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Preface

The formulation of many practical problems naturally involves constraints on the
variables entering the mathematical model of a real-life situation to be analyzed.
It is of great interest to find the possible scenarios satisfying all constraints, and,
if there are many of them, either to find the best solution, or to obtain a compact,
explicit representation of the whole feasible set.

The 2nd Workshop on Global Constrained Optimization and Constraint Sat-
isfaction, COCOS 2003, which took place during November 18–21, 2003 in Lau-
sanne, Switzerland, was dedicated to theoretical, algorithmic, and application
oriented advances in answering these questions. Here global optimization refers
to finding the absolutely best feasible point, while constraint satisfaction refers
to finding all possible feasible points. As in COCOS 2002, the first such workshop
(see the proceeedings [1]), the emphasis was on complete solving techniques for
problems involving continuous variables that provide all solutions with full rigor,
and on applications which, however, were allowed to have relaxed standards of
rigor.

The participants used the opportunity to meet experts from global optimiza-
tion, mathematical programming, constraint programming, and applications,
and to present and discuss ongoing work and new directions in the field. Four
invited lectures and 20 contributed talks were presented at the workshop. The
invited lectures were given by John Hooker (Logic-Based Methods for Global
Optimization), Jean-Pierre Merlet (Usual and Unusual Applications of Interval
Analysis), Hermann Schichl (The COCONUT Optimization Environment), and
Jorge Moré (Global Optimization Computational Servers).

This volume contains the text of Hooker’s invited lecture and of 12 con-
tributed talks. Copies of the slides for most presentations can be found at [2].

Constraint satisfaction problems. Three papers focus on algorithmic aspects
of constraint satisfaction problems.

The paper Efficient Pruning Technique Based on Linear Relaxations by
Lebbah, Michel and Rueher describes a very successful combination of constraint
propagation, linear programming techniques and safe rounding procedures to ob-
tain an efficient global solver for nonlinear systems of equations and inequalities
with isolated solutions only, providing mathematically guaranteed performance.

The paper Inter-block Backtracking: Exploiting the Structure in Continuous
CSPs by Jermann, Neveu and Trombettoni shows how the sparsity structure
often present in constraint satisfaction problems can be exploited to some extent
by decomposing the full problem into a number of subsystems. By judiciously
distributing the work into (a) searching solutions for individual subsystems and
(b) combining solutions of the subsystems, one can often gain speed, sometimes
orders of magnitude.
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The paper Accelerating Consistency Techniques for Parameter Estimation of
Exponential Sums by Garloff, Granvilliers and Smith discusses constraint sat-
isfaction techniques for the estimation of parameters in time series modeled as
exponential sums, given uncertainty intervals for measured time series.

Global optimization. Five papers deal with improvements in global optimiza-
tion methods.

The paper Convex Programming Methods for Global Optimization by Hooker
describes how to reduce global optimization problems to convex nonlinear pro-
gramming in case the problem becomes convex when selected discrete variables
are fixed. The techniques discussed include disjunctive programming with con-
vex relaxations, logic-based outer approximation, logic-based Benders decompo-
sition, and branch-and-bound using convex quasi-relaxations.

The paper A Method for Global Optimization of Large Systems of Quadratic
Constraints by Lamba, Dietz, Johnson and Boddy presents a new algorithm for
the global optimization of quadratically constrained quadratic programs, which
is shown to be efficient for large problems arising in the scheduling of refineries,
involving many thousands of variables and constraints.

The paper A Comparison of Methods for the Computation of Affine Lower
Bound Functions for Polynomials by Garloff and Smith shows how to exploit
Bernstein expansions to find efficient rigorous affine lower bounds for multivari-
ate polynomials, needed in global optimization algorithms.

The paper Using a Cooperative Solving Approach to Global Optimization
Problems by Kleymenov and Semenov presents SIBCALC, a cooperative solver
for global optimization problems.

The paper Global Optimization of Convex Multiplicative Programs by Du-
ality Theory by Oliveira and Ferreira shows how to use outer approximation
together with branch and bound to minimize a product of positive convex func-
tions subject to convex constraints. This arises naturally in convex multiobjective
programming.

Applications. The paper High-Fidelity Models in Global Optimization by Peri
and Campana applies global optimization to large problems in ship design. An
important ingredient of their methodology is the ability to use models of different
fidelity, so that the most expensive computations on high-fidelity models need
to be done with lowest frequency.

The paper Incremental Construction of the Robot’s Environmental Map Us-
ing Interval Analysis by Drocourt, Delahoche, Brassart and Cauchois uses con-
straint propagation based algorithms for building maps of the environment of a
moving robot.

The paper Nonlinear Predictive Control Using Constraints Satisfaction by
Lydoire and Poignet discusses the design of nonlinear model predictive con-
trollers satisfying given constraints, using constraint satisfaction techniques.

The paper Gas Turbine Model-Based Robust Fault Detection Using a Forward-
Backward Test by Stancu, Puig and Quevedo presents a new, constraint propa-
gation based method for fault detection in nonlinear, discrete dynamical systems
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with parameter uncertainties which avoids the wrapping effect that spoils most
computations involving dynamical systems.

The paper Benchmarking on Approaches to Interval Observation Applied to
Robust Fault Detection by Stancu, Puig, Cugueró and Quevedo applies interval
techniques to the uncertainty analysis in model-based fault detection.

This volume of contributions to global optimization and constraint satisfac-
tion thus reflects the trend both towards more powerful algorithms that allow
us to tackle larger and larger problems, and towards more-demanding real-life
applications.

January 2005 Christophe Jermann
Arnold Neumaier

Djamila Sam
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Efficient Pruning Technique Based on Linear
Relaxations

Yahia Lebbah1,2, Claude Michel1, and Michel Rueher1

1 COPRIN (I3S/CNRS - INRIA),
Université de Nice–Sophia Antipolis,

930, route des Colles, B.P. 145,
06903 Sophia Antipolis Cedex, France

{cpjm, rueher}@essi.fr
2 Université d’Oran Es-Senia, Faculté des Sciences,

Département Informatique,
B.P. 1524 El-M’Naouar, Oran, Algeria

ylebbah@sophia.inria.fr

Abstract. This paper extends the Quad-filtering algorithm for handling
general nonlinear systems. This extended algorithm is based on the RLT
(Reformulation-Linearization Technique) schema. In the reformulation
phase, tight convex and concave approximations of nonlinear terms are
generated, that’s to say for bilinear terms, product of variables, power
and univariate terms. New variables are introduced to linearize the ini-
tial constraint system. A linear programming solver is called to prune the
domains. A combination of this filtering technique with Box-consistency
filtering algorithm has been investigated. Experimental results on diffi-
cult problems show that a solver based on this combination outperforms
classical CSP solvers.

1 Introduction

Numerical constraint systems are widely used to model problems in numerous
application areas ranging from robotics to chemistry. Solvers of nonlinear con-
straint systems over the real numbers are based upon partial consistencies and
searching techniques.

The drawback of classical local consistencies (e.g. 2B-consistency [13] and
Box-consistency [3]) comes from the fact that the constraints are handled inde-
pendently and in a blind way. 3B-consistency [13] and kB-consistency [13] are
partial consistencies that can achieve a better pruning since they are “less lo-
cal” [10]. However, they require numerous splitting steps to find the solutions of
a system of nonlinear constraints; so, they may become rather slow.

For instance, classical local consistencies do not exploit the semantic of
quadratic terms; that’s to say, these approaches do not take advantage of the
very specific semantic of quadratic constraints to reduce the domains of the vari-
ables. Linear programming techniques [1, 25, 2] do capture most of the semantic
of quadratic terms (e.g., convex and concave envelopes of these particular terms).

C. Jermann et al. (Eds.): COCOS 2003, LNCS 3478, pp. 1–14, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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That’s why we have introduced in [11] a global filtering algorithm (named Quad)
for handling systems of quadratic equations and inequalities over the real num-
bers. The Quad-algorithm computes convex and concave envelopes of bilinear
terms xy as well as concave envelopes and convex underestimations for square
terms x2.

In this paper, we extend the Quad-framework for tackling general nonlinear
system. More precisely, since every nonlinear term can be rewritten as sums of
products of univariate terms, we introduce relaxations for handling the following
terms:

– power term xn

– product of variables x1x2...xn

– univariate term f(x)

The Quad-algorithm is used as a global filtering algorithm in a branch and
prune approach [29]. Branch and prune is a search-tree algorithm where filtering
techniques are applied at each node. Quad-algorithm uses Box-consistency and
2B-consistency filtering algorithms. In addition, linear and nonlinear relaxations
of non-convex constraints are used for range reduction in the branch-and-reduce
algorithm [19]. More precisely, the Quad-algorithm works on the relaxations of
the nonlinear terms of the constraint system whereas Box-consistency algorithm
works on the initial constraint system.

Yamamura et. al. [31] have first used the simplex algorithm on quasi-linear
equations for excluding interval vectors (boxes) containing no solution. They
replace each nonlinear term by a new variable but they do not take into account
the semantic of nonlinear terms1. Thus, their approach is rather inefficient for
systems with many nonlinear terms.

The paper is organised as follows. Notations and classical consistencies are
introduced in section 2. Section 3 introduces and extends the Quad pruning
algorithm. Experimental results are reported in section 4 whereas related works
are discussed in section 5.

2 Notation and Basics on Classical Continuous
Consistencies

This paper focuses on CSPs where the domains are intervals and the constraints
are continuous. A n-ary continuous constraint Cj(x1, . . . , xn) is a relation over
the reals. C stands for the set of constraints.

Dx denotes the domain of variable x, that’s to say, the interval [x, x] of
allowed values for x. D stands for the set of domains of all the variables of the
considered constraint system.

We use the “reformulation-linearization technique” notations introduced in
[25, 2] with some modifications. Let E be some nonlinear expression, [E]L denotes
the set of linear terms coming from a linearization process of E.

1 They introduce only some weak approximation for convex and monotone functions.
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We also use two local consistencies derived from Arc-consistency [14]: 2B-
consistency and Box-consistency.

2B-consistency [13] states a local property on the bounds of the domains of
a variable at a single constraint level. Roughly speaking, a constraint c is 2B-
consistent if, for any variable x, there exists values in the domains of all other
variables which satisfy c when x is fixed to x or x.

Box-consistency [3] is a coarser relaxation of Arc-consistency than 2B-consis-
tency. It mainly consists of replacing every existentially quantified variables but
one with its interval in the definition of 2B-consistency. Box-consistency [3] is the
most successful adaptation of arc-consistency [14] to constraints over the real
numbers. Furthermore, the narrowing operator for the Box-consistency has been
extended [29] to prove the unicity of a solution in some cases.

The success of 2B-consistency and Box-consistency depends on the precision
of enforcing local consistency of each constraint on each variable lower and upper
bounds. Thus they are very local and do not exploit any specific semantic of the
constraints.

3B-consistency and kB-consistency are partial consistencies that can achieve
a better pruning since they are “less local” [10]. However, they require numerous
splitting steps to find the solutions of a system of nonlinear constraints; so, they
may become rather slow.

3 Using Linear Relaxations to Prune the Domains

In this section, we introduce the filtering procedure we propose for handling
general constraints. The Quad filtering algorithm (see Algorithm 1.1) consists of
three main steps: reformulation, linearization and pruning.

The reformulation step generates [C]R, the set of implied linear constraints.
More precisely, [C]R contains linear inequalities that approximate the semantic
of nonlinear terms of [C].

The linearization process first decomposes each non linear term E in sums and
products of univariate terms. Then, it replaces nonlinear terms with their associ-
ated new variables. For example, consider E = {x2x3x

2
4(x6+x7)+sin(x1)(x2x6−

x3) = 0}, a simple linearization transformation may yield the following sets:

– [E]L = {y1 + y3 = 0, y2 = x6 + x7, y4 = y5 − x3}
– [E]LI = {y1 = x2x3x

2
4y2, y3 = sin(x1)y4, y5 = x2x6}.

[E]LI denotes the set of equalities that keep the link between the new variables
and the nonlinear terms.

Finally, the linearization step computes the set of final linear inequalities and
equalities LR = [C]L ∪ [C]R, the linear relaxation of the original constraints C.

The pruning step is just a fixed point algorithm that calls a linear program-
ming solver iteratively to reduce the upper and the lower bound of each initial
variable. The algorithm terminates when the maximum achieved reduction is
smaller than a non-null predetermined threshold ε.
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Function Quad filtering(IN: X , D, C, ε) return D′

% X : initial variables ; D: input domains; C: constraints; ε: minimal reduction, D′:
output domains

1. Reformulation: generation of linear inequalities [C]R for the nonlinear terms in
C.

2. Linearization: linearization of the whole system [C]L.
We obtain a linear system LR = [C]L ∪ [C]R.

3. D′ := D
4. Pruning :

While the reduction amount of some bound is greater than ε and ∅ �∈ D′ Do
(a) Update the coefficients of the linearizations [C]R according to the domain

D′

(b) Reduce the lower and upper bounds D′
i and D′

i of each initial variable
xi ∈ X by computing min and max of xi subject to LR with a linear
programming solver.

Algorithm 1.1. The Quad algorithm

Now, we are in position to introduce the reformulation of nonlinear terms.
Section 3.1 recalls the relaxations for the simplest case of bilinear term xy,
the product of two distinct variables. Relaxations for the power term are given
in section 3.2. The process for approximating general product terms is given
in section 3.3. Finally, in section 3.4, we introduce a procedure to relax some
univariate terms.

3.1 Bilinear Terms

In the case of bilinear terms xy, Al-Khayal and Falk [1] showed that convex and
concave envelopes of xy over the box [x, x] × [y, y] can be approximated by the
following relations:

[xy]R =

⎧
⎪⎪⎨

⎪⎪⎩

BIL1 ≡ [(x − x)(y − y) ≥ 0]L
BIL2 ≡ [(x − x)(y − y) ≥ 0]L
BIL3 ≡ [(x − x)(y − y) ≥ 0]L
BIL4 ≡ [(x − x)(y − y) ≥ 0]L

(1)

BIL1 and BIL3 define a convex envelope of xy whereas BIL2 and BIL4 define
a concave envelope of xy over the box [x, x] × [y, y]. Thus, these relaxations are
the optimal convex/concave outer-estimations of xy.

