples of

acquisition programs where requirements analysis has been

deficient resulting in inadequate resources (memory, storage,

processing bus bandwidth, and ample timing boundaries),

residual safety risks, deficient security, and incomplete

qualification. Oftentimes, the errors that exist within the

requirements result in a system full of risks and too

expensive to fix, and ultimately driving to a Nunn-McCurdy

program breech.

The DoD 5000.02 instruction states, “… the Program

Manager will integrate modeling and simulation activities

into program planning and engineering efforts. These

activities will support consistent analyses and decisions

throughout the program’s life-cycle. Models, data, and

artifacts will be integrated, managed, and controlled to

ensure that the products maintain consistency with the

system and external program dependencies, provide a

comprehensive view of the program, and increase efficiency

and confidence throughout the program’s life-cycle.” It is

envisioned by SAVI and ACVIP that these problems can be

averted through early virtual integration and analysis via an

architectural centric model based approach.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

5

Figure 2: Defense Unique Software Intensive

Program (Ref. 15)

The acquisition approach for software intensive mission

systems, as shown in Figure 2, can and should be augmented

through solicitation via a specification model. Prior to the

solicitation, high level analysis of requirements, timing,

resources, safety and security can be conducted using the

specification model. After release, the responders to the

solicitation can utilize the specification model to create

potential early system solutions in a very preliminary design

model that can be used by the Government to conduct more

refined analyses and trade studies to determine the best

approach(s) to meet the requirement. The system integrator

can continue to communicate the model specification to its

component suppliers to obtain their respective component

models. These component models will act as the component

specifications and interface descriptions and allow the

integrators to perform virtual integration and analysis. Once

selection is made by the Government the winning solution

can be even further refined and analyzed. As the model is

matured it can be evaluated and analyzed at different

program phases in an increasingly hierarchical manner to

identify issues for correction before anything is actually

built, coded or integrated. The architectural model(s) would

be contained in a model repository remaining integrated, up-

to-date and under configuration management to be available

to multiple engineering disciplines that could rely on this as

the single source of truth.

Challenges exist with this vision that must be addressed.

This includes determining the appropriate time in the

acquisition lifecycle to apply ACVIP (e.g., Material Solution

Phase, Technology Maturation & Risk Reduction Phase,

Engineering & Manufacturing Development Phase, etc.).

Also, translation and exchange of models among different

languages (e.g., UML, SysML, AADL, MatLab/Simulink

and SCADE) and tools needs to be worked to allow

government, integrators, and component suppliers to

communicate seamlessly. Business issues like protection of

intellectual property and the formulation of new profit

models must be overcome as well. Lastly, and most

importantly, the tools must be matured to a Technology

Readiness Level (TRL) to enable users to adapt and use the

analysis processes and tools effectively.

JCA Demo was a first demonstration for Army Aviation

to acquire software using a model to communicate most of

the requirements. In addition, AADL was used post-BAA

release to analyze the requirement documents, and to

perform safety and timing analyses on a model of the

virtually integrated component within the MIS system to

discover potential issues before actual system integration.

JCA Demo provided the first step for the Army toward

maturing the tools for ACVIP.

ACVIP ANALYSES

Architecture Capture Guidelines for ACVIP

As part of the JCA Demo effort, the ACVIP research team is

documenting guidelines to help engineers develop and

analyze AADL models in support of an architecture centric

virtual integration process. ACVIP applies across

development phases, starting with requirements engineering

and going through verification and qualification. Different

kinds of information at different levels of detail are used in

the different phases. The AADL ACVIP modeling

guidelines support this by identifying four general levels of

abstraction for AADL models:

 Functional architectures capture functional

requirements but with little or no information about

how those functions will be encapsulated in

components.

 Conceptual architectures specify how a system is

decomposed into software and hardware

components and the interfaces between them.

Conceptual architectures are used during

architecture trade studies and acquisition planning.

 Design architectures specify detailed performance

characteristics of individual components, including

internal design detail to the level required to

support the analyses desired.

 Implementation architectures specify details needed

to integrate and verify an overall system; for

example, data that can be used to automatically

generate configuration files or perform model-

based testing.

