
Course of Action Generation for Cyber Security Using Classical Planning

Mark Boddy and Johnathan Gohde and Tom Haigh and Steven Harp∗
Adventium Labs
Minneapolis, MN

{firstname.lastname}@adventiumlabs.org

Abstract

We report on the results of applying classical planning tech-
niques to the problem of analyzing computer network vul-
nerabilities. Specifically, we are concerned with the gener-
ation of Adversary Courses of Action, which are extended
sequences of exploits leading from some initial state to an
attacker’s goal. In this application, we have demonstrated the
generation of attack plans for a simple but realistic web-based
document control system, with excellent performance com-
pared to the prevailing state of the art in this area.
In addition to the new capabilities gained in the area of vul-
nerability analysis, this implementation provided some in-
sights into performance and modeling issues for classical
planning systems, both specifically with regard to METRIC-
FF and other forward heuristic planners, and more generally
for classical planning. To facilitate additional work in this
area, the domain model on which this work was done will be
made freely available. See the paper’s Conclusion for details.

Introduction
This paper describes our experiences in implementing an
automated system intended to aid computer network ad-
ministrators in analyzing the vulnerabilities of their systems
against various kinds of potential attackers. In ourBehav-
ioral Adversary Modeling System(BAMS), the security an-
alyst selects the attributes and objectives of a potential ad-
versary and then invokes aCourse Of Action(COA) genera-
tor to hypothesize attacks that such an adversary is likely to
choose in attempting to subvert the system. The analyst can
then use this information to evaluate the susceptibility of his
system to attacks by a particular type of adversary, and to
select the most reasonable defensive measures.

Our work was motivated by a particularly challenging
problem: analyzing the threat posed by malicious insiders,
adversaries who are legitimate users of the system, with the
ability to mount physical, cyber, and social engineering ex-
ploits to achieve their goals. Our BAMS prototype gener-
ates hypothetical insider attacks against a simple but real-
istic model of a web-based Document Management System.
BAMS can be used to generate a sequence of attacks against

∗The work reported in this paper was carried out at Ad-
ventium Labs and was supported by ARDA, under contract
NBCHC030080. J. Gohde’s current affiliation and email: General
Dynamics, gohde@cs.umn.edu

Figure 1: Course of Action Generation from Adversary
Models

a given network, exploiting different vulnerabilities as old
ones are blocked through configuration changes. The plans
generated vary from twenty to fifty atomic steps, and are
produced rapidly enough (typically less than a second) to
make the interactive use of the tool feasible.

The Course of Action generator is at its heart a classical
planner. Most of our work was with Hoffmann’s METRIC-
FF planner (Hoffmann 2003), for reasons and with results
discussed in the body of the paper. In addition to the
new capabilities gained in the area of vulnerability anal-
ysis, this implementation has provided some insights into
performance and modeling issues for classical planning sys-
tems, both specifically with regard to METRIC-FF and other
forward heuristic planners, and more generally for classical
planning.

In the rest of this paper, we present the problem and our
implemented solution, including a discussion of modeling
issues raised and to some extent resolved, as well as some
performance issues encountered in this domain. We then
present a brief summary of related work, and a somewhat
longer discussion of open questions and future work in this
area. To facilitate additional work in this area, the domain
model on which this work was done will be made freely
available. See the paper’s Conclusion for details.

Network Vulnerability Analysis as a Planning
Problem

The process we support is the construction and manipula-
tion of adversary models, specifically in reasoning from an
adversary’s goals, capabilities, and knowledge to what they



may attempt to do in order to achieve those goals. A sim-
ple schematic model of this process is presented in Figure 1.
The value here is in the predictive behavioral model of the
enemy, not in the collection of enemy characteristics and
preferences. Unlike most previous work in the area, our sys-
tem makes predictions of specific adversary behaviors, so
that network defenders can concentrate on defending against
specific attacks identified as especially likely or especially
costly, rather than simply configuring their defenses to pro-
tect against the latest published attacks.

Given this Behavioral Adversary Model, analysts can
make intelligent trades among different security architec-
tures and counter-measures. They can also use these models
to assess the risk associated with trusting the system to pro-
tect mission critical data or services. Red Teams can use
behavioral models to develop more realistic attack scenarios
than the ones they use today, ideally capturing the prefer-
ences and tendencies of particular classes of adversaries in
question, rather than the skill set or preferences of the red
team. To be of any real use, these models must address the
full range of physical and social engineering exploits as well
as the cyber exploits that an adversary might employ.

Representation
The planning domain and the planning problem are both
represented inPDDL (Fox & Long 2002). The current
model includes more than 25 different object types, in-
cluding the most basic elements of the computational en-
vironment: hosts, processes, programs, files, user identi-
fiers (uids), group identifiers (gids), email messages, cryp-
tographic keys, network switches, firewalls, and keystroke
logging devices. The model includes physical types, such as
people, rooms, doors, locks, and keys. There are also types
to describe information concepts such as secrets, and task
instructions that might be sent from one person to another.