3.2 Power Terms

First let us consider square terms. The term x2 with x ≤ x ≤ x is approximated
by the following relations:

L1(α) ≡ [(x − α)2 ≥ 0]L where α ∈ [x, x] (2)
L2 ≡ [(x + x)x − y − xx ≥ 0]L (3)
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Fig. 1. Approximation of x2

Note that [(x − α)2 = 0]L generates the tangent line to the curve y = x2 at
the point x = α. Actually, Quad computes only L1(x) and L1(x). Consider for
instance the quadratic term x2 with x ∈ [−4, 5]. Figure 1 displays the initial
curve (i.e., D1), and the lines corresponding to the equations generated by the
relaxations: D2 for L1(−4) ≡ y + 8x + 16 ≥ 0, D3 for L1(5) ≡ y − 10x + 25 ≥ 0,
and D4 for L2 ≡ −y + x + 20 ≥ 0.

We may note that L1(x) and L1(x) are underestimations of x2 whereas L2
is an overestimation. L2 is also the concave envelope, which means that it is the
optimal concave overestimation.

More generally, a power term of the form xn can be approximated by n + 1
inequalities with a procedure proposed by Sherali and Tuncbilek [27], called
“bound-factor product RLT constraints”. It is defined by the following formula:

[xn]R = {[(x − x)i(x − x)n−i ≥ 0]L, i = 0...n} (4)

The essential observation is that this relaxation generates tight relations be-
tween variables on their upper and lower bounds. More precisely, suppose that
some original variable takes a value equal to either of its bounds. Then, all the
corresponding new RLT linearization variables that involve this original variable
take a relative value that conform with actually fixing this original variable at
each of its particular bound in the nonlinear expressions represented by these
new RLT variables [27].

Note that relaxations (4) of the power term xn are expressed with xi for all
i ≤ n, and thus provide a fruitful relationship on problems containing many
power terms involving the same variable.

The univariate term xn is convex when n is even, or when n is odd and the
value of x is negative; it is concave when n is odd and the value of x is positive.
Section 3.4 details the process for handling such convex and concave univariate
term. Sahinidis and Twarmalani [21] have introduced the convex and concave
envelopes when n is odd by taking the point where the power term xn and its
under-estimator have the same slope. These convex/concave relaxations on xn
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are expressed with only [xn]L and x. In other words, they do not generate any
relations with xi for 1 < i < n. That’s why we suggest to implement these
formulas (4).

Note that for the case n = 2, (4) provides the concave envelope.

3.3 Product Terms

For the product term
x1x2...xn (5)

we use a two steps procedure: quadrification and bilinear relaxations.
The Quadrification step brings back the multi-linear term into a set of

quadratic terms as follows

x1x2...xn︸ ︷︷ ︸
= x1...xd1︸ ︷︷ ︸

xd1+1...xn
︸ ︷︷ ︸

x1...n = x1...d1 × xd1+1...n

x1...xd2︸ ︷︷ ︸
xd2+1...xd1
︸ ︷︷ ︸

x1...d1 = x1...d2 × xd2+1...d1

xd1+1...xd3
︸ ︷︷ ︸

xd3+1...xn
︸ ︷︷ ︸

xd1+1...n = xd1+1...d3 × xd3+1...n

...

where xi...j = [xixi+1...xj ]L.
For instance, consider the term x1x2x3x4x5. The proposed quadrification process
would operate in the following way:

x1x2x3x4x5︸ ︷︷ ︸
x1x2x3︸ ︷︷ ︸

x4x5︸︷︷︸

y1 = y2 × y3

x1x2︸︷︷︸
x3︸︷︷︸

y2 = y4 × x3

x4︸︷︷︸
x5︸︷︷︸

y3 = x4 × x5

x1︸︷︷︸
x2︸︷︷︸

y4 = x1 × x2

So, this quadrification is performed by recursively decomposing each product
xi...xj into two products xi...xd and xd+1...xj . Of course, there are many ways to
choose the position of d. Sahnidis et al. [20, 22] use what they call rAI, “recursive
interval arithmetic”, which is a recursive quadrification where d = j − 1. We use
the middle heuristic Qmid, where d = (i+j)/2, to obtain balanced degrees on the
generated terms. Note that [E]RI contains the set of equalities that transforms
a product term E into a set of quadratic identities.
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The second step consists in a Bilinear relaxation [[C]RI ]R of all the quadratic
identities in [C]RI with the bilinear relaxations introduced in sub-section 3.1.

Sherali and Tuncbilek [27] have proposed a direct reformulation/linearization
technique (RLT) of the whole polynomial constraints without quadrifying the
constraints. Applying RLT on the product term x1x2...xn generates the following
n-ary inequalities 2 :

∏

i∈J1

(xi − xi)
∏

i∈J2

(xi − xi) ≥ 0,∀J1, J2 ⊆ {1, . . . , n} : |J1 ∪ J2| = n (6)

where {1, . . . , n} is to be understood as a multi-set and where J1 and J2 are
multi-sets.

Proposition 1 bounds the number of new variables and relaxations respec-
tively generated by the quadrification and RLT process on the product term (5).

Proposition 1.
Let T ≡ x1x2 . . . xn be some product of degree n ≥ 1 with n distinct variables.
The RLT of T will generate up to (2n −n− 1) new variables and 2n inequalities
whereas the quadrification of T will only generate (n − 1) new variables and
4(n − 1) inequalities.

Proof: The number of terms of length i is clearly the number of combinations of
i elements within n elements, that’s to say Ci

n. In the RLT relaxations (6), we
generate new variables for all these combinations. Thus, the number of variables
is bounded by

∑
i=2...n Ci

n =
∑

i=0...n Ci
n − n − 1, that’s to say 2n − n − 1 since∑

i=0...n Ci
n = 2n. In (6), Dietmaier considers for each variable alternatively

lower and upper bound, thus there are 2n new inequalities.
For the quadrification process, the proof can be done by induction. For n = 1,

the formula is true. Now, suppose that for length i (with 1 ≤ i < n), (i − 1)
new variables are generated. For i = n, we can split the term at the position
d with 1 ≤ d < n. It results from the induction hypothesis that we have d − 1
new variables for the first part, and n − d − 1 new variables for the second
part, plus one more new variable for the whole term. So, n − 1 new variables
are generated. Bilinear terms require four relaxations, thus we get 4(n− 1) new
inequalities. �

Sherali and Tuncbilek [26] have proven that RLT yields a tighter linearization
than quadrification on general polynomial problems. However, since the number
of generated linearizations with RLT grows in an exponential way, this approach
may become very expensive in time and space for non trivial polynomial con-
straint systems.

Proposition 2 states that quadrification with bilinear relaxations provides
convex and concave envelopes with any d. This property results from the proof
given in [20] for the rAI heuristic.

2 Linearizations proposed in RLT on the whole polynomial problem are built on every
non-ordered combination of δ variables, where δ is the highest polynomial degree of
the constraint system.
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Proposition 2.
Let x1x2 . . . xn be some product of degree n ≥ 2 with n distinct positive variables
xi ∈ IR+, i = 1...n. Then [[x1x2...xn]RI ]R provides convex and concave envelopes
of the product term x1x2...xn.

Generalisation for sums of products –the so-called multi-linear terms – have
been studied recently [4, 23, 17, 20]. It is well known that finding the convex or
concave envelope of a multi-linear term is a NP hard problem [4]. The most
common method of linear relaxation of multi-linear terms is based on the simple
product term. However, it is also well known that this approach leads to a poor
approximation of the linear bounding of the multi-linear terms. Sherali [23] has
introduced formulae for computing convex envelopes of the multi-linear terms.
It is based on an enumeration of vertices of a pre-specified polyhedra which is of
exponential nature. Rikun [17] has given necessary and sufficient conditions for
the polyhedrality of convex envelopes. He has also provided formulae of some
faces of the convex envelope of a multi-linear function. To summarize, it is diffi-
cult to characterize convex and concave envelopes for general multi-linear terms.
Conversely, the approximation of “product of variables” is an effective approach;
moreover, it is easy to implement [22, 21].

3.4 Univariate Terms

Here, we provide some relaxations to handle some univariate terms. An overesti-
mation of a convex univariate function f is given by the following
envelope:

[f(x)]R = [f(x) +
f(x) − f(x)

x − x
(x − x) ≥ f(x)]L (7)

To underestimate a convex function, we could use the sandwich algorithm
recently analyzed by Rote [18] and which has been extended by Sahinidis and
Twarmalani [22, 21]. Outer estimation of concave functions is based on the
following observation : if f is a concave function, then −f is a convex
function.

To relax general non-convex functions, splitting is required to identify the
convex and concave regions where the above relaxation can be used. To avoid
branching, different techniques have been proposed. In the RLT framework
[24, 28] many polynomial relaxations have been proposed for bounding uni-
variate terms. These polynomial relaxations are then linearized with RLT
techniques.

4 Experimental Results

This section reports experimental results on twenty standard benchmarks on
which the extended version of Quad has been evaluated. Benchmarks eco6,
katsura5, katsura6, katsura7, tangents2, ipp, assur44, cyclic5, tangents0,
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Table 1. Experimental results: comparing Quad and Constraint solvers

BP(Box+Quad(Qmid)) BP(Box) Realpaver

Name n δ nSols nSplits T (s) nSols nSplits T (s) nSols T (s)

cyclic5 5 5 10(10) 650 69.61 10(10) 13373 26.33 10 291.64
eco6 6 3 4(4) 1069 15.69 4(4) 1736 3.73 4 1.26
tangents2 6 2 24(24) 197 39.06 24(24) 14104 27.92 24 16.48

assur44 8 3 10(10) 74 68.11 10(10) 15848 72.55 10 72.56
geneig 6 3 10(10) 5053 417.86 10(10) 290711 868.64 10 475.65
ipp 8 2 10(10) 34 6.82 10(10) 4649 13.96 10 16.80
katsura5 6 2 15(11) 56 10.74 41(11) 8181 12.66 12 6.69
katsura6 7 2 44(28) 503 142.85 182(24) 136597 281.43 32 191.76
kin2 8 2 10(10) 40 7.40 10(10) 3463 19.27 10 2.61
noon5 5 3 11(11) 107 19.65 11(11) 50165 58.69 11 39.01

camera1s 6 2 16(16) 8318 452.97 2(2) 3027924 − 0 −
didrit 9 2 4(4) 90 17.39 4(4) 51284 132.94 4 94.60
kinema 9 2 8(8) 221 25.36 15(7) 244040 572.42 8 268.40
katsura7 8 2 49(43) 1729 831.96 180(35) 1421408 − 44 4675.59
lee 9 2 4(4) 491 54.56 0(0) 2091946 − 0 −
reimer5 5 6 24(24) 132 79.53 24(24) 2230187 2982.92 24 734.10
stewgou40 9 4 40(40) 1538 874.64 6(6) 779925 − 4 −
yama195 60 3 3(3) 6 114.84 0(0) 4997 − 0 −
yama196 30 1 16(0) 108 31.44 0(0) 206900 − 0 −

chemequ, noon5, geneig, kinema, reimer5, camera1s were taken from Ver-
schelde’s web site [30], kin2 from [29], didrit from [5] (page 125), lee from
[12], and finally yama194, yama195, yama196 from [31]. The most challenging
benchmark is stewgou40 [6]. It describes a Gough-Stewart platform with varia-
tions on the initial position of the robot as well as on its geometry. The constraint
system consists of 9 equations with 9 variables. They express the length of the
rods as well as the distances between the connection points.

The experimental results are reported in Tables 1 and 2. Column n (resp.
δ) shows the number of variables (resp. the maximum polynomial degree). Ex-
perimentations with BP(X), which stands for a Branch and Prune solver based
on the X filtering algorithm, have been performed with the implementation of
iCOs 3. Quad(H) denotes the Quad algorithm where bilinear terms are relaxed
with formulas (1), power terms with formulas (4) and product terms with the
quadrification method; H stands for the heuristic used for decomposing terms in
the quadrification process.

The relaxations of univariate functions that have been introduced in sec-
tion 3.4 have not been exploited, except for the one of the power terms
through (4).