The guidelines provide advice to technical project

management and engineers as they make decisions about

milestones at which models are developed and exchanged,

the level of detail to be captured, the analyses to be carried

out at each milestone, ways to capture information in AADL

and methods for analysis. The guidelines also discuss some

supporting processes: configuration management and model

exchange, trade space exploration and architecture

optimization, and liaison with airworthiness and security

approval authorities.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

6

Architecture Led Requirements Specification (ALRS)

Analysis Overview

Current requirement engineering practice results in textual

stakeholder and system requirement documents. Studies

show that ambiguous, missing, incomplete, and inconsistent

requirements lead to sizeable effort in clarifying them. Often

the system boundary is not clearly specified and different

requirement statements may refer to a system or one of its

subsystems. The objective is to turn a system requirement

specification into a contract that a system implementation

must meet. This is then demonstrated through virtual

validation and verification.

ACVIP addresses requirement capture and specification

by an Architecture Led Requirements Specification (ALRS)

analysis process. This process is currently being matured

with tool support and leverages the AADL Requirements

Definition and Analysis Language (RDAL). The

requirements analysis addresses requirement quality

characteristics of IEEE 830-1998 (Ref. 16) and adapts the

eleven step process outlined in the Federal Aviation

Administration (FAA) Requirements Engineering

Management Handbook (Ref. 17). The process leverages the

representation of the system and its operation environment

as an AADL model. For that purpose we adapt the CPRET

(Ref.18) representation of a system defined by the

Association Française d'Ingénierie Système which is shown

graphically in Figure 3.

Figure 3- Elements of a System Specification

In the ALRS analysis process a user maps the

information found in existing requirement documents to

elements of an AADL model of the system. This model has

captured the interactions of the system with entities in the

operational environment with requirement specifications.

This process clarifies whether the requirement is for the

system or one of its subsystems, quickly identifying use of

multiple terms for the same entity, and ambiguous or

conflicting requirement statements. Such a mapping of

requirement statements into the model also lets the user

quickly see whether requirements have been specified for all

interaction points with entities in the operational

environment.

In a next phase the user utilizes utility trees that are the

output of a Quality Attribute Workshop (QAW) (Ref. 19) or

an Architecture Tradeoff Analysis Method (ATAM) (Ref.

20). They take non-functional properties, also known as

operational quality attributes, and turn them into a concrete

requirements specification that can be measured and

verified. Prioritization of the utility tree leafs driven by

mission goals help the user ensure that critical requirements

are well-specified. Such a utility tree is shown in Figure 4.

Figure 4: Quality Attribute Utility Tree

A third phase addresses exceptional conditions that may

be encountered during system operation. These exceptional

conditions impact safety, reliability, and security of a

system. An analysis from a safety perspective is elaborated

on later in a discussion on safety. Note that since we have a

model-based representation of the system specification, the

user can utilize an ACVIP workbench, such as the OSATE2

tool environment for AADL, to check for inconsistencies in

the specification, e.g., check if the expected inputs and

outputs match. The user can also perform quantitative

analysis of the model. For example, flow latency analysis

can be used to determine whether response time

requirements are achievable, whether budgets for physical

resources, such as electrical power and mass, or computer

resources are realistic and result in sufficient margins for

uncertainty and desired spare capacity.

Requirements Analysis Process and Results on JCA

Demo

Prior to the JCA Demo DCFM awards, the ACVIP team

from CMU SEI conducted requirements analyses based on

the requirements and data model provided in the JCA Demo

BAA and the MIS Stakeholder and Systems Requirements

documents. This analysis identified shortcomings in the

system-level and component-level requirements, some of

which were also identified by the DCFM developers.

Following the provision of initial derived DCFM

developers’ requirements, further requirements analysis was

conducted to elicit additional integration issues. The ACVIP

shadow effort for the JCA Demo performed analyses using

AADL models of the DCFM integrated into the MIS system.

In the process the team discovered inconsistencies, and

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

7

missing requirement information in the original documents,

as well as defects related to safety, latency, and timing /

resource utilization.

In the process of performing this mapping a partial

AADL model of the conceptual and functional architecture

were developed including both the “architecture” of the

system in its operational context, and the system in terms of

its subsystems as far as they had been reflected in the

original requirements documents and UML model. This

model clarified issues of system and subsystem boundaries.

The resultant architecture model was generalized into an

aircraft survivability situational awareness (ASSA) system,

creating a reusable reference architecture for the domain of

use. This ASSA system incorporates the MIS and the

DCFM, both of which provide several functional services.