A variety of facts about these objects can be represented
as both fluents (e.g., the current room location of an individ-
ual) and static relations (e.g., the physical layout of a build-
ing). Our current implementation has 124 predicates, and
a typical problem will use these to express200–300 facts.
The predicates denote propositions representing the config-
uration of hosts, the status of files, the capabilities and vul-
nerabilities of particular programs, the knowledge possessed
by individuals, the dimensions of trust between persons, and
the physical layout. Some examples of facts in this domain
include:

(insider bob)
(in_room bob bobs_office)
(can_unlock key_1 lock_1)
(has_uid bob bob_uid)
(knows bob bob_pwd)
(file_contents_program s_iexplore iexplorer)
(accessible s_iexplore sherpa)
(user_read s_iexplore greg_uid)
(can_read_email ms_outlook)
(trusts_instructions_by greg adam)

Actions are the most complex element of our model.
A simple example is the actionDMSADDGROUPALLOW
which modifies the access control list (ACL) for a document
by adding group read access for a given group:

(:action DMS_ADD_GROUP_ALLOW
:parameters ( ?admin - c_human

?chost - c_host
?shost - c_host
?doc - c_file
?gid - c_gid )

:precondition
(and (pmode free)

(nes_admin_connected ?chost ?shost)
(at_host ?admin ?chost)
(insider ?admin))

:effect
(and

(dmsacl_read ?doc ?gid)))

The precondition(pmode free) is a special construct,
discussed in the next section. There are 56 actions in the
current domain model.

In BAMS, an adversary’s objectives are expressed as
goals, which may include both propositional and metric in-
formation. For instance, a goal for our canonical bad guy
“Bob” may be to minimize the detection risk of the plan
while gaining access to a secret document:

(:goal (knows bob secret_info))
(:metric minimize (detection_risk))

The goal might also include a hard constraint such as
keeping the detection risk below a certain level:

(:goal (and (knows bob secret_info)
(<= (detection_risk) 5)))

The Implemented Model
The domain we model is a simplified Document Manage-
ment System (DMS), with physical, network, and social en-
vironments represented. Figure 2 shows the simulated office
layout. The initial contents and state of rooms, doors and
locks can be graphically manipulated by dragging and click-
ing. A snapshot from a guided dialog sequence (wizard) to
create a profile for a new malicious insider is shown in Fig-
ure 3.

Figure 2: Top level screen of BAMS console.

The initial state of our office has Bob in a position to ex-
ploit several vulnerabilities. Bob has a key to his coworker’s
office. He has the ability to run a packet sniffer and also has a



Figure 3: Part of a dialog sequence for specifying a new
malicious insider.

Figure 4: Network Configuration.

hacking tool which exploits a WindowsTM vulnerability and
runs arbitrary code. Bob has two viruses, one that infects
Internet ExplorerTM and forwards the data it receives and a
second that runs in the background and forwards the whole
screen. He controls both of these with the same program.

The layout of our network is as shown in Figure 4. The
documents are served by a web-server on the organization’s
back office network to users on a front office network. The
networks are separated by a packet filtering firewall that
can be configured to control the connections of users to the
servers. The front office environment is on a hub, which con-
nects Bob’s and his coworkers’ computers. His coworker
Greg is not the most security minded individual, and he
is also somewhat gullible. Finally, while documents being
transfered to or from the DMS are encrypted over SSL, ad-
ministration traffic to the server is done over plaintext HTTP.
Users authenticate to the DMS and the DMS admin server
with fixed passwords.

The DMS has a simplified version of access control based
on user or group permission to read or write a document.
While the permissions are not as rich as a true ACL system
allows, the end effects of who is allowed to read and write
to a file are modeled. For purposes not involving subtle mis-
configuration issues, this is sufficient to determine vulnera-
bilities.

This domain model was constructed in collaboration with
and reviewed by experts in the U.S. intelligence community.

Goals, Metrics

Macro Facts

BAMS Facts

PDDL Domain

PDDL Problem

Domain Def.

Macro Actions

Attacker Plan

User Interface

Macro

Preprocessor

Graphical

Planner
AI

Attacker COA

Translator
Plan

Figure 5: Top level view of the BAMS architecture.

While it is somewhat smaller than a real network to which
such a tool would be applied, it possesses the appropriate
characteristics. In particular, the authentication mechanisms
implemented closely follow the “Community of Interest”
model for cyber and information security.

BAMS Implementation
The BAMS system architecture used for our experiments is
shown in Figure 5. The PDDL domain and problem spec-
ifications are provided as input files to the planner, which
generates a plan.

As discussed in the next section, the PDDL versions of the
domain model and planning problem are assembled from a
set of modules written with the aid of custom macros de-
signed to make writing large scale PDDL programs more
natural and efficient. The Unixmake utility invokes the M4
macro preprocessor (Seindal ) to expand and assemble the
sources as needed for a given problem. It also invokes a Perl
program that processes the output of the planner and trans-
lates the plan steps to a more readable form. An example of
the output of this post-processor is shown in Figure 6.

BAMS provides a flexible graphical user interface. The
BAMS “console” can, within limits, configure the problem
specification without the need for the user to write anything
directly in PDDL. It consists of a set of tabbed dialogs, such
as the one in Figure 7. In use of the system, the user se-
lects the elements and options to present to the planner, and
then issues a “RUN” command from the menu. The cor-
rect PDDL is generated, the planner invoked, and the output
translated and displayed in the interface. Currently the con-
sole is used only to manipulate the fact base, not the domain
definition.