The performances of the following five solvers have been investigated:

3 See http://www-sop.inria.fr/coprin/ylebbah/icos
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Table 2. Experimental results: comparing solvers based on different relaxations

BP(Box+Simplex) BP(Box+Quad(Qmid)) BP(Box+Quad(rAI))

Name n δ nSols nSplits T (s) nSols nSplits T (s) nSols nSplits T (s)

cyclic5 5 5 10(10) 15830 99.98 10(10) 650 69.61 10(10) 660 96.78
eco6 6 3 4(4) 1073 6.44 4(4) 1069 15.69 4(4) 1069 15.74
tangents2 6 2 24(24) 13833 170.58 24(24) 197 39.06 24(24) 197 38.75

assur44 8 3 10(10) 15550 669.83 10(10) 74 68.11 10(10) 74 68.00
geneig 6 3 10(10) 258385 3862.20 10(10) 5053 417.86 10(10) 5053 420.04
ipp 8 2 10(10) 3151 71.24 10(10) 34 6.82 10(10) 34 6.86
katsura5 6 2 41(11) 7731 87.17 15(11) 56 10.74 15(11) 56 10.70
katsura6 7 2 182(24) 134468 2071.93 44(28) 503 142.85 44(28) 503 142.47
kin2 8 2 10(10) 2849 75.20 10(10) 40 7.40 10(10) 40 7.42
noon5 5 3 11(11) 49606 427.28 11(11) 107 19.65 11(11) 107 19.51

camera1s 6 2 2(2) 607875 − 16(16) 8318 452.97 16(16) 8318 451.43
didrit 9 2 4(4) 5361 149.03 4(4) 90 17.39 4(4) 90 17.38
kinema 9 2 14(6) 93248 1885.50 8(8) 221 25.36 8(8) 221 24.98
katsura7 8 2 37(3) 353735 − 49(43) 1729 831.96 49(43) 1729 830.86
lee 9 2 4(4) 129374 3695.48 4(4) 491 54.56 4(4) 491 54.45
reimer5 5 6 2(2) 959267 − 24(24) 132 79.53 24(24) 132 79.79
stewgou40 9 4 6(6) 115596 − 40(40) 1538 874.64 40(40) 1553 990.00
yama195 60 3 3(3) 12 41.69 3(3) 6 114.84 3(3) 6 113.92
yama196 30 1 16(0) 108 31.40 16(0) 108 31.44 16(0) 108 31.45

1. RealPaver : a free4 Branch and Prune solver that dynamically combines
optimised implementations of Box-consistency filtering and 2B-consistency
filtering algorithms [8]

2. BP(Box): a Branch and Prune solver based on Box-consistency, the ILOG5

commercial implementation of Box-consistency
3. BP(Box+simplex): a Branch and Prune solver based on Box-consistency

and a simple linearization of the whole system without introducing outer-
estimations of the nonlinear terms

4. BP(Box+Quad(Qmid)): a Branch and Prune solver which combines Box-consis-
tency algorithm and the Quad algorithm where product terms are relaxed
with the Qmid heuristic

5. BP(Box+Quad(rAI)): a Branch and Prune solver which combines Box-consis-
tency algorithm and the Quad algorithm where product terms are relaxed
with the rAI heuristic

Note that the BP(Box+simplex) solver implements a strategy that is close
to Yamamura’s approach [31].

4 See http://www.sciences.univ-nantes.fr/info/perso/permanents/granvil/realpaver/-
main.html

5 See http://www.ilog.com/products/jsolver
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All the solvers have been parameterised to get solutions or boxes with a pre-
cision of 10−8. That’s to say, the width of the computed intervals is smaller than
10−8. A solution is said to be safe if we can prove its existence and unique-
ness within the considered box. This proof is based on the well known Brouwer
fix-point theorem (see [9]) and just requires a single test.

Columns nSol, nSplit and T (s) are respectively the number of found solu-
tions, the number of branchings (or splittings) and the execution time in seconds.
A “-” in the column T (s) means that the solver was unable to find all the so-
lutions within two hours. All the computations have been performed on a PC
with Pentium IV processor at 2.66Ghz. The number of solutions is followed by
the number of safe solutions between brackets.

Table 1 displays the performances of RealPaver, BP(Box+Quad(Qmid)) and
BP(Box). The benchmarks have been grouped into three sets. The first group
contains problems where the Quad solver does not behave very well. These prob-
lems are quite easy to solve with Box-consistency algorithm and the overhead of
the relaxation and the call to a linear solver does not pay off. The second group
contains a set of benchmarks for which the Quad solver compares well with the
two other constraint solvers : the Quad solver requires always much less splitting
and often less time than the other solvers. In the third group, which contains
difficult problems, the Quad solver outperforms the two other constraint solvers.
The latter were unable to solve most of these problems within two hours whereas
the Quad solver managed to find all the solutions for all but two of them in less
than 8 minutes.

For instance, BP(Box) requires about 74 hours to find the four solutions of
the Lee benchmark whereas Quad managed to do the job in a couple of minutes.
Likewise, the Quad solver managed to find forty safe solutions of the stewgou40
benchmark in about 15 minutes whereas BP(Box) required about 400 hours.

The essential observation is that Quad solvers spend more time in the filtering
step but they perform much less splitting than classical solvers. This strategy
pays off for difficult problems.

Table 2 displays the performances of solvers combining Box-consistency and
three different relaxation techniques. There is no significant difference between
the solver based on the Qmid heuristics and the solver based on the rAI heuristics.
Indeed, both heuristics provide convex and concave envelopes of the product
terms.

The Quad solvers outperform Yamamura’s approach for all benchmarks but
yama195, which is a quasi-linear problem.

All the problems, except cyclic5 and reimer5, contain many quadratic
terms and some product and power terms. cyclic5 is a pure multi-linear prob-
lem that contains only sums of products of variables. The Quad algorithm has
not been very efficient for handling this problem. Of course, one could not ex-
pect an outstanding performance on this bench since product term relaxation is
a poor approximation of multi-linear terms.

reimer5 is a pure power problem of degree 6, that has been well solved
by the Quad algorithm. Note that Verschelde’s homotopy continuation machine
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[30] required about 10 minutes to solve this problem on Sparc Server 1000 and
about 10 hours (on a PC equipped with a PII processor at 166Mhz) to solve
stewgou40, another challenging problem. As opposed to the homotopy contin-
uation method, the Quad solver is very simple to implement and to use. The
performances on these difficult problems illustrate well the capabilities of the
power relaxations.

5 Discussion

The approach introduced in this paper is related to some work done in the
interval analysis community as well as to some work achieved in the optimisation
community.

In the interval analysis community, Yamamura et. al. [31] have used a simple
linear relaxation procedure where nonlinear terms are replaced by new vari-
ables to prove that some box does not contain solutions. No convex/concave
outer-estimations are proposed to obtain a better approximation of the non-
linear terms. As pointed out by Yamamura, this approach is well adapted to
quasi-linear problems : “This test is much more powerful than the conventional
test if the system of nonlinear equations consists of many linear terms and a
relatively small number of nonlinear terms” [31].

The global optimisation community worked also on solving nonlinear equa-
tion problems by transformation into an optimisation problem (see for example
chapter 23 in [7]). The optimisation approach has the capability to take into ac-
count specific semantic of nonlinear terms by generating a tight outer-estimation
of these terms. The pure optimisation methods are not rigorous since they do not
take into account rounding errors and do not prove the existence and uniqueness
of the solutions.

In this paper, we have exploited an RLT schema to take into account spe-
cific semantic of nonlinear terms. This relaxation process is incorporated in the
Branch and Prune process [29] that exploits interval analysis and constraint sat-
isfaction techniques to find all solutions in a given box. Experimental results
show that this approach outperforms the classical constraint solvers.

A safe rounding process is a key issue for the Quad framework. Let’s recall
that the simplex algorithm is used to narrow the domain of each variable with
respect to the subset of the linear set of constraints generated by the relaxation
process. The point is that most implementations of the simplex algorithm are un-
safe. Moreover, the coefficients of the generated linear constraints are computed
with floating point numbers. So, two problems may occur in the Quad-filtering
process:

1. The whole linearization may become incorrect due to rounding errors when
computing the coefficients of the generated linear constraints ;

2. Some solutions may be lost when computing the bounds of the domains of
the variables with the simplex algorithm.
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We have proposed in [15] a safe procedure for computing the coefficients of
the generated linear constraints. The second problem has been addressed by
Neumaier [16]. He proposes a simple and cheap procedure to get a rigorous
lower bound of the objective function. The incorporation of these procedures in
the Quad framework will allow us to a safe use of the linear relaxations.
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Abstract. This paper details a technique, called inter-block backtrack-
ing (IBB), which improves interval solving of decomposed systems with
non-linear equations over the reals.

This technique, introduced in 1998 by Bliek et al., handles a system of
equations previously decomposed into a set of (small) k×k sub-systems,
called blocks. All solutions are obtained by combining the solutions com-
puted in the different blocks. The approach seems particularly suitable
for improving interval solving techniques.

In this paper, we analyze into detail the different variants of IBB which
differ in their backtracking and filtering strategies. We also introduce
IBB-GBJ, a new variant based on Dechter’s graph-based backjumping.

An extensive comparison on a sample of eight CSPs allows us to bet-
ter understand the behavior of IBB. It shows that the variants IBB-BT+

and IBB-GBJ are good compromises between simplicity and performance.
Moreover, it clearly shows that limiting the scope of the filtering to the
blocks is very useful. For all the tested instances, IBB gains several orders
of magnitude as compared to a global solving.

Keywords: intervals, decomposition, backtracking, solving sparse sys-
tems.

1 Introduction

Only a few techniques can be used to compute all the solutions to a system
of continuous non-linear constraints. Symbolic techniques, such as the Groeb-
ner bases [4] and Ritt-Wu methods [19] are often very time-consuming and are
limited to algebraic constraints. The continuation method, also known as the
homotopy technique [12, 7], may give very satisfactory results. However, finding
a solution over the reals (and not the complex numbers) is not straightforward.
Moreover, using it within a constraint solving tool is difficult. Indeed, the contin-
uation method must start from an initial system “close” to the one to be solved.
This renders the automatization difficult, especially for non algebraic systems.
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Interval techniques are promising alternatives. They obtain good results in
several fields, including robust control [10] and robotics [16]. However, it is ac-
knowledged that systems with hundreds (sometimes tens) non-linear constraints
cannot be tackled in practice.

In several applications made of non-linear constraints, systems are sufficiently
sparse to be decomposed by equational or geometric techniques. CAD, scene
reconstruction with geometric constraints [18, 17], molecular biology and robotics
represent such promising application fields. Different techniques can be used to
decompose such systems into k×k blocks. Equational decompositions work on the
graph made of variables and equations [2, 1]. When equations model geometric
constraints (e.g., distances, angles, incidences), geometric decompositions based
on rigidity properties generally produce smaller blocks [11, 9].

An original approach, introduced in 1998 [2], and called in the present paper
Inter-Block Backtracking (IBB), can be used after this decomposition phase. Fol-
lowing the partial order between blocks given by the decomposition, a solving
process can be applied within the blocks, tackling thus systems of reduced size.
IBB combines the partial solutions to construct the solutions of the problem.

Although IBB could be used with other types of solvers, we have integrated
interval techniques which are general-purpose and more and more efficient. The
first paper [2] presented first versions of IBB which included several backtrack-
ing schemas, along with an equational decomposition technique. Since then, sev-
eral variants of IBB have been developed which had never been detailed be-
fore ([11] focussed on the geometric decomposition techniques based on flow
machinery.)

Contributions

This paper details the solving phases performed by IBB with interval techniques.
It brings several contributions:

– Numerous experiments have been performed on existing and new bench-
marks of bigger size (between 30 and 178 equations). This leads to a more
fair comparison between variants. Also, this confirms that IBB can gain sev-
eral orders of magnitude in computing time as compared to interval tech-
niques applied to the whole system. Finally, it allows us to better understand
subtleties when integrating interval techniques into IBB.

– A new version of IBB is presented, based on the well-known GBJ by Dechter [6].
The experiments show that IBB-GBJ is a good compromise between previous
versions.

– An inter-block interval filtering can be added to IBB. Its impact on perfor-
mance is experimentally analyzed.

Contents

Section 2 gives some hypotheses about the problems that can be tackled. Sec-
tion 3 recalls the principles behind IBB and interval solving. Section 4 details
IBB-GBJ and the inter-block interval propagation strategy. Section 5 reports ex-
periments performed on a sample of eight benchmarks. A discussion is given in
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Section 6 on how to correct a heuristics, used inside IBB, that might lead to a
loss of solutions.

2 Assumptions

IBB works on a decomposed system of equations over the reals. Any type of
equation can be tackled a priori, algebraic or not. Our benchmarks contain linear
and quadratic equations. IBB is used for finding all the solutions of a constraint
system. It could be modified for global optimization (selecting the solution mini-
mizing a given criterion) by replacing the inter-block backtracking by a classical
branch and bound. Nothing has been done in this direction so far.

We assume that the systems have a finite set of solutions, that is, the variety
of the solutions is 0-dimensional. This condition also holds on every sub-system
(block), which allows IBB to combine together a finite set of partial solutions.

Because the conditions above are also respected for our benchmarks and
because one equation can generally fix one of its variables, the system is square,
that is, it contains as many equations as variables to be assigned; the blocks are
square as well.

No more hypotheses must hold on the decomposition technique. However,
since we use a structural decomposition, the system must include no redundant
constraint, that is, no dependent equations. Inequalities or additional equations
must be added during the solving phase in the block corresponding to their
variables (as “soft” constraints in Numerica [8]), but this integration is out of
the scope of this article.

For handling redundant equations, decompositions based on symbolic tech-
niques can be envisaged [5]. These algorithms take into account the coefficients
of the constraints, and not only the structural dependencies between variables
and constraints.

Remark

In practice, the problems which can be decomposed are under-constrained and
have more variables than equations. However, in existing applications, the prob-
lem is made square by assigning an initial value to a subset of variables called
input parameters. The values of input parameters may be given by the user, read
on a sketch, given by a preliminary process (e.g., in scene reconstruction [18]),
or may come from the modeling (e.g., in robotics, the degrees of freedom are
chosen during the design of the robot and serve to pilot it).

3 Background

First, this section briefly presents interval solving. The simplest version of IBB
is then introduced on an example.
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3.1 Interval Techniques

Continuous CSP
A continuous CSP P = (V,C, I) contains a set of constraints C and a set of n
variables V . Every variable vi ∈ V can take a real value in the interval di ∈ I; the
bounds of di are floating-point numbers. Solving P consists in assigning variables
in V to values such that all the constraints in C are satisfied.

A n-set of intervals can be represented by an n-dimensional parallelepiped
called box. Reals cannot be represented in computer architectures, so that a
solving process reduces the initial box and stops when a very small box has
been obtained. Such a box is called an atomic box in this paper. In theory, an
interval could have a width of one float at the end. In practice, the process is
interrupted when all the intervals contain w1 floats1. It is important to highlight
that an atomic box does not necessarily contain a solution. Indeed, the process
is semi-deterministic: evaluating an equation with interval arithmetic can prove
that the equation has no solution (when the left and right boxes do not intersect),
but cannot assert that there exists a solution in the intersection of left and right
boxes.