This is illustrated in Figure 5 with three services for MIS.

Two services are infrastructure services that are provided in

a layer below the situational awareness system, i.e., the data

conversion service, and the data management service. The

third service, a health monitor, resides in a layer above the

situational awareness system to detect and report any

exceptional conditions in the operation.

Figure 5 – Layered Architecture of ASSA System

The resultant annotated AADL model of the ASSA

System clearly identifies how much of the system

architecture has been prescribed by the requirement

specification. This awareness helps clarify whether this was

intentional, or whether requirements should be rephrased to

become requirements of the enclosing system, leaving

design choices to the developer.

The resultant functional architecture also became the

basis for quantitative analysis of the ASSA early in

development, e.g., pre-PDR. As Figure 5 shows, the model

included end- to-end flow specifications of a critical flow to

represent response time requirements. A UML sequence

diagram from the original documentation was modeled as an

analyzable interaction protocol across ARINC653 partitions.

The latency analysis capability of OSATE2 informed us of

the latency overhead contributed by this protocol, and its

effect on the critical flow, i.e., that in the best circumstances

the requirement can barely be met.

Architecture Led Safety Analysis (ALSA) Overview

The CMU SEI also conducted a safety analysis of the ASSA

using an Architecture Led Safety Analysis (ALSA) process

as part of the JCA Demo shadow effort. The user annotates

an AADL model with fault information utilizing an error

propagation ontology as illustrated graphically in Figure 6.

The error propagation ontology addresses issues of service

omission, commission, value, timing, rate, sequence,

replication, concurrency, authorization, and authentication

errors. The propagation paths between system components

are derived from the architecture specification itself.

Figure 6- Identification of Hazard Sources and Impact

This process leverages method and tool support through

AADL and the AADL Error Model Version 2 (EMV2)

Annex (Ref. 21) to support SAE ARP-4761 (Ref. 22) best

system safety analysis practices, such as an FHA, FMEA

and FTA. The analysis models, such as a fault tree, are

generated from the annotated AADL model, and then

processed by a FTA tool. In the case of FHA and FMEA the

respective reports are generated directly from the annotated

AADL model – as shown in Figure 7.

Safety Analysis Process and Results on JCA Demo

System safety analysis guidance, such as SAE ARP-4761,

recommends that the user perform a functional hazard

assessment (FHA), a failure mode and effect analysis

(FMEA), and a fault tree analysis (FTA). The FHA focuses

on hazards that may lead to catastrophic events. As a result

of these analyses, design assurance levels (DALs) are

assigned to different subsystem hardware and software in an

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

8

aircraft. While the JCA Demo BAA set the DAL to level E

for the DCFM, this ACVIP Safety Analysis exercise used

level C for the situational awareness system for aircraft

survivability.

Figure 7- Safety Analyses from Annotated AADL

Models

In the SAVI initiative the SEI recently demonstrated

how the SAE ARP-4761 process can be supported by an

AADL model annotated with fault information using the

Error Model Annex standard for AADL on an aircraft wheel

braking system. FHA, FMEA, and FTA reports as well

reliability/availability analysis reports have been generated

from safety analysis performed with such a model.

An Architecture-Led Safety Analysis (ALSA) process

was conducted for the JCA Demo ACVIP shadow project.

For that purpose the CMU ACVIP researchers started with

the hazards presented to the pilot by the ASSA. In addition

to the hazard of complete failure of providing the ASSA

service, the hazards considered included providing false

information such as false positives in the form of alerting the

pilot of threats and obstacles that do not exist, false

negatives such as not alerting the pilot when these threats

and obstacles exist. In addition the timeliness of information

was taken into account, i.e., how much information delay is

acceptable to the pilot. Subsequent to citing the hazards, the

potential error sources were systematically identified that

can propagate as one of the identified hazard categories to

the pilot. A fault ontology provided as part of the AADL

Standard Error Model annex was used as a checklist of fault

propagation categories to consider in the process.

The insights from this analysis lead to a set of derived

safety requirements for the health monitoring system that

were lacking in the original System Requirement document.