The planner used in this system is Jörg Hoffmann’s
Metric-FF planner (Hoffmann 2003). METRIC-FF is a for-
ward heuristic planner using a relaxed plan graph (Blum &
Furst 1995) to provide heuristic estimates of the remaining
distance from a state to the goal. These heuristic estimates
are then used to guide search. With METRIC-FF there are
two different search modes, Enhanced Hill Climbing (EHC)
and best first search (BFS). EHC is the default initial search
mode, and can be very fast, but does not always find a so-
lution when one exists. If EHC fails to find a solution then
the slower but complete BFS mode is used. If BFS does
not return a solution then it is provably true that no solution
exists.

Before adopting METRIC-FF, we experimented with sev-



0 : ADAM sits down at BIGFOOT
1 : ADAM enters ADAM_UID as user name for login on host BIGFOOT
2 : ADAM enters password ADAM_PWD for login at host BIGFOOT
3 : Shell B_WEXPLORE is launched on host BIGFOOT for user ADAM_UID
4 : Program WEXPLORER on host BIGFOOT forks a child process
5 : Contents of file B_IEXPLORE begin executing as uid ADAM_UID on host BIGFOOT
6 : BOB sits down at YETI
7 : BOB enters BOB_UID as user name for login on host YETI
8 : BOB enters password BOB_PWD for login at host YETI
9 : Shell Y_WEXPLORE is launched on host YETI for user BOB_UID
10 : Program WEXPLORER on host YETI forks a child process
11 : Contents of file Y_ETHEREAL begin executing as uid BOB_UID on host YETI
12 : ETHEREAL starts sniffing the networks on YETI
13 : ADAM logs onto dms admin server EVEREST from BIGFOOT
14 : BOB reads the sniffer thus learning NES_ADMIN_PASS
15 : Program WEXPLORER on host YETI forks a child process
16 : Contents of file Y_IEXPLORE begin executing as uid BOB_UID on host YETI
17 : BOB logs onto dms admin server EVEREST from YETI
18 : DMS session DMSS1 has begun
19 : BOB begins a DMS session on YETI
20 : Connect DMS session DMSS1 to server NES on EVEREST
21 : A route from YETI to DMS server EVEREST exists
22 : BOB enters password BOB_DMS_PWD for the DMS session.
23 : Authenticate BOB_UID in dms session DMSS1 with EVEREST using BOB_DMS_PWD
24 : BOB adds an acl to allow read access of E_SECRET_DOC to the EAST_GID group
25 : BOB begins a DMS request at YETI in session DMSS1
26 : Document E_SECRET_DOC is requested in session DMSS1
27 : Document E_SECRET_DOC is sent and displayed on YETI in session DMSS1
28 : BOB reads E_SECRET_DOC and learns SECRET_INFO

Figure 6: An automatically generated attack plan.

Figure 7: User interface showing a tab for configuring a
Netscape based DMS on the host “Everest”.

eral planners, choosing METRIC-FF for several reasons.
First, it is fast enough to handle problems of a useful size and
complexity. Second, METRIC-FF is thorough in its parsing
of PDDL. All of the features we need are supported, includ-
ing metrics and the use of complex logical expressions in
the preconditions and effects of actions. Memory usage of
METRIC-FF on our problems was reasonable, although we
have created a modified version that is more parsimonious
than the original source. Because this sort of planner creates
extensive data structures prior to any search, it is important
to keep these in physical memory if at all possible for the
sake of speed. The scaling behavior of the planner on this
domain is discussed below, in the section on performance.

Modeling Issues
We encountered several modeling challenges in this work.

Level of Detail
The first issue, evident from the beginning, is choosing the
best level of abstraction at which to model the target system
of interest. At too abstract a level, the resulting plans tend to
be uninteresting, for example two-step plans such as: “the
attacker gains root privilege on the server and then reads the
secret document.” At too detailed a level, (e.g. network
packets or individual system calls) the plans are full of unin-
teresting detail and are far more difficult to generate. In ad-
dition, very detailed models are themselves labor-intensive
to construct and maintain, and have a very short half-life.



Even minor changes to a network will require extensive re-
work.

Based on feedback from domain experts who have
been involved throughout the project, we implemented the
BAMS domain model at an intermediate level of detail. Ac-
tions encode adversary moves and exploits at a sufficient
level of detail to model the possibility of a vulnerability, but
not to make a rigorous determination, such as would be ob-
tained through a rigorous parsing of firewall rules. Plans
generated in our simplified domain with this model range
from a dozen to a few dozen steps.

Review by domain experts has validated that the level of
detail is appropriate, but indicate that the domain is still too
small and the plans too short to be considered to be address-
ing a “real-world” domain. Informal estimates of the neces-
sary increase in scale indicate a factor of about 10 required
in the size of the domain model, and of about 2 in the length
of plans.

A Natural Representation for Users

The second issue relates to usability. PDDL is a species of
formal logic. Viewed from a different angle, PDDL is also a
programming language. Neither of these representations are
naturally comprehensible to the general user. In order for
this system to be of any service to general users, the repre-
sentation must be made transparent enough to allow them to
describe the problem of interest with confidence. To avoid
long periods of development, the representation should be
lend itself to reuse.