The Interval Solver Used in IBB
We use IlogSolver version 5.0 and its IlcInterval library. IlcInterval im-
plements most of the features of the language Numerica [8]. These libraries use
several principles developed in interval analysis and in constraint programming.
The interval solving process used with IBB can be summarized as follows:

1. Bisection: One variable is chosen and its domain is split into two inter-
vals (the box is split along one of its dimensions). This yields two smaller
sub-CSPs which are handled in sequence. This makes the solving process
combinatorial.

2. Filtering/propagation: Local information (on constraints handled individu-
ally) or a more global one (3B) is used to reduce the current box. If the
current box becomes empty, the corresponding branch (with no solution) in
the search tree is cut [14, 8].

3. Unicity test: It is performed on the whole system of equations. It takes
into account the current box B and the first and/or second derivatives of
equations. When it succeeds, it finds a box B′ that contains a unique solution.
Also, a specific local numeric algorithm, starting from the center of B′, can
converge to the solution. Thus, this test generally avoids further bisection
steps on B.

The three steps are iteratively performed. The process stops when an atomic
box of size less than w1 is obtained, or when the unicity test is verified on the
current box.

1 w1 is a user-defined parameter. In most implementations, w1 is a width and not a
number of floats.
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Propagation is performed by an AC3-like fix-point algorithm. Four types
of filtering reduce the bounds of intervals (no hole is created in the current
box). The box-consistency [8] comes from IlcInterval; the 2B-consistency
works in IlogSolver. Although algorithmically different, they both consider one
constraint at a time for reducing the bounds of the implied variables (like AC3),
and can be used together. The 3B-consistency [14] uses the 2B-consistency
as sub-routine and a refutation principle (shaving) to reduce the bounds of every
variable iteratively. The bound-consistency follows the same principle, but uses
the box-consistency as sub-routine. A parameter w2 is specified for the bound
or the 3B: a bound of a variable is not updated if the reduction is less than w2.
The w1 parameter is also used to avoid a huge number of propagations in case
of slow convergence of 2B or Box: a reduction is performed when the portion to
be removed is greater than w1.

The unicity test is implemented in IlcInterval. Unfortunatly, due to the
implementation, it can be performed only with Box or Bound, and also cannot
be called with 2B or 3B alone. This sometimes prevents us from finely analyzing
the behavior of the solving.

3.2 IBB-BT

IBB works on a Directed Acyclic Graph of blocks (in short DAG) produced
by any decomposition technique. A block i is a sub-system containing equations
and variables. Some variables in i, called input variables, will be replaced by
values during the solving of the block. The other variables are called output
variables. A square block has as many equations as output variables. There
exists an arc from a block i to a block j iff an equation in j involves at least one
variable solved in i. The block i is called parent of j. The DAG implies a partial
order in the solving performed by IBB.

Example

To illustrate the principle of IBB, we will take the 2D mechanical configuration
example introduced in [2] (see Fig. 1). Various points (white circles) are con-
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Fig. 1. Didactic problem and its DAG
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nected with rigid rods (lines). Rods impose a distance constraint between two
points. Point h (black circle) differs from the others in that it is attached to
the rod 〈g, i〉. Finally, point d is constrained to slide on the specified line. The
problem is to find a feasible configuration of the points so that all constraints
are satisfied. An equational decomposition technique produces the DAG shown in
Fig. 1-right.

Illustration of IBB

Respecting the order of the DAG, IBB follows one of the induced total orders,
e.g., block 1, then 2, 3, 4, and 5. It first calls the interval-based solver on block
1 and obtains a first solution for xb (the block has two solutions). Once we have
this solution, we can substitute xb by its value in the equations of subsequent
blocks: 2 and 3. Then we process block 3, 4 and 5 in a similar fashion.

When a block has no solution, one has to backtrack. A chronological back-
tracking goes back to the previous block. IBB computes a different solution for
that block and restarts to solve the blocks downstream. However, due to the
chronological backtracking of this IBB-BT version, the partial order induced by
the DAG is not taken into account. Indeed, in the example above, suppose block
5 had no solution. Chronological backtracking would go back to block 4, find a
different solution for it, and solve block 5 again. Clearly, the same failure will be
encountered again in block 5.

It is explained in [2] that the CBJ and Dynamic backtracking schemas can-
not be used to take into account the structure given by the DAG. An intelligent
backtracking, IBB-GPB, was introduced, based on the partial order backtrack-
ing [15, 2]. The main difficulty in implementing IBB-GPB is to maintain a set of
nogoods. Moreover, any modification of IBB-GPB, for adding a feature or heuris-
tics, such as the inter-block filtering, demands a great attention.

We present in this paper a simpler variant based on the graph-based back-
Jumping (in short GBJ) by Dechter [6], and we compare it with IBB-GPB and
IBB-BT.

Remarks

The reader should notice a significant difference between IBB and the backtrack-
ing schema used in finite CSPs. The domains of variables in a CSP are static,
whereas the equation system in a block evolves and so does the corresponding set
of solutions. Indeed, when a new solution has been selected in a parent, the corre-
sponding variables are replaced by new values. Hence, the current block contains
a new system of equations because the equations have different coefficients.

Due to interval techniques, one does not obtain a solution made of a set of
scalars, but an atomic box. Thus, replacing variables from the parent blocks
by constants amounts in introducing small constant intervals of width w1 in the
current block to be solved. However, the solver we use does not allow us to define
constant intervals. Therefore we need to resort with a midpoint heuristics that
replaces a constant interval by a (scalar) floating-point number comprised in it
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(in the “middle”). This heuristics has several significant implications on solving
that are discussed in Section 6.1.

4 Use of the DAG Structure and Inter-block Filtering

The structure of the DAG can be taken into account in two ways:

– top-down: a recompute condition can sometimes avoid to compute again so-
lutions in a block;

– bottom-up: when a block has no solution, one can backtrack (or backjump)
to a parent block, and not necessarily to the previous block.

The following two subsections present these improvements. The third one details
the inter-block filtering which can be added to all the backtracking schemas. This
leads to several variants of IBB which are fully tested on our benchmarks.

4.1 The Recompute Condition

This condition can be tested in all the IBB variants, even in IBB-BT. Testing the
recompute condition is not costly and leads to significant gains in performance.

The recompute condition states that it is useless to compute a solution in
a block if the parent variables have not changed. In that case, IBB can reuse the
solutions computed the last time the block has been handled. Let us illustrate
when it can occur on the didactic example solved by IBB-BT.

Suppose that a first solution has been computed in block 3, and that all the
solutions computed in block 4 have led to no solution. IBB-BT then backtracks
on block 3 and the second position of point f is computed. When IBB goes down
again to block 4, that block should normally be recomputed from scratch due
to the modification of f . But xf and yf are not implied in equations of block 4,
so that the two solutions of block 4 previously computed can be reused at this
step. It is easy to avoid this useless computation by using the DAG: when IBB
goes down to block 4, one checks that the parent variables xe and ye have not
changed, so that the stored solutions can be reused.

4.2 IBB-GBJ

Six arrays are used in IBB-GBJ:

– solutions[i, j] yields the jth solution of block i.
– #sols[i] yields the number of solutions in block i.
– sol index[i] yields the index of the current solution in block i.
– blocks back[i] yields the set of blocks that may be the causes of failure of

block i. The more recently visited block among them (i.e., the one with the
highest number) is selected in case of backtracking.

– parents[i] yields the set of parent blocks of block i.
– assignment[v] yields the current value assigned to variable v.
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– save parents[i] yields the values of the variables in the parent blocks of i
the last time i has been solved. This array is only used when the recompute
condition is called.

IBB-GBJ can find all the solutions to a continuous CSP. Based on the DAG, the
blocks are first ordered in a total order and numbered from 1 to #blocks. After
an initialization phase, the while loop corresponds to the search for solutions, i
being the current block. The process ends when i = 0, which means that all the
solutions below have been found.

Algorithm IBB_GBJ (#blocks, solutions, parents, save_parents, assignment)

for i = 1 to #blocks do

blocks_back[i] = parents[i]

sol_index[i] = 0

#sols[i] = 0

end_for

i = 1

while (i >= 1) do

if (Parents_changed? (i, parents, save_parents, assignment)) then

update_save_parents (i, parents, save_parents, assignment)

sol_index[i] = 0

#sols[i] = 0

end_if

if (sol_index[i] >= #sols[i]) and

not (next_solution(i, solutions, #sols)))

then

i = backjumping (i, blocks_back, sol_index)

else /* solutions [i, sol_index[i] ] are assigned to block i */

assign_block (i, solutions, sol_index, assignment)

sol_index[i] = sol_index[i] + 1

if (i == #blocks) then /* total solution found */

store_total_solution (solutions, sol_index, i)

blocks_back[#blocks - 1] = {1...#blocks-1}

else

i = i + 1

end_if

end_if

end_while

The function next solution calls the solver to compute the next solution in
the block i. If a solution has been found, the returned boolean is true, and the
arrays solutions and #sols are updated. Otherwise, the function returns false.
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The body corresponding to the first else contains actions to be performed
when a solution of a block is selected. The procedure assign block modifies the
array assignment such that the values of the solution found are assigned to the
variables of block i. When a total solution is found, blocks_back[#blocks] is
updated with all the previous blocks to ensure completeness [6]. The recompute
condition is checked by the function Parents changed?2.

When a block has no solution, a standard function backjumping returns a
new level j where it is possible to backtrack without losing any solution. It is
important to add in the causes of failure of block j (i.e., blocks back[j]) those
of block i. Indeed, those blocks are a possible cause of failure for the current
value in block i.

function backjumping (i, in-out blocks_back, in-out sol_index)

if blocks-back[i] then

j = more_recent (blocks_back[i])

blocks_back[j] = blocks_back[j] U blocks_back[i] \ {j}

else

j = 0

end_if

for k = j+1 to i do

blocks_back[k] = parents[k]

sol_index[k] = 0

end_for

return j

Favoring the Current Value

The main drawback of algorithms based on backjumping is that the work per-
formed by the blocks between i and j is lost. When those blocks are handled
again, one selects first the current value of a variable, instead of traversing the
domain from the beginning. Since the domains are dynamic with IBB (the solu-
tions of a block change when new input values are given to it), this improvement
can be performed only when the recompute condition allows IBB to reuse the
previous solutions.

This heuristics has been added to IBB-GBJ3. However, probably due to the
remark above, the gains in performance obtained by the heuristics are small and
are not detailed in the description of experiments (see Section 5).

2 A simple way to discard this improvement is to force Parents changed? to always
return true.

3 The algorithm must manage another index in addition to sol index.
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4.3 Inter-block Filtering

Contrary to the features above related to backjumping, inter-block filtering (in
short ibf) is specific to interval techniques. ibf can thus be incorporated into any
variant of IBB using an interval-based solver.

In finite CSP instances, it has generally been observed that, during the solv-
ing, performing filtering on all the remaining problem is fruitful. Therefore we
decided to embedd an inter-block filtering in IBB: instead of limiting the filtering
process (based on 2B, 3B, Box or Bound in our tool) to the current block, we have
extended the scope of filtering to all the variables.

More precisely, before solving a block i, one forms a subsystem of variables
and equations extracted from the following blocks:

1. take the set B = {i...#blocks} containing the blocks not yet “instantiated”,
2. keep in B only the blocks connected to i in the DAG4.

Then, the bisection is applied only on block i while the filtering process can
be run on all the variables of blocks in B.

To illustrate ibf, let us consider the DAG of the didactic example. When block
1 is solved, all the blocks are considered by ibf since they are all connected to
block 1. Thus, any interval reduction in block 1 can imply a reduction in any
variable of the system. When block 2 is solved, a reduction can have an influence
on blocks 3, 4, 5 for the same reasons. (Notice that block 3 is not downstream to
block 2.) When block 3 is solved, a reduction can have an influence on blocks 5
only. Indeed, after having removed blocks 1 and 2, block 3 and 4 do not belong
to the same connected component. In fact, no propagation can reach block 4
since the parent variables of block 5 which are in block 2 have an interval of
width at most w1 and thus cannot be still reduced.

Remark

One must pay attention to the way ibf is incorporated in IBB-GBJ. Indeed, the
reductions induced by the previous blocks must be regarded as possible causes
of failure. This modification is not detailed and we just illustrate the point on
the DAG of the didactic example. If no solution is found in block 3, IBB with
ibf must go back to block 2 and not to block 1. Indeed, when block 2 had been
solved, a reduction could have propagated on block 3 (through 5).

5 Experiments

Exhaustive experiments have been performed on 8 benchmarks made of geo-
metric constraints. They compare different variants of IBB and interval solving
applied to the whole system (called global solving below).

4 The orientation of the DAG is forgotten at this step, that is, the arcs of the DAG

are transformed in non-directed edges, so that the filtering can apply on “brother”
blocks.
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5.1 Benchmarks

Some of them are artificial problems, mostly made of quadratic distance con-
straints. Mechanism and Tangent have been found in [13] and [3]. Chair is a
realistic assembly made of 178 equations from a large variety of geometric con-
straints: distances, angles, incidence, parallelisms, orthogonalities, etc.

The domains have been selected around a given solution and lead to radi-
cally different search spaces. Note that a problem defined with large domains is
generally similar to assign ] −∞,+∞[ to every variable.