These requirements were captured in the annotated AADL

model of ASSA. The primary focus of the health monitoring

system was on detection and reporting, i.e. it is responsible

for recognizing when one of the identified hazard conditions

occurs and then informs the pilot to that effect. A second set

of requirements focused on minimizing the impact of the

different fault contributors, i.e., to express fault isolation

tactics as a set of derived safety requirements. A third set of

requirements addressed the ability to recover back into a

normal operational state. In other words, the resulting

requirement specification provided a clearer indication of

expected functionality.

A hazard analysis of this form not only examined failure

of individual components, but also whether the interaction

between components could lead to a hazard contributor. An

example of such a contributor in the ASSA is the fact that

the interaction between sensors providing new data to MIS

and DCFM requesting data concurrently could potentially

lead to concurrency issues which result in corrupted data,

which in turn can result in false positives or false negatives.

Architecture Led Timing Analysis Methodology and

Tools

For distributed heterogeneous computer systems, specifying

and analyzing end-to-end timing requirements that result in

satisfactory mission performance of the overall vehicle

remains a challenging multi-disciplinary problem that

involves the physical sciences and human factors as well as

computer science and engineering. Different requirements

models and allocation and scheduling methods are used for

different functions and equipment. For example, networks

typically use a different scheduling method than processors.

Feedback control software uses a periodic sampled data

design pattern, while message handling software often uses

an event driven queued data design pattern. Today there is

no single method or tool that can analyze all of them. Two

broad approaches to timing analyses are simulation (testing

executable models) and schedulability analysis (applying

math to bound values). The two have strengths and

weaknesses and can complement each other. In this project,

schedulability analysis was the focus. In a survey the

ACVIP timing analysis team identified sixteen available

schedulability analysis tools, each suited for different

scheduling algorithms and software applications and

computing equipment.

The system architect must select a set of development

methods and tools that are suitable for the subsystems and

components selected for the mission system. The selected

development tools need to be integrated, just as the

components of the mission system must be integrated. The

ACVIP team created and used a compositional timing

analysis framework during the JCA Demo that allowed us to

select a set of analysis tools suited for the different kinds of

subsystems in the mission system. The framework

compositionally applies the tools so that dependencies

between subsystems are taken into account when producing

an overall end-to-end timing analysis.

The timing analysis framework developed by

Adventium and applied to the JCA Demo system translates

different parts of an AADL model into the native input

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

9

formats of selected back-end schedulability analysis tools.

There are dependencies between these multiple tool-specific

models, e.g. a task set hosted on a processor analyzed by one

tool may send messages over a network that is analyzed by

another tool. The framework extracts analysis results from

some tools when generating input models for others.

Because there may be cyclic dependencies between different

parts of the system model, analysis must be performed

iteratively until global convergence is achieved. The final

analysis results from the different tools must be combined to

check end-to-end timing requirements specified in the

AADL system model (Simon Kunzli, 2007; Rob Edman,

2015).

The Modeling and Analysis Suite for Real-Time

Systems (MAST) (Ref. 23) and the Separation Platform for

Integrating Complex Avionics (SPICA) (Ref. 24) were

selected as the initial tools to integrate into the timing

analysis framework as shown in Figure 8 (the Framework

for Analysis of Schedulability, Timing and Resources,

FASTAR (Ref. 25)). These selections were made because

MAST can analyze switched Ethernet networks and SPICA

can analyze ARINC 653 style schedules. An Ethernet

network and ARINC 653 partitioning were used in the JCA

Demo.

Figure 8- Timing Analysis Tools Framework Based on

AADL

Although most of the workload in our demonstration

system was hosted on an Ethernet and an ARINC 653

compute module, there were several pieces of sensor

equipment (some simulated, some actual) and a display

subsystem for which the ACVIP timing analysts had no

internal design information (and insufficient project

resources to model them even if the ACVIP timing analysts

did have the internal design information). This is expected

to be a common situation; therefore, the analysis framework

allows “black box” modeling of subsystems. This allows the

developer to enter interface timing properties for these

subsystems into the model (e.g. message send and receive

rates and latencies through the subsystem). The analyzer

assumes “black box” subsystems will comply with their

specified interface timing properties when doing end-to-end

analysis and verification.

Timing Analysis Process and Results on JCA Demo

For the JCA Demo, a decision was made to perform timing

analysis on a design architecture model. This decision was

made both to gain experience with multiple development

phases and modeling guidelines and to stress-test the timing

analysis framework.