We have added two enhancements to isolate users of
BAMS from the need to directly represent facts and ac-
tions in PDDL. The first is a set of M4 macros that en-
capsulate some of the language’s syntactic conventions and
augment them with explanatory text (used in presenting dis-
covered plans). Macros also support the notion of “modal”
sequences of actions, which efficiently capture certain com-
mon state-machine-like situations, such as the assembling
and sending of an email message, or the launching of a new
operating system process. The full process of composing
and sending an email message is shown in Figure 8.

An example of a macro used to define one piece of that
process is shown in Figure 9. The first two “arguments”
to thedefmodal declaration are the modes, one required
as a precondition for the PDDL action compiled out of this
declaration, the second asserted as an effect. The presence
of the same mode as both precondition and effect means that
this action can be repeated an arbitrary number of times as
part of the process, as shown in Figure 8. Having different
initial and final modes permits a domain modeler to enforce
the sequential occurrence of actions, with no other actions
intervening.

The final problem and action definitions presented to the
planner are assembled dynamically by M4 and a make script
from component modules. This modularity allows us to par-
tition all the predicates and classes pertaining to a single do-
main element (e.g. email, or doors and locks) into separate
files, which are then merged and aggregated into full domain
and problem specifications.

Figure 8: Composing and sending an email message

defmodal(senderset, senderset,
ADD_RECIP

:parameters (?sender - c_human
?email - c_email
?ruid - c_uid
?recip - c_human)

:precondition
(and (writing_email ?sender ?email)

(or (trusts_recipient ?sender ?recip)
(insider ?sender))
(has_uid ?recip ?ruid))

:effect
(and (recipient ?email ?ruid)),
"?sender adds recipient

?recip (?ruid) to ?email")

Figure 9: Definition for action ADDRECIP, which adds a
recipient to an email.

Modeling for Performance
For reasons of performance, we found it necessary to break
large actions into smaller ones, which are then required to
execute sequentially using the “defmodal” construct defined
above. Consider the actionrelay viewed doc in Fig-
ure 10, which has a total of nine parameters, but only a
single effect. A propositional planner such as METRIC-FF
plans with ground instances of such an action, generated by
instantiating the action as actions with the parameters re-
placed with all domain objects of the appropriate type. The
number of grouund actions is then the product of the pos-
sible instantiations for each parameter, which for domains
of even moderate size will be a very large number. For
relay viewed doc , if we assume 3 possible instantia-
tions for each parameter (so, 3 hosts on which the adversary
may be logged in, for example), there will be39 = 19, 683
ground actions to consider. This creates problems both in the
initial generation of the propositional model, and potentially
in searching for a plan as well, since any of these actions
may be considered for addition to the current partial plan. In
the domain model used for the experiments described below,
a single action was segmented in this manner into as many
as six smaller actions.

Deciding how to split actions to reduce the number of pa-



defaction(relay_viewed_doc
:parameters (?doc - c_file

?human - c_human
?src_host - c_host
?s_proc - c_process
?src_proc - c_process
?malware - c_program
?dst_host - c_host
?dst_proc - c_process
?master - c_program)

:precondition
(and

(at_host ?human ?dst_host)
(viewing_doc ?src_host ?s_proc ?doc)
(running_prog ?src_host ?src_proc ?malware)
(can_transmit_documents ?malware)
(running_prog ?dst_host ?dst_proc ?master)
(can_receive_documents ?master)
(net-connected ?src_host ?dst_host)

)
:effect

(and (viewing_doc ?dst_host ?dst_proc ?doc)))

Figure 10: A large, complicated action

defmodal(free, r1,
RELAY_VIEWED_DOC_1

:parameters (?doc - c_file
?src_host - c_host
?s_proc - c_process
?src_proc - c_process
?malware - c_program

)
:precondition

(and
(viewing_doc ?src_host ?s_proc ?doc)
(running_prog ?src_host ?src_proc ?malware)
(can_transmit_documents ?malware)
)

:effect
(and (transmitting ?src_host ?doc))

)

defmodal(r1,free,
RELAY_VIEWED_DOC_2

:parameters (?doc - c_file
?human - c_human
?src_host - c_host
?dst_host - c_host
?dst_proc - c_process
?master - c_program)

:precondition
(and

(transmitting ?src_host ?doc)
(at_host ?human ?dst_host)
(running_prog ?dst_host ?dst_proc ?master)
(can_receive_documents ?master)
(net-connected ?src_host ?dst_host)

)
:effect
(and

(viewing_doc ?dst_host ?dst_proc ?doc)))

Figure 11: Two smaller actions

rameters in each is more a matter of art than algorithm, but
there are some heuristics. Effective splitting is dependent on
how the parameters in the action’s preconditions and effects
can be separated. Ideally, parameters appear in a minimum
number of sub-actions and each sub-action has a minimum
number of parameters. As a final complication, those pa-
rameters with a minimum number of possible instantiations
in the current domain model will ideally appear early in the
sequence of sub-actions resulting from this split, due to an
effect on search efficiency analogous to join query optimiza-
tion for databases. Figure 11 shows the result of splitting
the action in Figure 10. Note that we have had to add a
new proposition(transmitting ?src host ?doc)
to enforce the same parameter instantiation in the two sub-
actions.