Ponts
(Sierpinski2)

StarTangent
Mechanism

Fig. 2. 2D benchmarks: general view

Table 1. Details on the benchmarks: type of decomposition method. (Dec., see Sec-

tion 1); number of equations (Size); Size of blocks (Size Dec.)- NxK means N blocks

of size K - # of solutions with the four types of domains selected: tiny (width = 0.1),

small (1), medium (10), large (100)

Dim GCSP Dec. Size Size Dec. Ti. Small Med. Large
2D Mechanism equ. 98 98 = 1x10, 2x4, 27x2, 26x1 1 8 48 448

Ponts equ. 30 30 = 1x14, 6x2, 4x1 1 15 96 128
Sierpinski3 geo. 84 124 = 44x2, 36x1 1 8 96 138
Tangent geo. 28 42 = 2x4, 11x2, 12x1 4 16 32 64
Star equ. 46 46 = 3x6, 3x4, 8x2 1 4 8 8

3D Chair equ. 178 178 = 1x15,1x13,1x9,5x8,3x6,2x4,14x3,1x2,31x1 6 6 18 36
Hourglass geo. 29 39 = 2x4, 3x3, 2x2, 18x1 1 1 2 8
Tetra equ. 30 30 = 1x9, 4x3, 1x2, 7x1 1 16 68 256

Chair

Tetra Hour−glass

Fig. 3. 3D benchmarks: general view
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Sierpinski3 is the fractal Sierpinski at level 3, that is, 3 Sierpinski2 put
together. The corresponding equation system would have about 240 solutions,
so that the initial domains are limited to a width 0.1 (tiny), 0.8 (small), 0.9
(medium), 1 (large).

5.2 Choice of Filtering

With the aim of not handicapping the global solving, we select the best filter-
ing algorithms by performing tests on two benchmarks of medium size. Several
widths have been tried for w1 and w2 (see Table 2).

Table 2. Comparison of different partial consistencies. All the times are obtained in

seconds on a PentiumIII 935 Mhz with a Linux operating system. The best results

appear in bold-faced. A 0 in column w2 means that the lines 1 and 4 report results

obtained by 2B, Box, or 2B+Box. Otherwise, when w2 is 1e-2 or 1e-4, the corresponding

lines report results obtained by 3B, bound, or 3B+bound. Cells containing sing. (singular-

ity) indicate that multiple solutions are obtained and lead to a combinatorial explosion

(see Section 6)

w2 w1 2B/3B Box/Bound 2B+Box/3B+Bound

Ponts 0 1e-6 sing. 264 29
1e-8 sing. 292 32
1e-10 sing. 278 32

1e-2 1e-6 116 2078 309
1e-8 2712 2642 1303
1e-10 13565 2652 5570

1e-4 1e-6 84 >54000 523
1e-8 4413 >54000 5274

Tangent 0 1e-6 sing. 547 81
1e-8 sing. 553 82
1e-10 sing. 562 86

1e-2 1e-6 26 265 91
1e-8 35 270 94
1e-10 60 266 93

1e-4 1e-6 51 2516 369
1e-8 68 2535 393

Clearly, 2B+Box and 3B outperfom the other combinations. All the following
tests have been performed with these two filtering techniques.

5.3 Main Tests

The main conclusions about the tests reported in Table 3 are the following:

– IBB always outperforms the global solving, which highlights the interest of
exploiting the structure. One, two or three orders of magnitude can be gained
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Table 3. Results of experiments. BT+ is IBB-BT with the recompute condition. For ev-

ery algorithm and every domain size, times are given either without inter-block filtering

(¬IBF) or with IBF. All the times are obtained in seconds on a PentiumIII 935 Mhzwith a

Linux operating system. The reported times are obtained with 2B+Boxwhich is often bet-

ter than 3B. The lines 3B(GBJ) report times with IBB-GBJ and 3B when it is competitive

Tiny Small Medium Large
¬IBF IBF ¬IBF IBF ¬IBF IBF ¬IBF IBF

Global XXS XXS XXS XXS
Chair BT 3.3 XXS 3.2 XXS 9.4 XXS 12.4 XXS

BT+ 2.4 XXS 2.3 XXS 4.5 XXS 4.7 XXS
GBJ 2.4 XXS 2.3 XXS 4.5 XXS 4.7 XXS

Global XXS XXS XXS XXS
Mechanism BT 0.17 14.1 0.6 15.0 2.8 18.7 13.3 32.8

BT+ 0.11 14.1 0.4 13.6 2.6 17.2 13.1 30.6
GBJ 0.10 14.1 0.4 13.5 2.6 17.3 13.1 30.4
GPB 0.10 14.2 0.4 13.3 2.7 17.4 13.1 30.5

3B(GBJ) 0.23 0.68 1.7 2.3 9.7 11 83 88
Global 0.73 32 82 110

Ponts BT 0.16 0.63 2.38 4.2 6.5 10.6 9.1 14.6
BT+ 0.16 0.63 2.36 4.2 6.1 10.2 8.8 14.7
GBJ 0.17 0.58 2.35 4.1 6.0 10.4 8.7 14.4
GPB 0.22 0.61 2.37 4.1 6.3 10.4 8.7 14.4

3B(GBJ) 0.3 0.6 12 15 25 31 49 59
Global 0.12 1.89 1.47 22.77

Hour-glass BT+ 0.03 0.88 0.03 1.64 0.06 1.00 0.06 1.21
GBJ 0.04 0.75 0.03 1.60 0.02 0.83 0.06 1.19
GPB 0.05 0.73 0.03 1.61 0.05 0.88 0.05 1.15

3B(GBJ) 0.03 0.3 0.05 0.6 0.05 0.2 0.1 0.4
Global 3.1 >54000 >54000 >54000

Sierpinski3 3B(BT) 0.1 1.32 12.3 160 96 788 136 1094
3B(BT+) 0.1 1.32 12.7 160 67 703 93 928
3B(GBJ) 0.1 1.32 12 166 61 682 85 916
Global 0.5 35 39 46

Tangent BT+ 0.05 1.26 0.11 1.89 0.13 7.63 0.20 8.15
BJ 0.07 1.17 0.11 1.89 0.14 7.69 0.19 8.00

GPB 0.07 1.19 0.10 1.93 0.11 7.69 0.22 8.04
3B(GBJ) 0.2 0.7 0.2 1.3 0.2 1.3 0.3 1.7
Global 2.15 92 197 406

Tetra BT+ 0.14 0.74 1.08 4.00 2.37 7.01 4.73 13.56
GBJ 0.14 0.67 1.10 3.87 2.30 6.80 4.74 13.20
GPB 0.16 0.65 1.11 3.90 2.29 6.71 4.72 13.19

Global 8.7 2908 2068 1987
Star BT 9.96 70 40.2 137 81.4 241 80.3 240

BT+ 9.96 70 29.5 99.6 78.1 102 78 102
GBJ 9.96 70 29.1 99.6 77.9 102 77.9 102
GPB 9.96 70 29.4 99.6 49.3 102 49 102

in performance. Even with tiny domains, the gains can be significant (see
Sierpinski3)5.

– The inter-block filtering is always counter-productive and sometimes very
bad (see Tangent). Several lines with 3B have been added to show that the
loss of time of inter-block filtering is reduced with 3B.

5 The global solving compares advantageously with IBB on the Star benchmark with
tiny domains. This is due to a greater precision required for IBB to make it complete
(see Section 6). With the same precision, the global solving spends 75 s to find the
solutions.
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Table 4. Number of backjumps with and without inter-block filtering

IB filtering Tiny Small Medium Large

Ponts no 0 0 1 0
yes 0 0 0 0

Mechanism no 3 4 0 0
yes 0 0 0 0

Star no 0 2 6 6
yes 0 0 0 0

Sierpinski3 no 0 12 829 2118
yes 0 0 5 4

– The exploitation of the DAG structure by the recompute condition is very
useful.

Remark

Entries in Table 3 containing XXS correspond to a failure in the solving process
due to IlogSolver when a maximum size is exceeded.

To refine our conclusions, Table 4 reports statistics made on the number of
backjumps performed by IBB-GBJ. Note that no backjumps have been observed
with the other four benchmarks.

These experiments highlight a significant result. Most of the backjumps disap-
pear with the use of inter-block filtering, which reminds similar results observed
in finite CSPs. However, the price paid by inter-block filtering for removing
these backjumps does not bring in good returns. Sierpinski3-Large highlights
the trend: 2114 on 2118 backjumps are eliminated by inter-block filtering, but
the algorithm is 10 times slower than IBB-GBJ!

6 Discussion

Two difficulties come from the use of interval techniques with IBB. They are
detailed below.

6.1 Midpoint Heuristics

This heuristics (see Section 3.2) is not satisfactory because solutions might be
lost, making the whole process incomplete6. When the midpoint heuristics had
been introduced [2], our examples were small, and the case had not occurred.
Since then, it has occurred with Star, Sierpinski3 and Chair. The problem
has been fixed with Star and Sierpinski3 by increasing the precision (i.e.,

6 Its correctness can be ensured by a final and quasi-immediate filtering process per-
formed on the whole equation system, where the domains form an atomic box.
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decreasing w1). Ad-hoc modifications of the equation system must have been
made to fix the problem on Chair.

The clean solution consists in introducing constant intervals in equations
instead of the midpoints (which is not currently possible with IlogSolver). We
think that the overcost in time would be negligible with the filtering/bisection
solving schema. On the contrary, unicity tests may become inefficient because
computing the inverse of a jacobian matrix including intervals (instead of scalars)
can lead to large overestimates of the intervals.

6.2 Dealing with Multiple Solutions

Another limit of interval techniques is worsened with IBB. Multiple solutions
occur when several atomic boxes are close to each other: only one contains a
solution and the others are not discarded by filtering. Even when the number
of multiple solutions is small, the multiplicative effect due to IBB (the partial
solutions are combined together) may render the problem intractable.

An ad-hoc solution consists in improving the precision (i.e., reducing w1),
which fixes some cases. Mixing several filtering techniques, such as 2B+Box,
also reduces the phenomenon (The sing. entries in Table 2 with 2B come from
this phenomenon.) We have implemented a first way to detect multiple solu-
tions. In this case, we select only one of them. This has solved the problem
in most cases. A few pathologic cases remain due to an interaction with the
midpoint heuristics. Taking the union of the multiple solutions should be more
robust.

7 Conclusion

This paper has detailed the generic inter-block backtracking framework to solve
decomposed continuous CSPs. We have implemented three backtracking schemas
(chronological BT, GBJ, partial order backtracking). Every backtracking schema
can incorporate a recompute condition that avoids sometimes a useless call to
the solver. Every schema can also use an inter-block filtering.

Series of exhaustive tests have been performed on a sample of benchmarks
of acceptable size and made of non-linear equations. First, all the variants of
IBB can gain several orders of magnitude as compared to solving the constraint
system globally. Second, exploiting the structure of the DAG with the recompute
condition is very useful whereas a more sophisticated exploitation (backjump-
ing) only improves slightly the performance of IBB. However, it might lead to
important gains while never producing an overhead. This leads us to propose
the IBB-GBJ version presented in this paper.

Another clear result of this paper is that inter-block filtering is counter-
productive. This highlights that a global filtering which does not take the struc-
ture into account makes a lot of useless work.

The next step of our work is to deal with small constant intervals to discard
the midpoint heuristics and make our implementation more robust.
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Abstract. In this paper the problem of parameter estimation for expo-
nential sums is considered, i.e., of finding the set of parameters (ampli-
tudes as well as decay constants) such that the exponential sum attains
values in specified intervals at prescribed time data points. These inter-
vals represent uncertainties in the measurements. An interval variant of
Prony’s method is given by which a box can be found containing all the
consistent values of the parameters. Subsequently this box is tightened
by the use of consistency techniques, which are accelerated by the intro-
duction of redundant constraints. The use of interval arithmetic results
in enclosures for the consistent values of the parameters which can be
guaranteed also in the presence of rounding errors.

Keywords: Parameter estimation, exponential sum, Prony’s method,
interval arithmetic, constraint propagation, redundant constraint.

1 Introduction

The simulation of complex systems for a wide range of applications dates back
to the early development of modern computers. Once a mathematical model is
known, the system behaviour can be analysed without the need for practical
experimentation. This approach is specifically useful to compute information
which cannot easily be obtained in practice or to test extreme situations. It
also becomes possible to predict the system behaviour or to optimize system
components. In the following, we will consider a family of dynamical systems
modeled by the function

y(t) = f(x, t), (1)
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where t represents time, and x ∈ Rn is the vector of parameters. Each individual
system leads to the problem of finding consistent values of parameters.

Let observations of the system be given, that is a series of data (ỹi, ti), i =
1, . . . ,m, where ỹi is the system output at time ti. The model-driven inverse
problem (parameter estimation problem) consists of finding values of x such that
the following equations hold:

ỹi = f(x, ti), i = 1, . . . ,m.

Unfortunately, this problem generally has no solution, since output values may
be imprecise and uncertain. Therefore one tries to determine values of the model
parameters that provide the best fit to the observed data, generally based on
some type of maximum likelihood criterion, which results in minimizing the
function

m∑

i=1

wi(f(x, ti) − ỹi)2. (2)

It is not uncommon for the objective function (2) to have multiple local optima in
the area of interest. However, the standard methods used to solve this problem
are local methods that offer no guarantee that the global optimum, and thus
the best set of model parameters, has been found. In contrast, methods from
global optimization [10, 11, 13] are capable of localizing the global optimum of
(2). However, this approach does not take into account that the observed data
are affected by uncertainty. Therefore the resulting models may be inconsistent
with error bounds on the data.

To take uncertainty into account, we assume that the observed data are cor-
rupted by errors, e.g. measurement errors, ±εi, εi ≥ 0, i = 1, . . . , m. Then the
correct value yi = f(x∗, εi) is within the interval [ỹi − εi, ỹi + εi], i = 1, . . . , m.
More generally, we suppose that yi is known to be contained in the interval
[ai, bi]. The data driven inverse problem (parameter set estimation problem)
consists of finding values of x subject to the following system of inequalities:

ai � f(x, ti) � bi, i = 1, . . . ,m. (3)

The aim is to compute a representation of the set Ω of the consistent values of
the parameters that may help in decision making. Interval arithmetic and inclu-
sion functions for the model functions are used in [17, 21] to find boxes generated
by bisection which are contained in Ω; the union of these boxes constitutes an
inner approximation of Ω. Also, boxes are identified which contain part of the
boundary of Ω or contain only inconsistent values; boxes of this second category
can be used to construct an outer approximation of the set of inconsistent val-
ues. However, such an approach can not handle large initial boxes or problems
with many parameters. Therefore, interval constraint propagation techniques are
introduced in [19] to drastically reduce the number of bisections.