Both conceptual and design AADL models were

developed. The conceptual architecture model was

primarily based on a Microsoft® Word™ document that

described the overall JCA Demo system architecture, a

Microsoft Word document that described the derived

interface requirements for a major subsystem, a Microsoft

Word document and a data model included as part of the

solicitation for the DCFM software component, and the JCA

Demo system architecture configuration contained in the

UML. Although conceptual models were not subjected to

schedulability analysis (other types of timing and resource

analyses are more appropriate at the conceptual architecture

phase), this allowed the ACVIP researchers to exercise more

of the modeling guidelines, including guidelines for

capturing traceability between models at different

abstraction levels using AADL language features to extend

and refine component models with increasing amounts of

detail.

Figure 9 Architectures are Layered

As the ACVIP timing analysts built the AADL models

for the JCA Demo system, they uncovered more detailed

requirements for methods and tools needed to support

architecture modeling and analysis. First, architectures are

layered as illustrated in Figure 9. Layers introduce

infrastructure software and affect timing properties such as

system overheads. AADL allows virtual resources and

layers to be modeled, but guidelines are needed and tools

need to support those guidelines. Second, architectures have

different clock synchronization domains. For example, the

JCA Demo system hosted portable interoperable software

components on a FACE/ARINC653 compute module whose

scheduling was driven by a common clock. However, this

subsystem communicated over a switched Ethernet with

sensor and display equipment. These resources were not

clock-synchronized with the compute module. Again,

modeling guidelines and appropriate tool support need to be

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

10

provided for the AADL language features used to specify

these aspects of systems. Finally, there is a need to support

mixed fidelity modeling and analysis, e.g. our earlier

discussion on “black box” modeling and analysis.

JCA DEMO ACVIP ANALYSIS FINDINGS

AND LESSONS LEARNED

Previous studies have shown that peer review is a very cost-

effective means of defect detection, partly because it was the

only traditional method that could be applied in early

development phases. The ACVIP researcher’s experience is

that many defects were detected during model development

even before analysis tools were applied. This is achieved by

mapping terms in the document into concepts expressed by

AADL. Users quickly realize different terms used in

different sections of the documents for the same concepts,

and conflicting statements about specific attributes of model

elements, e.g., two different numbers for range of operation.

Strong typing in AADL ensures that interactions between

virtually integrated system components are consistent, e.g.,

that measurement units and interchange protocols are used

consistently. In other words, the rigor of the AADL focuses

attention on ambiguous and incomplete elements of a natural

language document and eliminates potential system

integration problems early in the process. This is consistent

with earlier reports that a significant benefit of modeling is

more precise specification; many defects are found during

the model development phase (Ref. 26).

Earlier studies showed that providing reviewers with

structured guidelines (often called reading guidelines or

techniques in the inspection literature) improved the quality

of reviews. In model-based engineering, the model

development task could be viewed as a particularly well-

structured review method (Ref. 27)

The ACVIP related goals for JMR Mission Systems

Architecture Demonstrations (MSAD) such as the JCA

Demo are to identify, validate, mature and transition

methods and tools to support an architecture centric virtual

integration process. This exercise also generated new

modeling guidelines and tool requirements (as well as bug

reports for tool developers and errata for the AADL

standards committee).

The ACVIP researchers provided reports citing around

85 findings, 70 that were attributed to requirements analyses

and 15 to timing analyses that will be rolled up in the JCA

Demonstration Final Report. Some notable areas identified

by the ACVIP team included:

 Relationship of component states and MIS system

state not being fully specified

 Lack of a specification of currency/staleness for the

data

 No identification of end-to-end timing requirement

for hazard data

 Partition schedule not meeting ARINC 653

scheduling rules

 Non-clarity in protocol from MIS to support

multiple or single instantiation of DCFM

 Non-clarity in data storage requirement between the

DCFM and MIS

 Ambiguity on the MIS system Operational State

when a clock timer expires

 Lack of a requirement for the number of source

tracks the aircraft survivability sensor provides

 Possibility of track jitter will be seen in integration

 Multiple sensor stream rates may have implications

on integration.

 Cross partition timing issues in the ARINC 653

schedule

 Inconsistency in the area of threat ranges between

the DCFM and MIS making it unclear how alerts

would be handled

 Potential memory leaks in MIS identified

 Ambiguity in the requirement to correlate 50 source

tracks within 1 second and concern over meeting

the requirement.