Results
Scenario
For the results reported here, we used the domain described
above, defining a scenario involving the successive detection
and removal of vulnerabilities permitting successful attacks.
The domain model includes four hosts, a firewall separating
two network segments, a malicious insider, a normal user,
and an administrator. Several vulnerabilities were present in
this configuration, including hosts with no virus scanning, a
non-switched network, and trusting and somewhat gullible
coworkers.

We selected a profile for our malicious insider “Bob” and
gave him the goal of gaining unauthorized access to a secret
document by exploiting a combination of physical, social
engineering, and cyber exploits against a simple but realistic
web-based DMS. After the planner generated a COA, we
would identify and apply a counter-measure that rendered
that specific attack infeasible. Application of these counter-
measures was accomplished with minor, one and two line
changes to the model. The scenario proceeded through seven
attacks before sufficient safeguards were in place to prevent
Bob from extracting the secret information. At that point, we
added Adam the system administrator to the list of malicious
insiders. This resulted in another pair of attacks that are only
possible with Adam’s collaboration.

Table 1 shows the plan lengths (in steps) and time to gen-
erate each plan in this process. The titles are interpreta-
tions that we provided to the synthesized plans. The final
plan found required significantly more time than the others
not just because it was longer, but because Enhanced Hill
Climbing failed to find a plan, and METRIC-FF fell back to
backtracking search. As discussed below, the search time
was in general a minor component of the overall time re-
quired to find a solution, especially when EHC was success-
ful.

The first COA that the planner generates is a stealthy at-
tack that shows the ability of our tool to discover moderately
complex plans of attack. The plan involved Bob starting his
packet sniffer and waiting. Eventually Adam needs to do
something to the DMS configuration and logs onto the server
as the administrator. Since the environment is not switched,
Bob is able to steal the administration password with the



Description Length Time (sec.)
Direct Client Hack 25 0.67
Misdirected Email 32 0.67
Shoulder Surfing 18 0.69
Email Trojan 37 0.71
Spoofed Email Trojan 37 0.73
Spoofed Instructions 36 0.79
Administrator ACL Change 23 1.20
Sniff Administrator Password 28 1.62
Sniff Password from Email 44 4.77

Table 1: Attack plan lengths and computation times

sniffer. Bob then uses that information to login to the server
and change the ACL for the document he is interested in to
allow himself read permissions. Following that operation
he is able to download the document and gain access to the
information held within.

To prevent this, we modify the firewall so it does not al-
low access to the DMS administration port’s traffic on the
firewall. Then we run the tool again to generate the second
plan, a physical exploit where Bob wanders into Greg’s of-
fice and reads data off the screen over Greg’s shoulder. Note
that this attack is qualitatively much different from the pre-
vious attack. In this instance the plan is shorter and much
more risky. It also highlights a new potential attack method.
To prevent this attack, we remove Bob’s access to Greg’s of-
fice. When we run the planner a third time, we finally see
Bob launching a direct hack against Greg’s machine. The
attack launches one of Bob’s viruses that stays resident and
forwards the screen buffer to Bob’s machine. When Greg
loads the document that Bob is interested in, Bob is able to
read it as well. This process continues until no plan is found.

Performance

In any application of a propositional planner to a problem of
even moderate size, memory management is both difficult
and crucially important. For example, the memory required
for the ground representation of an action grows as the prod-
uct of the domain sizes for each parameter. So, memory us-
age grows roughly asm ∗ NX , wherem is the number of
actions,N is the number of objects in the domain andX is
the number of parameters in an action.

However, there are some simple optimizations that can
help quite a lot. As discussed previously, one thing we can
do is to reduce the number of parameters per action, by split-
ting them into sequences of smaller ones. Another simple
optimization that had not been made at least in the version
of METRIC-FF that we downloaded was to use type infor-
mation in allocating space for ground actions. With these
two simple optimizations, memory usage grows asm∗nX/a

wheren is the number of objectsof a given typein the do-
main, anda is the fraction by which the number of parame-
ters per action has been reduced.

With specific reference to METRIC-FF, at least to the ver-
sion of the tool that we have been using, we found other
opportunities to reduce memory consumption through sim-

Min. Total Time Actual Actions
Objects Objects Reported Time Generated

1 83 0.61 0.64 7433
2 89 0.7 0.73 7765
3 101 0.9 0.93 8598
4 116 1.22 1.28 11720
5 134 1.97 2.13 22102
6 153 3.71 3.83 38436
7 172 6.55 6.73 62074
8 191 14.44 15.37 94780
9 211 19.62 20.79 140205
10 231 33.84 157.13 199932

Table 2: Attack plan lengths and computation times

ple optimizations, for example by reducing the size of num-
ber fields to the minimum required. In reachability anal-
ysis, some data fields that were 32 bits are now 8 bits in
our implementation, and may be shrinkable to 1 bit. An-
other simple, though more laborious, optimization involves
rewriting actions to avoid what in METRIC-FF are called
“hard action templates,” which appear to be actions whose
preconditions METRIC-FF cannot figure out how to re-
duce to DNF. For example, rewriting a precondition(and
(foo) (or (bar) (baz))) as (or (and (foo)
(bar)) (and (foo) (baz))) does not change the
semantics, however the former results in a hard action, the
latter does not.