In this paper, we concentrate on models of exponential sums arising in many
applications such as, e.g., pharmacokinetics [14, 26]. It is well-known, e.g. [5],
p. 242, and [22], that parameter estimation of exponential sums is notoriously
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sensitive to data perturbations. Two complementary techniques are applied. The
first one is an interval variant of Prony’s method [22, 25], which aims to compute
an initial domain for the parameters to be estimated. The second one is applied
after problem (3) is transformed into a set of equalities and is the symbolic gen-
eration of redundant constraints in order to accelerate constraint propagation.
The challenge is to compute constraints leading to more precision in the nu-
merical process, to control the amount of symbolic computations and to limit
the number of redundancies in order to avoid slow-downs of the whole solving
procedure.

The outline of this paper is as follows. The basics of interval arithmetic and
constraint satisfaction techniques are presented in Section 2. The new methods
are introduced in Section 3. A numerical example is given in Section 4. We finally
conclude in Section 5.

2 Preliminaries

2.1 Interval Arithmetic

We consider the following sets: the set R of real numbers including the infinities,
the finite set F of floating point numbers and the finite set I of closed intervals
spanned by two floating point numbers. Every interval x ∈ I is denoted by [x, x]
and is defined as the set of real numbers {x ∈ R | x � x � x}.

Interval arithmetic [23] is a set theoretic extension of real arithmetic. The op-
erations are implemented by floating-point computations with interval bounds
according to monotonicity properties. For instance, the sum [a, b]+ [c, d] is equal
to [a + c, b + d], provided that the left bound is downward rounded and the
right bound is upward rounded. Interval reasonings can be extended to com-
plex functions using the so-called interval evaluation method. Given a function
f : Rn → R, let each real number in the expression of f be replaced by the
interval spanned by floating point numbers obtained by rounding this real num-
ber downward and upward, each variable be replaced with its domain, and each
operation be replaced with the corresponding interval operation. Then the in-
terval expression can be evaluated using interval arithmetic, which results in a
superset of the range of f over the domain of the variables.

2.2 Consistency Techniques

A numerical constraint satisfaction problem (NCSP) is given by a set of vari-
ables {x1, . . . , xn}, each variable xi lying in an interval domain xi, and a set of
constraints over the real numbers {c1, . . . , cm}. The solution set of a NCSP is
defined as the set

{a ∈ Rn | c1(a) ∧ · · · ∧ cm(a)},
where each constraint cj is considered as a relation.

Consistency techniques aim to reduce the Cartesian product of variables do-
mains x1 × · · · × xn, which defines the search space called a box. Most of the
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reduction algorithms are based on constraint projections. The projection of a
constraint c(x1, . . . , xn) over a variable xi is the set

Πi(c) = {ai ∈ xi | ∀j ∈ {1, . . . , n} \ {i},∃aj ∈ xj : c(a1, . . . , an)}.
It follows that the reduction step

xi := Πi(c)

is reliable since each value belonging to the complementary set cannot be ex-
tended in a solution of the NCSP. In practice projections are reliably approxi-
mated by means of interval computations. For example the inversion algorithm
uses the so-called relational interval arithmetic [8]. A numerical inversion proce-
dure has been described as a chain rule in [16].

Example 1. Consider the constraint 2x1−x2
2 = 4, given (x1, x2) ∈ [−3, 3]× [1, 3].

The computation of its projection over x1 by the chain rule can be explained
as follows. Define an equivalent constraint, where the left-hand term is reduced
to x1, namely x1 = (4 + x2

2) ÷ 2. Evaluate the right-hand term using interval
arithmetic. The interval [2.5, 6.5] is computed, and it is intersected with the
domain of x1. The new domain of x1 is equal to [2.5, 3]. Thus, the set of values
[−3, 2.5) has been shown to be locally inconsistent with the given constraint.

Given a set of constraints, constraint projections have to be processed in
sequence in order to obtain the consistency of the whole problem. The corre-
sponding iterative algorithm is called constraint propagation. The result is a
new box that contains the solution set. In order to separate the solutions, con-
straint propagation has to be embedded in a more general bisection algorithm.
Boxes are reduced and then bisected until every box is sufficiently small.

2.3 Data Fitting Problems as NCSPs

Problem (3) should be transformed before propagation for two reasons. First,
the variable yi has to be explicit in order to reduce the error bounds. Second,
each data value leads to two inequalities involving the term f(x, ti). Since con-
straints are processed independently, an efficient approach consists of sharing
computations over this term. Problem (3) is equivalent to the following set of
existentially quantified equations

∃yi ∈ [ai, bi] : yi = f(x, ti), i = 1, . . . , m. (4)

Now, quantifiers can be removed, making the variables yi first-class variables.
This leads to Problem (5):

yi = f(x, ti), i = 1, . . . ,m. (5)

Problems (4) and (5) are equivalent for computations of projections over the
parameters. In fact, quantifiers just introduce an intermediary level of projec-
tions, which is of no benefit. It can clearly be seen that constraint propagation
for Problem (5) is on average twice as fast as propagation for Problem (3).
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2.4 Exponential Sums

We consider now a model with exponential sums, as follows:

f(x, t) =
p∑

j=1

x2j−1 exp(−x2jt), n = 2p. (6)

In fact three problems occur when exponential sums are processed by consistency
techniques. The first problem is the evaluation of the exponential function over
positive real numbers far from 0. For instance consider a term exp(−tx) given
t = 100 and suppose that x is negative. If x is smaller than −8 then exp(−tx)
is evaluated to +∞ on a 64-bit machine. In this case, interval-based methods
are powerless. This weakness points out the needs for getting an a priori tight
search space of parameters.

The second problem concerns slow convergences in constraint propagation.
The cause is that two exponential sums from two different constraints have a
similar shape. For instance consider the terms f1(x) = 0.2e0.3x + 1 and f2(x) =
0.5e0.4x, depicted in Figure 1 (f2 has the largest slope). Domain reductions are
numbered from 1. The first reduction concerns the upper bound of y using f1.
The eliminated box contains no solution of equation y = f1(x), i.e., no point of
the curve of f1. Then, the upper bound of x is contracted using f2, and so on.
A similar process leads to the reduction of the other bounds. In this case, the
number of constraint processing steps using the chain rule is equal to 82.

In practice, the only difference is that the variables are not reduced to real
values, but that they belong to real intervals. The intersection of curves becomes
an intersection of surfaces. In this case, inefficiencies of constraint propagation
remain.

The third problem is inherent to local approaches, since a sequence of local
reasonings may not derive global information. Many techniques try to overcome
this problem, one of them being the use of redundant constraints in the constraint
propagation algorithm. A constraint is said to be redundant with respect to a
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Fig. 1. Constraint Propagation over Two Exponential Terms
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set of constraints if it does not influence the solution set. Redundant constraints
can be derived from the set using combination and simplification procedures, for
instance Gröbner basis techniques for polynomials [7]. The interesting feature is
that combination is a means for sharing information between constraints. The
main challenge is to control the amount of symbolic computations, to compute
constraints able to improve the precision of consistency techniques, and to limit
the number of redundant constraints in order avoid slow-downs in constraint
propagation.

3 Acceleration Methods

3.1 Prony’s Method

Given the model (6), we wish to find decay constants x2j and amplitudes x2j−1,
j = 1, . . . , p, such that (5) is satisfied at equidistant ti = t0 + ih, i = 1, . . . , m,
with given stepsize h. A method to accomplish this task is Prony’s method [25],
cf. Chap. IV, §23 of [22], which dates back to the 18th century. This method relies
on the observation that a function of the form (6) satisfies a linear difference
equation with constant coefficients. We concentrate here on the case p = 2. We
choose a fixed group of four time data points, selected from the set {1, . . . , m},
say {1, 2, 3, 4}. Prony’s method then first requires the solution of the following
system of two linear equations in the unknowns ζ1 and ζ2.

(
y1 y2

y2 y3

)(
ζ1

ζ2

)
= −

(
y3

y4

)
. (7)

The solution (ζ1, ζ2) of this system provides the coefficients of a quadratic

q(u) = u2 + ζ2u + ζ1. (8)

If the zeros u1 and u2 of q are distinct and positive then the decay constants are
given by {x2, x4} = {log(u1)/h, log(u2)/h}. Finally, we obtain the amplitudes
x1 and x3 from the solution of a second system of two linear equations

(
1 1
u1 u2

) (
z1

z3

)
=

(
y1

y2

)
(9)

with xk = e−t1xk+1zk, k = 1, 3.
Now consider the interval problem (4). We want to find intervals x1, . . . ,x4,

such that all xj ∈ xj , j = 1, . . . , 4, for which

f(x, ti) ∈ [ai, bi], i = 1, . . . ,m. (10)

By changing to the interval data given by (4), Prony’s method now requires the
solution of interval variants of the two linear systems (7) and (9) and the enclo-
sure of the zero sets of the interval polynomial corresponding to (8) 1. Special

1 A preliminary version of the interval variant of Prony’s method was given in Sect.
5.2 of [12].
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care has to be taken to find tight intervals for the decay constants and ampli-
tudes. To determine enclosures for the zero sets of q in the case that the roots
are positive and can be separated, we compute an enclosure for the largest pos-
itive root by the well-known formula and a respective enclosure for the smallest
positive root by an interval variant of Vietà’s method.

For a system of p linear interval equations in p unknowns

[A]x = [b] (11)

the (general) solution set is defined as the set

Σ = {x ∈ Rp | ∃A ∈ [A], b ∈ [b] : Ax = b}. (12)

Here we assume that the interval matrix is nonsingular, i.e., it contains only
nonsingular real matrices. We are interested in the hull of the solution set, i.e.,
the smallest axis aligned box containing Σ.

For the system of two linear interval equations corresponding to (9), we can
easily compute the hull of the solution set by the method presented in [3], cf. [24]
p. 97. The system (7) exhibits two dependencies: The system matrix is symmetric
and the coefficient in its bottom right corner is equal to the negation of the first
entry of the right hand side. So it is natural to consider in the interval problem
the symmetric solution set Σsym [1, 2], [24], Sect. 3.4, which is the solution set
restricted to the systems with symmetric matrices, and the even smaller solution
set, denoted by Σ∗

sym, obtained when in addition the dependency on the first
entry of the right hand side is taken into account. With elementary computations
(which are delegated to the Appendix) it is possible to determine the hulls of
these structured solution sets. In Figure 2, these three solution sets together
with their hulls for the following system

(
[1, 3]
[0, 1]

[0, 1]
[−4,−1]

) (
ζ1

ζ2

)
= −

(
[−4,−1]
[−1, 2]

)
(13)

are displayed. The general solution set Σ consists of the whole shaded region
and the symmetric solution set Σsym consists of the regions shaded in medium
and dark grey. The dark grey region is the solution set Σ∗

sym. At least the
first two solution sets can be obtained by analytical methods, cf. [1, 2], but are
determined here by the computation of the solutions of a large number of real
systems corresponding to boundary and interior points of the interval matrix
and the interval right hand side.

If the interval system corresponding to (7) is singular, one should check
whether the underlying problem is not better described by a single exponen-
tial term, i.e., we have p = 1 in (6). In fact, if

ỹi := x1 exp(−x2(t0 + ih)) ∈ [ai, bi], i = 1, 2, 3, (14)

holds true, then it follows that

0 = ỹ1ỹ3 − ỹ2
2 . (15)
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Fig. 2. The three solution sets Σ, Σsym, and Σ∗
sym and their hulls for system (13)

We mention two possibilities for tightening the enclosures for the param-
eters obtained in this way: we can choose another group of four time data
points, compute again enclosures for the parameters and intersect with the en-
closures obtained for the first group. Continuing in this way, we successively
improve the quality of the enclosures. If an intersection becomes empty, we
have then proven that there is no exponential function of the form (6) which
solves the real interpolation problem with data taken from the intervals given
in (4).

Another possible improvement is obtained as follows: If we plug on the right
hand side of (6) the intervals xj into xj , j = 1, . . . , 4, then we will obtain an
interval function. If the evaluation of this function at a time data point results
in an interval which is not equal to or a superset of the original data interval,
we have proven that certain measurements are not possible. If this difference
is large, we may conclude that measurements have not been made precisely
enough.

A salient feature of the above approach is that if this method works, i.e.,
the two interval systems are nonsingular and the roots can be separated, we
obtain an enclosure for the parameters without any prior information on the
decay constants and amplitudes. Such prior information is normally required for
the use of interval methods, e.g., [20]. Often one has to choose an unnecessarily
wide starting box which is assumed to contain all feasible values of interest.
Application of a subdivision method then results in a large number of subdivision
steps. Therefore, Prony’s method is predestinated to be used as a preprocessing
step for more sophisticated methods. The amount of computational effort is
negligible.
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3.2 Redundant Computations

Several transformation techniques [18] of exponential sums have been proposed,
mainly for the case of data equidistant in time, cf. Sect. 3.1. The other situation
has been studied less. However, we will see that constraint propagation may
be greatly improved if well-chosen redundant constraints are generated. Given
Problem (5), the basic idea is that two terms in the same column can be divided
to generate a redundant constraint, as follows:

⎧
⎨

⎩

uij = x2j−1 exp(−x2jti),
ukj = x2j−1 exp(−x2jtk),
uij = ukj exp(x2j(tk − ti)).

(16)

The simplification consists in eliminating variable x2j−1 from the last constraint.
The system is then rewritten as follows:

⎧
⎨

⎩

yi =
∑p

j=1 uij , i = 1, . . . , m,

uij = x2j−1 exp(−x2jti), i = 1, . . . , m, j = 1, . . . , p,
uij = ukj exp(x2j(tk − ti)), 1 � i < k � m, j = 1, . . . , p.