Some of these issues with relation to the DCFM were

also cited by the DCFM vendors independently of the

ACVIP researchers. At the time of this paper’s writing the

MIS team were able to confirm several of these and other

findings by ACVIP; however, several are still to be

confirmed in integration testing. A spreadsheet of the

findings by the ACVIP team was sent to the MIS team to

confirm the findings. Some findings were dismissed by MIS

because the identified issues had been addressed through the

requirements adjustment made by MIS of which the ACVIP

was not aware. In general, the findings by the ACVIP team

demonstrated that in a real program that these issues would

have been identified and corrected even prior to solicitation

which could have led to a cost savings and / or development

schedule reduction.

Outside of the issues directly affecting the DCFM and

MIS integration, there were improvements identified in the

OSATE tools, ACVIP Modeling and Analysis Handbook,

FACE Generic Modeling Environment (GME) to AADL

translator, improvements needed to mature the requirements,

safety and timing analysis capabilities.

FUTURE MATURATION AND PLANS FOR

ACVIP

The ACVIP metrics analysis and evaluations are still in

progress at the time of writing of this paper. At the

conclusion of the JCA Demo integration effort, retrospective

analysis of defects detected in both the JCA Demo and the

ACVIP Shadow effort will be completed. This will include

estimating such things as when defects were detected and by

what methods in both baseline demonstration and ACVIP

shadow, and the costs and benefits of earlier error detection

using the various ACVIP modeling guidelines and methods

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

11

and tools at various phases. These final evaluations will

provide input into the plans and actions discussed in the

paragraphs below.

The JMR program has developed roadmaps both for the

development of advanced analysis approaches that leverage

the integrated architectural analysis strength of AADL and

the incremental analysis approach of ACVIP. New analysis

methods will be added to the process incrementally as they

emerge in the research community. These tools will be

demonstrated to gain insight. Then tools and documentation

will be matured to a point where third party developers in

research oriented teams can effectively apply the tools.

Handbooks for the technical use of the analysis methods and

the ACVIP process as well as acquisition guidance for

program managers are being developed and refined in each

phase of demonstration. Tools to enable analyses for

requirements, safety, security, resource utilization, timing,

code generation and rapid integration are examples of JMR

S&T focus areas to increase technology readiness levels

(TRL). The capability to translate to/from other modeling

languages such as UML and SysML to AADL is planned to

be added with an attempt to translate the JCA Reference

Architecture from UML to AADL as a first step. SAVI

gains in tools, analyses, and processes will also be

incrementally integrated into ACVIP. Furthermore,

technology transition of the ACVIP processes and tools will

occur through offered training and future JMR Mission

System Architecture Demonstrations. It should be noted that

an AADL/ACVIP training session as part of the JCA Demo

ACVIP Shadow effort was conducted. The session included

both industry and Government attendees. More training

opportunities like this will be available in the future. These

activities provide the Government and industry with

guidance and experience using the AADL and ACVIP in

preparation for FVL. The expected benefit is early

discovery of integration issues throughout the development

process reducing development cost, schedule and risks for

FVL.

CONCLUSION

ACVIP is an architectural centric model based approach that

will revolutionize the way in which we analyze our systems.

Results of the JCA Demo ACVIP Shadow effort

demonstrated that ACVIP has potential to provide strong

architectural analysis to identify and aid in the eradication of

issues. ACVIP and its guidance, tools, and processes are in

its infancy and require further refinements and maturation to

be effective for future DoD acquisition of aviation mission

computing systems. AADL is being used in many company

and organization research efforts and needs to be matured

and transitioned to development and production areas. JMR

Mission Systems Architecture Demonstrations will continue

to work with the ACVIP researchers and ensure that the

exercise, documentation and lessons learned mature these

processes and tools so that they can effectively be used by

avionics and systems engineers in the future. Industry and

Government need to work together to improve ACVIP so

that future development / integration efforts can benefit from

early virtual integration, validation and verification.

REFERENCES

1
 Department of the Army, Army Contracting

Command. “A Joint Multi-Role Technology Demonstrator

(JMR TD) Joint Common Architecture Demonstration (JCA

Demo) Broad Agency Announcement (BAA)”. Location

ACC-RSA-AATD-(SPS), 2014. Solicitation Number

W911W614R000002.