In the current implementation, search is not a primary
consumer of time or memory. According to the statistics
reported by METRIC-FF, the total run time when the whole
problem fits in memory (so, when swapping to disk is not
a factor) is dominated by time spent constructing hard ac-
tion templates. This is testimony to the efficacy of the En-
hanced Hill Climbing (EHC) heuristic, which finds a solu-
tion in most of our problem instances. This is not entirely
by chance: our domain has been constructed and empiri-
cally modified to facilitate the performance of EHC, which
is not always easy, and does not always result in a natural
representation of the problem.

Table 2 provides a more quantitative analysis of the scal-
ing behavior of the resulting system. To test how time and
memory usage scale with domain size, we added additional
objects to an initial problem domain, then timed how long
it took to load the domain description, perform the initial
generation of the propositional model on which METRIC-
FF actually plans, and find a plan. The domain contained
more than 20 different object types. Increasing the minimum
number of each type of object yields reasonable growth in
time through a minimum of 7 of each type of object. The
system manages to return a result in fewer than seven sec-
onds for problems with 172 objects, when there are no fewer
than 7 of any single object present.

After at least 8 of every object are present in the prob-
lem the exponential growth of action templates begins to
tell. Much of the total time is spent constructing these ac-
tion templates. With 10 of each object, limitations on our
test machine’s memory were exceeded and METRIC-FF be-



gan to swap, as can be seen in the discrepancy between re-
ported and actual elapsed time. On the other hand, the worst
case reported is less than three minutes for a problem with
231 separate objects and more than 50 actions, combining to
generate nearly 200,000 ground actions.

Informal estimates of the necessary increase in scale indi-
cate a factor of about 10 required in the size of the domain
model, with much of that increase taken up in the “breadth”
of the model (i.e., new actions, propositions, and object
types), and a factor of 2-5 in the length of plans. Given the
results reported above both of these increases appear to be
feasible, but have not yet been accomplished.

Related Work
Alternative Planning Appraches
METRIC-FF is one of a broad family of forward heuristic
planners that could have been applied to this problem. We
chose it over others for several reasons, the most prominent
being the range of pddl that METRIC-FF will parse cor-
rectly, the performance of the planning algorithm itself, and
the fact that Hoffmann very kindly makes the source avail-
able, permitting us to make some minor but necessary mod-
ifications. We were philosophically attracted to backward
planners, in particular given our interest in generating mul-
tiple plans, but could not find any that were sufficiently ex-
pressive and would scale to the size of the problems needed.
Finally, HTN planning is a strategy we rejected, specifically
because we were interested in novel combinations of actions
to form new attacks, which renders irrelevant some of the
main strengths of a hierarchical approach.

Other Approaches to Vulnerability Analysis
Other researchers have used automated methods to perform
various sorts of vulnerability analysis. In (Wool 2001) Wool
describes a firewall simulator that takes as input a firewall’s
configuration and routing tables and returns a description of
the firewall’s response to a wide variety of network pack-
ets. Zerkle and Levitt (Zerkle & Levitt 1996) developed
the NetKuang system to check for misconfiguration on Unix
networks. They do this by examining the configuration files
on all the hosts and employing a brute force backward search
from the goal to generate an attack graph if it exists. At
NSPW in 1998, Phillips and Swiler first proposed using au-
tomatically generated attack graphs to perform a general
vulnerability analysis for a computer network (Phillips &
Swiler 1998). They illustrate their approach with a simple
network and a small set of exploits, but they provide little
insight into how to actually generate the graphs.

Ritchey and Ammann propose a model checking ap-
proach (Ritchey & Ammann 2000). Using the BDD-based
model-checker NuSMV, they model the connectivity of the
host systems and their vulnerabilities as well as the exploits
available to the attacker. Then they put the model checker
to work trying to generate a counter-example to a selected
security property. The counter-example takes the form of
an attack graph. Sheyner et al. have extended the model-
checking approach (Sheyneret al. 2002), developing tech-
niques for identifying a minimal set of security counter-

measures to guarantee a safety property, and to compute the
probability of attacker success associated with each attack
graph.

While we have not performed head-to-head comparison
experiments, the performance numbers reported for these
approaches lag the result reported here by orders of mag-
nitude. For example, Sheyner et al. illustrate their approach
with a simple network model consisting of a generic outside
intruder separated from a two server network by a simple
firewall. They report that in a case where the attacker had
eight exploits at his disposal, it took two hours to generate
the attack graph. In more recent work, Sheyner uses an ex-
plicit state model-checking approach which appears to scale
much better, but still grows linearly with the size of the en-
tire state space (Sheyner 2004).

The work on “Network Hardening” by Noel et al. (Noel
et al. 2003) is very close to ours in approach. Their “exploit
graph” is quite similar to, though apparently developed in-
dependently from, work on plan graphs.1 Their assumption
of monotonicity in an attacker’s access to the system corre-
sponds to one of the simpler of a large family of “tractable
subclasses” of AI planning (for example, (Jonsson & Back-
strom 1998)). This is not an assumption we have made,
and it is not yet clear whether the assumption is warranted
in the more expressive cyber/social/physical domain model
that we have developed

Future Work
There are a number of issues raised in this application of
classical planning techniques to vulnerability analysis where
further work would be beneficial.