(17)

The number of exponential terms in the system potentially grows from mp to
mp+0.5m(m− 1)p. In fact the complexity is increased by a non-constant factor
O(m). Even if the precision of numerical computations is improved by the use of
the redundant constraints, too many constraints to be considered during propa-
gation may induce a slow-down. We then show how to keep the same complexity
while filtering the necessary constraints. Consider the first three constraints from
the initial system c1, c2, and c3, and let j represent the j-th column. The sym-
bolic step is an elimination procedure which combines two constraints in order
to remove the variable x2j−1. The aim is to derive a constraint whose projec-
tion over x2j can be efficiently computed. As a consequence, a redundancy, e.g.,
between c1 and c2, is equivalent to an existentially quantified formula, as follows:

∃x2j−1 c1 ∧ c2.

Now, suppose that the two following redundancies are available:

∃x2j−1 c1 ∧ c2, ∃x2j−1 c2 ∧ c3.

It can be shown that the third redundancy c defined by ∃x2j−1 c1 ∧ c3 is useless
for reducing the domain of x2j . Suppose that one value of x2j does not allow
the satisfaction of c. Then either c1 or c3 is violated, and so do the first two
redundancies. We then conclude that c is useless. As a consequence, it suffices
to consider per column the redundancies between two consecutive rows. The
number of redundant constraints is then equal to (m − 1)p.

Example 2. Consider the following instance of (16), where variables u are com-
puted by simulation, given the parameter values (10, 0.5):

⎧
⎪⎪⎨

⎪⎪⎩

(i, j, k) = (1, 1, 2)
(t1, t2) = (2, 5)

u11 = x1 exp(−x2t1)
u21 = x1 exp(−x2t2).

(18)
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Now, find x1 ∈ x1 and x2 ∈ x2 such that the equations of (18) are satisfied. First
of all, if the domains are such that the exponential terms are evaluated to +∞,
e.g., for x1 = x2 = [−1000, 1000], then consistency techniques are powerless. If
the domains are tighter, e.g., x1 = x2 = [−100, 100], then one box enclosing the
solution is derived after 94 calls to the chain rule:

[9.9999999963, 10.000000004] × [0.49999999988, 0.50000000013].

The redundant constraint is

u11/u21 = exp(x2(t2 − t1)).

If it is added to the system, the number of calls decreases to 5.

In fact more work can be done symbolically. Let I, J denote the domains of
uij and ukj and let K denote the domain of x2j . Then a new domain for variable
x2j can be computed by the following interval expression:

x2j := K ∩
(

1
tk − ti

· log
(

I

J

))
. (19)

4 A Numerical Example

Software. The software RealPaver [15] is used for the tests. Given a model of
exponential sums and a series of measurements together with error bounds, the
aim is to compute the convex hull of the set of consistent values of the unknowns.
In the following, the same tuning of algorithms is used, namely a fixed number
of boxes in the bisection process and a fixed maximum computation time. This
way, the precision of resulting boxes can be compared for different input systems.

Benchmark. Consider the following problem, consisting of four time-equidistant
measurements:

x1e
4.387x2 + x3e

4.387x4 ∈ [−0.304,−0.298]
x1e

12.069x2 + x3e
12.069x4 ∈ [21.43, 21.86]

x1e
19.751x2 + x3e

19.751x4 ∈ [171.9, 175.3]
x1e

27.434x2 + x3e
27.434x4 ∈ [1257, 1282]

Results. Starting with an initial box

[−100, 100] × [−10, 10] × [−100, 100] × [−10, 10]

RealPaver computes no reduction. If the 6 redundant constraints are used, then
the box is reduced to

[−100, 100] × [−1.326, 10] × [−100, 100] × [−1.326, 10].
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There is clearly a need for using Prony’s method to obtain a tight initial box. For
the considered problem, Prony’s method computes (within 0.01s) the following
enclosures for the set of parameters:

[−6.673,−3.374] × [−0.130, 0.014] × [0.911, 1.344] × [0.247, 0.266].

RealPaver then computes the following new box:

[−5.881,−3.618] × [−0.124, 0.014] × [0.977, 1.256] × [0.251, 0.262].

This precision is improved if the redundant constraints are used, as follows:

[−5.872,−3.740] × [−0.123, 0.014] × [0.991, 1.223] × [0.252, 0.262].

5 Conclusion

In this paper, we have shown that constraint satisfaction techniques have to
be improved in order to process exponential-based models, which are often ill-
conditioned. For this purpose, two techniques have been introduced, namely an
interval variant of Prony’s method and a symbolic procedure. The main goal is
to improve the tightness of the bounds for the parameters, whilst keeping the
computation time unchanged (or improved).

In a bounded-error context, the problem is to solve a set of inequalities. A
powerful approach is to use inner computations to approximate the interior of the
solution set, which is often a continuum, using boxes. For this purpose, we believe
that three techniques should be combined: inner computations using constraint
negations [6], an inner box extension method [9] and interior algorithms based
on local search.

A serious limitation of Prony’s method is that it requires equidistant time
data points. However, many examples in the literature contain at least some
equidistant data points. If the measurements provide a group of at least four
such points, then we can apply Prony’s method as a preprocessing step to deliver
a suitable initial box. In a future paper, we will report on Prony’s method for
functions (6) comprising three exponential terms (p = 3).
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Appendix

Determination of the Hulls of the Three Solution Sets of the Linear
Interval System Appearing in Prony’s Method

It is well-known, e.g. [4], that the hull of the (general) solution set of (11) can
be obtained as the hull of the solutions of all the vertex systems of (11), i.e.,
the systems of real equations with coefficients being identical to endpoints of the
respective coefficient intervals.2 Therefore, in the case p = 2 we have to solve 26

point systems. Consider now the symmetric system
(

[a1, a1] [a2, a2]
[a2, a2] [a3, a3]

) (
x1

x2

)
=

(
[b1, b1]
[b2, b2]

)

and one of its point systems
(

a1 a2

a2 a3

)(
x1

x2

)
=

(
b1

b2

)
.

Assume that the matrix is nonsingular. Then it is easy to see that both compo-
nents of the solution vector (x1 and x2) are monotonic with respect to a1, a3,
b1, and b2. Therefore, x1 and x2 can attain their minimum and maximum only
at the endpoints of the intervals [a1], [a3], [b1], and [b2]. Since

∂x1

∂a2
=

−b2a
2
2 + 2a3b1a2 − a1a3b2

(a1a3 − a2
2)2

x1 can only take its minimum and maximum when a2 ∈ {a2, a2} or

b2a
2
2 − 2a3b1a2 + a1a3b2 = 0. (20)

Similarly, x2 can only take its extreme values when a2 ∈ {a2, a2} or

b1a
2
2 − 2a1b2a2 + a1a3b1 = 0. (21)

So we have to solve all possible 25 vertex systems. We additionally have to con-
sider point systems generated as follows: For each of the 24 possible combinations

a1 ∈ {a1, a1}, a3 ∈ {a3, a3}, b1 ∈ {b1, b1}, b2 ∈ {b2, b2},

solve the two quadratic equations (20) and (21); this gives up to four values a
(i)
2 ,

i = 1, 2, 3, 4. Discard any a
(i)
2 for which a

(i)
2 	∈[a2, a2]. Solve the point systems

for the remaining a
(i)
2 . Thus we need to solve at most 4 ∗ 24 extra point systems

altogether. After at most 96 point systems are solved, we have to compute the
smallest box containing all the solutions (x1, x2) generated in this way. This box
provides the hull of the symmetric solution set.

2 For a more tractable approach see Chap. 6 in [24].
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We consider now the linear interval system
(

[a1, a1] [a2, a2]
[a2, a2] [b1, b1]

) (
x1

x2

)
=

(
[b1, b1]
[b2, b2]

)
. (22)

This is the same system as before, except that an extra dependency, viz. a3 = b1

has been introduced. Note that we have suppressed the minus-sign appearing on
the right hand side of (7) for simplicity. Affixing a minus-sign on the right hand
side of (7) results in a reflection of the solution set at the origin. Consider the
point system (

a1 a2

a2 b1

)(
x1

x2

)
=

(
b1

b2

)
.

Again, assume that the matrix is nonsingular. As before, we have that x1 and
x2 are monotonic with respect to a1 and b2. In addition, x2 is also monotonic
with respect to b1. This leaves

∂x1

∂a2
=

−b2a
2
2 + 2b2

1a2 − a1b1b2

(a1b1 − a2
2)2

, (23)

∂x1

∂b1
=

a1b
2
1 − 2a2

2b1 + a1a2b2

(a1b1 − a2
2)2

, (24)

∂x2

∂a2
=

−b1a
2
2 + 2a1b2a2 − a1b

2
1

(a1b1 − a2
2)2

. (25)

We have to solve a number of point systems, which fall into four categories
(see below). After these point systems are solved, as before we have a set of
solution pairs (x1, x2). The hull of all these solutions provides the hull of Σ∗

sym.

1. Solve all 24 vertex systems of (22).

2. Solve all possible point systems, where for each of the eight choices of the
vertices of [a1], [b1], [b2] we determine a finite number of values taken from
(a2, a2), where x1 and x2 may plausibly take their maximum or minimum. Up
to four such values are generated by (separately) solving the two quadratic
equations which are obtained by setting the numerators in (23) and (25)
equal to zero, i.e.,

b2a
2
2 − 2b2

1a2 + a1b1b2 = 0, (26)

b1a
2
2 − 2a1b2a2 + a1b

2
1 = 0. (27)

3. Solve all possible point systems, where for each of the eight choices of the
vertices of [a1], [a2], [b2] we determine a finite number of values taken from
(b1, b1), where x1 may plausibly take its maximum or minimum. Up to two
such values are generated by solving the equation, cf. (24),

a1b
2
1 − 2a2

2b1 + a1a2b2 = 0. (28)
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4. Solve all possible point systems, where for each of the four choices of the
vertices of [a1] and [b2] we need to determine a finite number of values taken
from (a2, a2) and from (b1, b1), where x1 may plausibly take its extreme
values.
We seek points a2 and b1 which jointly satisfy equations (26) and (28). If
we solve (28) for b1 and plug its two solutions into (26), we end up with the
condition

a2c(d − c)(8d + c) = 0,

where c = a2
1b2 and d = a3

2. Therefore, possibly valid values for a2 are

a
(1)
2 = 0, a

(2)
2 = 3

√
c, a

(3)
2 =

1
2

3
√−c.

However, c = 0 is a degenerate case. So if either a1 = 0 or b2 = 0 we must
work alternatively:
If a1 = 0, we may conclude from (28) that either a2 = 0 or b1 = 0. However,
due to nonsingularity, we have a2 	= 0. Thereforeb1 = 0, and from (26) it
follows that b2 = 0, too, whence 0 ∈ Σ∗

sym. Similarly, if b2 = 0, we may
conclude from (26) that either a2 = 0 or b1 = 0. If b1 = 0 we have again
0 ∈ Σ∗

sym.

The numbers of point systems to be solved given above are only in the worst
case. In general, these will be a lot less. Certainly these numbers are not minimal
and can be optimized.
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Abstract. We describe four approaches to solving nonconvex global op-
timization problems by convex nonlinear programming methods. It is
assumed that the problem becomes convex when selected variables are
fixed. The selected variables must be discrete, or else discretized if they
are continuous. We first survey some existing methods: disjunctive pro-
gramming with convex relaxations, logic-based outer approximation, and
logic-based Benders decomposition. We then introduce a branch-and-
bound method with convex quasi-relaxations (BBCQ) that can be effec-
tive when the discrete variables take a large number of real values. The
BBCQ method generalizes work of Bollapragada, Ghattas and Hooker on
structural design problems. It applies when the constraint functions are
concave in the discrete variables and have a weak homogeneity property
in the continuous variables.

We address global optimization problems that become convex when selected
variables are fixed. If these variables are discrete, the constraints can be refor-
mulated as logical disjunctions of convex constraints. If some of the selected
variables are not discrete, we discretize them in order to obtain an approximate
global solution.

The motivation for this approach is to take advantage of highly developed
nonlinear programming methods for convex problems, as well as branch-and-
bound methods for discrete problems. A branch-and-bound method chooses the
appropriate disjunct in each constraint. Nonlinear programming is applied to
the convex subproblem that results when the disjuncts are chosen.

We present four variations of this general approach.1 Two of them are most
practical when the discrete variables do not take a large number of possible val-
ues: (a) disjunctive programming with convex relaxations, and (b) logic-based
outer approximation. The disjunctive programming model can also be solved
as a mixed integer/nonlinear programming (MINLP) problem. When there are
a large number of discrete values, as when some discrete variables represent
discretized continuous variables, one can turn to methods that do not require
explicit representation of the disjunctions: (c) logic-based Benders decomposi-

1 A longer version of this paper, available at web.gsia.cmu.edu/jnh/cocos03.pdf,
presents examples of all four methods.
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tion, and (d) branch and bound with convex quasi-relaxations (BBCQ). The
convergence rate of the Benders method depends heavily on the problem struc-
ture, however. BBCQ is intended for problems in which the discrete variables are
real-valued. It does not rely on decomposition but requires that the constraint
functions satisfy certain properties.

This paper begins with a summary of the first three methods, which are
developed elsewhere. It then introduces the BBCQ method as a formalization
and generalization of a technique applied by Bollapragada, Ghattas and Hooker
to structural design problems [1]. This application is presented at the end of the
paper as an illustration of disjunctive programming and BBCQ.