2
 Aerospace Vehicle Systems Institute.

http://savie.avsi.aero. [Online]

3
 NAVAIR. “Technical Standard for Future Airborne

Capability Environment (FACE)”, The Open Group, Public

Release 2013-149.

4
 Standard, SAE Aerospace. “AS5506 Architecture

Analysis & Design Language (AADL)”. (ref.

http://standards.sae.org/as5506b), Revision B 2012.

5
 OSATE2 (Open Source AADL2 Tool Environment).

AADL Public Wiki. [Online]

https://wiki.sei.cmu.edu/aadl/index.php/Osate_2.

6
 Hansson, Feiler and Helton, SEI and Boeing. “ROI

Analysis of the System Architecture Virtual Integration

Initiative”. 2011.

7
 A Survey of Architectural Description Languages.

Clements, Paul C. March 1996.

8
 Object Management Group. “Systems Modeling

Language (SysML)”, Version 1.3. [Online] June 2012.

http://www.omg.org/spec/SysML/1.3/.

9
 SAE International, AS-2C. “AS5506/2 Architecture

Analysis and Design Language (AADL) Annex Volume 2:

Data Modeling Annex, Behavior Annex, ARINC653 Annex”.

2011.

10
 ARINC. “Avionics Application Software Standard

Interface: ARINC Specifcation 653 Part 0”. June 2013.

ARINC 653.

11
 Ellidiss. AADL Inspector. [Online] Ellidiss Software,

2012. http://www.ellidiss.com/products/aadl-inspector/.

12
 Dissaux, Pierre. “Stood: a ‘state of the art’ hybrid

real time software toolset” . [Online]

http://www.ellidiss.com/products/stood/.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

12

13
 “MASIW Framework: an open source Eclipse-based

IDE for development and analysis of AADL models”.

[Online] http://forge.ispras.ru/projects/masiw-oss.

14
 CMU-SEI. “Summary of AADL Related Toolsets”,

[Online]

https://wiki.sei.cmu.edu/aadl/index.php/AADL_tools.

15
 Defense, Department of. “Operation of the Defense

Acquisition System”. 7 Jan 2015.

16
 IEEE 830-1998, “Recommended Practice for

Software Requirements Specification”. June 2009.

17
 DOT/FAA/AR-08/32. “Requirements Engineering

Managmeent Handbook”. June 2009.

18
 Association Française d'Ingénierie Système. CPRET:

System Process as Constraints, Products, Resources, input

Elements and Transformations. [Online]

http://en.wikipedia.org/wiki/Process_%28engineering%29#

CPRET.

19
 CMU-SEI. Quality Attribute Workshop. [Online]

http://www.sei.cmu.edu/architecture/tools/establish/qaw.cfm

20
 CMU SEI. Architecture Tradeoff Analysis Method

[Online]

http://www.sei.cmu.edu/architecture/tools/establish/atam.cf

m.

21
 SAE International, AS-2C. Architecture Analysis and

Design Language (AADL) Annex Volume 3 Annex E: Error

Model Annex, Draft. Dec 2013. AS 5502/3.

22
 SAE International, SAE ARP-4761. Guidelines and

Methods for Conducting the Safety Assessment Process on

Civil Airborne Systems and Equipment. 1996

23
 M. González Harbour, J.J. Gutiérrez García, J.C.

Palencia Gutiérrez, and J.M. Drake Moyano. MAST:

Modeling and Analysis Suite for Real Time Applications.

http://mast.unican.es/, 13th Euromicro Conference on Real-

Time Systems, 2001.

24
 Boddy, Mark. Separation Platform for Integrating

Complex Avionics (SPICA). SBIR phase I Technical Report.:

Adventium Labs, September 2013.

25
 Rob Edman, Hazel Shackleton, John Shackleton,

Tyler Smith, Steve Vestal “A Framework for Compositional

Timing Analysis of Embedded Computer Systems”,

Adventium Labs, Feb 2015

26
 Edmund M. Clark, Jeannette M. Wing, “Formal

Methods: State of the Art and Future Directions”, ACM

Computing Surveys. 1996.

27
 Laitenberger, Oliver, “A Survey of Software

Inspection Technologies, Handbook on Software

Engineering and Knowledge Engineering”. 2002.