Systematic Exploration of the Domain
The work reported here involved experiments with a single
domain model, tweaked fairly extensively by hand. We did
not get to the point of writing a domain generator, which
would have allowed us to produce a large set of problem
instances varying in systematic ways.

Model Extension
PDDL is essentially a programming language. The use of
PDDL or other planning formalisms in complex domains
can involve or mimic many of the same structures required
in programming, for example variable binding, method spe-
cialization, and even something like the Lispgensym func-
tion. As in any such language, construction of a correct and
efficient “program” generally requires considerable exper-
tise.

The general issues that must be addressed in extending
the model include:

• Recognizing when new predicates are required to capture
state, and defining ones that do so efficiently.

• Knowing how to scope and parameterize operations that
capture attacker capabilities.

1In particular, both approaches focus on pre- and post-
conditions, and gain exponential savings over the unfactored state-
space approaches.



• Managing interactions between new operations and pre-
viously defined ones.

Action interactions are perhaps the trickiest problem, due to
the difficulty of isolating different aspects of the model. For
example, if we wish to model the fact that an attacker can
recover secret information from the swap space of the disk,
a new “swap-snooping” operation would be added. But to be
complete, we must also model all of the existing operations
that could leave readable information in the swap space. For
example, if an email program caches a password, then this
datum might find its way into the swap area.

One approach is to use a domain theory to automatically
infer some ramifications of actions. Instead of modeling ev-
erything directly in PDDL, some of the model is declared as
axioms in a domain theory, which is then used to make the
necessary inferences to build complete action definitions.
We have demonstrated (in a preliminary way) that you can
indeed simplify planning models using such as the action
language of Lin (Lin 2003).2

An example fragment of such a theory is shown in Fig-
ure 12. In the example, the “causes” clauses state some very
obvious axioms about objects with physical extent. The ac-
tion definition specifies the action parameters, preconditions
and effects as usual, but the effects part is very simple–it
suffices to state here that the person is carrying the key. The
side effect of the key no longer being available in the room is
added automatically by the domain theory when the action
definition is expanded, as shown in Figure 13. The Prolog
program that reasons about the domain to produce the ac-
tions is based on the one created by Lin, but substantially
modified by us to generate the full range of legal PDDL we
need. Note that it also removes variables by substituting all
legal values in the domain, thus precompiling ground ac-
tions. This is an artifact of the algorithm that Lin uses to
compute context-dependent effects and other ramifications
of actions. The example shown here is simplified for illus-
trative purposes, and could also have been handled using the
“derived predicates” (re)introduced in PDDL 2.2

Bottleneck Analysis
Currently, BAMS functions as an interactive support tool
for a security analyst who interprets the plans. As an addi-
tional level of automation, we would like to add a capabil-
ity to analyze a set of COAs for a given domain and set of
attackers, so as to identify countermeasures that would de-
feat the most attacks, or the most threatening attacks. One
way to accomplish this would be to generate multiple plans
to achieve a given attacker goal, thus enabling comparative
analysis.

One of the unaddressed difficulties is generating multiple
plans that are different ininterestingways. For example, two
plans that differ only in the process identifier attached to a
running program are fundamentally the same. In addition,
there are efficiency considerations. METRIC-FF and other
forward heuristic planners extend plans to adding actions to

2For a variety of reasons having to do with efficiency, cus-
tomization, and limited resources, we currently employ the macro
facility m4 to do this compilation.

% . . .
% if H is carrying K, K is not in a room

causes( carrying(H,K), -in_room(K,R) ) :-
fluent(carrying(H,K)),
fluent(in_room(K,R)).

% vice versa

causes( in_room(K,R), -carrying(H,K) ) :-
fluent(carrying(H,K)),
fluent(in_room(K,R)).

% nothing can be in two rooms at once!

causes( in_room(H,R1), -in_room(H,R2) ) :-
fluent(in_room(H,R1)),
fluent(in_room(H,R2)),
R1\==R2.

% person h picks up the key k in room r,
% only if h and k are both in r.

action(grab_key(H,K,R)) :-
c_human(H), c_key(K),c_room(R).

poss(grab_key(H,K,R),
in_room(H,R) & in_room(K,R)).

effect(grab_key(H,K,R),true,carrying(H,K)).

Figure 12: Fragment of domain theory in an action language
prototoype for BAMS. Syntax is Prolog. The hyphen indi-
cates negation.

%% automatically generated PDDL action

(:action grab_key_bob_key1_room2
:precondition

(and (in_room bob room2)
(in_room key1 room2))

:effect
(and

(carrying bob key1)
(not (in_room key1 room2))))

Figure 13: PDDL action generated from the action language
definition in the example domain theory.

a prefix. There is no link between the added action’s effects
and the eventual goal, though the hope is that an effective
distance estimate will strongly favor the addition only of rel-
evant actions. For the generation of a single plan, our experi-
ence is that this usually works well. For generating multiple
plans, there is a problem in situations involving large do-
main models and alternative plans of significantly different
lengths. Suppose that the forward planner finds one plan, of
lengthn. Suppose that there is a second plan that will also
achieve the goal, of lengthn + k. Fork even slightly larger
than1, a forward planner naively invoked to keep generating
additional plans will generate the plan of lengthn, then will
proceed to generate a large number of plans of lengthn + 1
by inserting all actions that are irrelevant but not interfering,



at all points in the plan where they are both enabled and not
interfering. Similarly for plans of lengthn + 2, using pairs
of non-interfering actions. The combinatorial problem, es-
pecially for large domains, is obvious.

An alternative method of generating multiple plans from
the same problem would be to use a system explicitly con-
structed for systematically generating multiple plans, such
as Zimmerman’sMULTI -PEGG (Zimmerman & Kambham-
pati 2002), though there are still some questions as to
whether these approaches, andMULTI -PEGG in particular,
will scale to address problems of realistic size. Other pos-
sible ways to speed up this process include the use of algo-
rithms for tractable subclasses of planning models (Jonsson
& Backstrom 1998), or eschewing the explicit generation
of plans altogether, instead extracting information directly
from the plan graph, for example usinglandmarksas de-
scribed in (Porteous, Sebastia, & Hoffmann 2001).

Probabilistic Planning
There is no notion of uncertainty or likelihood in the current
plans generated by BAMS: a plan is possible for the attacker
or not. Yet, for a given attacker, some plans will definitely be
more likely than others. And for the defender, some attacks
will carry a higher cost than others. A natural extension for
future work would be to incorporate this information into
the process of COA generation and analysis (and thus quite
likely into the planning process).

Summary and Conclusions
In this work, we have demonstrated the application of clas-
sical AI planning in a novel and interesting domain. We
have developed a modular approach to modeling and a user
interface that a non-specialist can use to rapidly compose
pieces of the model to create new adversary profiles and re-
configure the problem’s physical and cyber space. We have
applied our implemented system to a domain involving in-
sider attacks on a simple, yet realistic web-based document
management system, resulting in the generation of reason-
ably complex attacks consisting of twenty to fifty steps in a
few seconds.

This work raises some interesting issues for planning as a
field, as well. The planning performance required in BAMS
pushes the state of the art in several directions. Domain
model engineering and maintenance, matching planning al-
gorithms to problem characteristics, optimizing planner per-
formance, and the significant interactions among these is-
sues, are all areas that we had to address.

There is ample future work to be done in a number of dif-
ferent areas. To that end, one of our near-term objectives
is the generation of a version of the BAMS planning prob-
lem that can be freely shared with other researchers. This
material will be available on the Adventium Labs’ website
(http://www.adventiumlabs.org) prior to this paper’s publi-
cation in early June.

Acknowledgements
The authors would like to thank three anonmymous review-
ers, for providing unusually detailed and constructive com-

ments on the submitted version of this paper.

References
Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. InProceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
95), 1636–1642.
Fox, M., and Long, D. 2002. Pddl2.1: An extension to
pddl for expressing temporal planning domains. Technical
report, University of Durham.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state vari-
ables.Journal of Artificial Intelligence Research. accepted
for the special issue on the 3rd International Planning Com-
petition.
Jonsson, P., and Backstrom, C. 1998. State-variable plan-
ning under structural restrictions: Algorithms and com-
plexity. Artificial Intelligence100(1-2):125–176.
Lin, F. 2003. Compiling causal theories to successor state
axioms and strips-like systems.Journal of Artificial Intel-
ligence Research19:279–314.
Noel, S.; Jajodia, S.; O’Berry, B.; and Jacobs, M. 2003.
Efficient minimum-cost network hardening via exploit de-
pendency graphs. InProceedings of 19th Annual Computer
Security Applications Conference, 86–95. IEEE Computer
Society.
Phillips, C., and Swiler, L. P. 1998. A graph-based system
for network-vulnerability analysis. InProceedings of the
New Security Paradigms Workshop, 71–79.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning.
In Proceedings of the 6th European Conference on Plan-
ning (ECP 01).
Ritchey, R. W., and Ammann, P. 2000. Using model
checking to analyze network vulnerabilities. InProceed-
ings 2000 IEEE Computer Society Symposium on Security
and Privacy, 156–165.
Seindal, R. GNU m4. GNU Software Foundation.
http://www.seindal.dk/rene/gnu/.
Sheyner, O.; Haines, J.; Jha, S.; Lippmann, R.; and Wing,
J. M. 2002. Automated generation and analysis of attack
graphs. In2002 IEEE Symposium on Security and Privacy
(SSP ’02), 273–284. Washington - Brussels - Tokyo: IEEE.
Sheyner, O. 2004.Scenario Graphs and Attack Graphs.
Ph.D. Dissertation, Computer Science Department, Pitts-
burgh, PA.
Wool, A. 2001. Architecting the lumeta firewall analyzer.
In Proceedings of the 10th USENIX Security Symposium.
Washington, D.C.: USENIX.
Zerkle, D., and Levitt, K. 1996. NetKuang–A multi-host
configuration vulnerability checker. InProc. of the 6th
USENIX Security Symposium, 195–201.
Zimmerman, T., and Kambhampati, S. 2002. Generating
parallel plans satisfying multiple criteria in anytime fash-
ion. In AIPS-02 Workshop on Planning and Scheduling
with Multiple Criteria.