1 General Form of the Problem

We solve problems of the form
min x1

subject to gj(x, yj) ≤ 0, j ∈ J

L(y)
x ∈ IRn, yj ∈ Yj , j ∈ J

(1)

where gj(x, yj) is a vector of functions and L(y) is a logical constraint on possible
values of the discrete variables yj . If some of the yj are continuous, we discretize
them by converting Yj to a finite set. We assume that when each yj is fixed to
some ȳj ∈ Yj we obtain the convex subproblem:

min x1

subject to gj(x, ȳj) ≤ 0, j ∈ J

x ∈ IRn

(2)

It is convex in the sense that each gj(x, ȳj) is a vector of convex functions of x.
We assume without loss of generality that the objective function is a single

variable x1, since x1 can be defined in the constraints. We also suppose that
each constraint contains only one discrete variable yj . Many problems naturally
occur in this form. Problems that do not can in principle be put into this form
by a change of variables. Thus a constraint gj(x, y1, . . . , ym) ≤ 0 can be written
gj(x, yj) ≤ 0, where yj = (yj

1, . . . , y
j
m) is regarded as a single variable. The

variables yj can now be related by the logical constraints yj = y1 for all j ∈ J .
For instance, the constraints x+y1 +y2 ≥ b and x+y2 +y3 ≥ b can be rewritten
x + y1

1 + y1
2 ≥ b and x + y2

2 + y2
3 ≥ b by adding the constraint y1

2 = y2
2 .

2 Disjunctive Formulation

A straightforward but generally impractical way to solve (1) is by a branch-
and-bound method that branches on the yj and solves a continuous relaxation
of the problem at each node of the branching tree. The difficulty is that these
continuous problems are in general nonconvex.
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To obtain convex relaxations, we write (1) as a disjunctive programming prob-
lem by creating a disjunct for each possible value of yj .

min x1

subject to
∨

v∈Yj

[
yj = v

gj(x, v) ≤ 0

]
, j ∈ J

L(y)
x ∈ IRn

(3)

The functions gj(x, v) are convex because the second argument is fixed. They
may also simplify in form. In some cases singularities disappear, as for example
when

gj(x, yj) =
[
x1 − 1/y1

x1 − x2

]
≤

[
0
0

]

can be written simply x1 − x2 ≤ 0 for yj = 0.

3 Disjunctive Programming with Convex Relaxations

A branch-and-bound method can be practical for the disjunctive programming
problem (3) when it is possible to devise a convex relaxation at each node of the
search tree. Two such relaxations, based on big-M and convex hull formulations,
are presented here.

Branch and bound proceeds by branching on the alternatives in the disjunc-
tions of (3). At each node of the search tree, some disjuncts have been selected
by prior branching, and these are imposed as constraints. The disjunctions on
which the algorithm has not yet branched are relaxed. A lower bound is obtained
by solving a convex problem that minimizes x1 subject to the imposed disjuncts
and the relaxed disjunctions. The lower bound is used to prune the search as is
normally done in branch-and-bound search (see [9, 11] for details).

A closely related approach is to apply an MINLP method to a 0-1 model of
the disjunctive model (3), which results from imposing an integrality condition
on either the big-M or the convex hull relaxation of (3).

The big-M relaxation introduces a variable βjv for each v ∈ Yj , where βjv = 1
is interpreted as indicating yj = v. It is assumed that there are bounds xL ≤
x ≤ xU on x. Let L(β) be an inequality encoding of the logical constraints L(y)
[3]. The big-M relaxation of (3) is:

min x1

subject to gj(x, v) ≤ M jv(1 − βjv), all v ∈ Yj , j ∈ J∑

v∈Yj

βjv = 1, βjv ≥ 0, all v ∈ Yj , j ∈ J

L(β), xL ≤ x ≤ xU

0 ≤ βjv ≤ 1, all v ∈ Yj , j ∈ J

(4)
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where M jv is a vector of valid upper bounds on the component functions of
gj(x, v), given that xL ≤ x ≤ xU . This relaxation is clearly convex.

One can solve (3) by using relaxation (4) at each node, where J in (4) corre-
sponds to the set of disjunctions on which the algorithm has not yet branched.
Alternatively, one can apply an MINLP algorithm to the 0-1 model obtained
by replacing βjv ∈ [0, 1] in (4) with βjv ∈ {0, 1}, where J corresponds to the
original set of disjunctions.

The bounds M jv should be the tightest that can be practicably obtained.
One valid bound is

M jv
i = max

xL≤x≤xU

{
gj

i (x, v)
}

(5)

but the tightest bound is

M jv
i = max

v′∈Yj\{v}

{
max

xL≤x≤xU

{
gj

i (x, v) | gj(x, v′) ≤ 0
}}

A second convex relaxation for (3), based on convex hull descriptions of the
disjunctions, was developed by Stubbs and Mehrotra [14] and Grossmann and
Lee [7]. It is generally tighter than the big-M relaxation but requires that we
introduce for each disjunction j a new continuous variable xjv for each v ∈ Yj .

The convex hull relaxation for a disjunction
∨

v∈Yj

gj(x, v) ≤ 0 (6)

can be derived as follows. We assume that x and gj are bounded; that is, x ∈
[xL, xU ], and gj(x) ∈ [−L,L] for x ∈ [xL, xU ]. We wish to characterize all points
x that can be written as a convex combination of points x̂jv that respectively
satisfy the disjuncts of (6). Thus we have

x =
∑

v∈Yj

βjvx̂jv

gj(x̂j , v) ≤ 0, all v ∈ Yj

xL ≤ x̂j ≤ xU

∑

v∈Yj

βjv = 1, βjv ≥ 0, all v ∈ Yj

Using the change of variable xjv = βjvx̂jv, we obtain the relaxation

x =
∑

v∈Yj

xjv

gj

(
xjv

βjv
, v

)
≤ 0, all v ∈ Yj

βjvxL ≤ xjv ≤ βjvxU , all v ∈ Yj∑

v∈Yj

βjv = 1, βjv ≥ 0, all v ∈ Yj

(7)
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The function gj(xjv/βjv, v) is in general nonconvex, but a classical result of
convex analysis (e.g. [8]) implies that one can restore convexity by multiplying
the second constraint of (7) by βjv. A theorem very similar to the following is
proved in [14] (see also [2]).

Theorem 1. Consider the set S consisting of all (x, β) with β ∈ [0, 1] and
x ∈ [βxL, βxU ]. If g(x) is convex and bounded for x ∈ [βxL, βxU ], then

h(x, β) =
{

βg(x/β) if β > 0
0 if β = 0

is convex and bounded on S.

Proof. To show convexity of h(x, β) we arbitrarily choose (x1, β1), (x2, β2) ∈ S.
Supposing first that β1, β2 > 0, we have convexity since

h
(
αx1 + (1 − α)x2, αβ1 + (1 − α)β2

)

= (αβ1 + (1 − α)β2) g

(
αx1 + (1 − α)x2

αβ1 + (1 − α)β2

)

= (αβ1 + (1 − α)β2) g

(
αβ1

αβ1 + (1 − α)β2

x1

β1
+

(1 − α)β1

αβ1 + (1 − α)β2

x2

β2

)

≤ (αβ1 + (1 − α)β2)
[

αβ1

αβ1 + (1 − α)β2
g

(
x1

β1

)
+

(1 − α)β1

αβ1 + (1 − α)β2)
g

(
x2

β2

)]

= αh
(
x1, β1

)
+ (1 − α)h

(
x2, β2

)

for any α ∈ [0, 1], where the inequality is due to the convexity of g(x). If β1 =
β2 = 0, then

h
(
αx1 + (1 − α)x2, αβ1 + (1 − α)β2

)
= h(0, 0) = αh

(
x1, β1

)
+(1−α)h

(
x2, β2

)

since βjx
L ≤ xj ≤ βjx

U implies xj = 0. If β1 = 0 and β2 > 0, we have

h
(
αx1 + (1 − α)x2, αβ1 + (1 − α)β2

)

= h
(
(1 − α)x2, (1 − α)β2

)
= (1 − α)g

(
x2

β2

)

= αh(0, 0) + (1 − α)h
(
x2, β2

)

Finally, h(x, β) = βg(x/β) is bounded because β ∈ [0, 1], x/β ∈ [xL, xU ], and
g(x) is bounded for x ∈ [xL, xU ].
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We now obtain the following convex relaxation for (3):

min x1

subject to x =
∑

v∈Yj

xjv, all j ∈ J

βjvgj

(
xjv

βjv
, v

)
≤ 0, all v ∈ Yj , j ∈ J

βjvxL ≤ xjv ≤ βjvxU , all v ∈ Yj , j ∈ J
∑

v∈Yj

βjv = 1, βjv ≥ 0, all v ∈ Yj , j ∈ J

L(β), x, xjv ∈ IRn, all v ∈ Yj , j ∈ J

(8)

This is not a convex hull relaxation for (3) as a whole, but it provides a convex
hull relaxation of each disjunction of (3).

Since βjv can vanish, it is common in practice to use the constraint

(βjv + ε)gj

(
xjv

βjv + ε
, v

)
≤ 0, all v ∈ Yj , j ∈ J

The introduction of ε preserves convexity. Grossmann and Lee [7] suggest using
ε = 10−4.

4 Logic-Based Outer Approximation

One can use linear rather than convex nonlinear relaxations by modifying the
outer approximation method for MILP [4] to solve disjunctive programming
problems, as shown by Türkay and Grossmann [15]. The drawback is that the
linear relaxations must be updated and solved repeatedly.

Logic-based outer approximation solves a master problem containing first-
order approximations of the disjuncts of (3) to obtain a value ȳ for y. It then
solves the nonlinear but convex subproblem (2) to obtain a corresponding value
for x. The first-order approximations are computed about the values of x ob-
tained in previous iterations. The process continues until optimal value of the
master problem approximates the largest optimal subproblem value found so far.

Let (xk, yk) for k = 1, . . . , K be the solutions obtained by solving the master
problem and subproblem in previous iterations. The master problem in iteration
K + 1 can be written

min x1

subject to
∨

v∈Yj

⎡

⎣
yj = v

gj(xk, v) + ∇gj(xk, v)(x − xk) ≤ 0,
all k ∈ {1, . . . , K} with yk

j = v

⎤

⎦ , all j ∈ J

L(y), x ∈ IRn

(9)
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Since the disjuncts in (9) are linear, the relaxations (4) and (8) are likewise
linear. One can therefore solve (9) by applying a mixed integer programming
method to a 0-1 formulation of (9). Again, either (4) or (8) can serve as a 0-1
formulation if the variables βjv are treated as 0-1 variables. The solution y of
(9) becomes yK+1, and xK+1 is an optimal solution of the subproblem (2) with
ȳ = yK+1.

In practice it is advantageous to obtain a warm start by solving the subprob-
lem for several values of ȳ before solving the first master problem.

5 Logic-Based Benders Decomposition

When a constraint in the disjunctive programming formulation contains many
disjuncts, the number of variables in the relaxations (4) and (8) can become quite
large. This can be avoided by applying logic-based Benders decomposition to (3),
which in effect uses a discrete relaxation of the problem and does not require an
explicit formulation of the disjunctions [9, 12]. However, the convergence rate is
unpredictable.

In logic-based Benders, the master problem consists of Benders cuts that
contain only the discrete variables yj . At any point in the algorithm, the Benders
cuts partially describe the projection of the original problem’s feasible set onto
the y-space.

In iteration K the subproblem is (2) with ȳ set to the solution yK of the
current master problem. Let λKj be the vector of Lagrange multipliers associated
with constraint j in the optimal solution of (2), and let xK

1 be the optimal
value of (2). Since constraints with vanishing Lagrange multipliers are inactive
in the subproblem, we can state the following: whenever ȳj is set to yK

j for all
constraints j with λKj �= 0, the optimal value of the subproblem is stillxK

1 . We
generate a Benders cut that states this fact, and add it to the master problem
for iteration K + 1:

min z

subject to
∧

j

λkj �= 0

(yj = yk
j ) =⇒ (z ≥ xk

1), k = 1, . . . , K

L(y)

(10)

where =⇒ means “implies.” For each k the implication in (10) is the Benders cut
generated in iteration k. The master problem is solved for yK+1, and the process
continues until the optimal value of (10) approximates the best subproblem value
found so far.

The master problem can be solved by finite-domain constraint programming
techniques or by converting it to an integer programming problem for an MILP
solver.

In general, logic-based Benders cuts are obtained by solving the inference
dual of the subproblem. This approach has been successfully applied to plan-
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ning and scheduling problems in which the master problem is solved by integer
programming and the subproblem by constraint programming [9, 10, 13]. There
is little experience to date with continuous nonlinear subproblems, but decom-
position is clearly more effective when most of the Lagrange multipliers vanish,
since this results in stronger Benders cuts. When none of the multipliers vanish,
the method reduces to exhaustive enumeration.

It is useful in practice to enhance the master problem with any known infor-
mation about the yjs, both valid constraints and “don’t be stupid” constraints
that exclude feasible but no optimal solutions. Such constraints can often be
deduced from a practical understanding of the problem domain.

6 Branch and Bound with Convex Quasi-Relaxations

In the methods presented so far, the discrete variables need have no particular
domain. However, in many applications the discrete variables are real-valued, as
for example when they are discretized continuous variables. In such cases it may
be advantageous to have a relaxation in both the x and y variables, so that one
can branch on yj ’s by splitting intervals. The solution of the relaxation would
indicate where to split. Thus for example if yj ∈ [yL

j , yU
j ] and the solution value

of yj in the relaxation lies between discrete values v, v′ ∈ Yj , one would split
the interval into [yL

j , v] and [v′, yU
j ]. The relaxation may therefore accelerate the

search not only by providing bounds, but by providing split points that lead
more quickly to feasible solutions.

This strategy is practical, however, only when a convex relaxation involving
the y variables is available. Such a relaxation normally cannot be obtained by
relaxing yj ’s domain Yj to a continuous interval, since the resulting problem is
in general nonconvex.

Even when a convex relaxation is unavailable, however, it may be possi-
ble to construct a convex quasi-relaxation that is equally useful for obtaining
lower bounds. A quasi-relaxation of a problem min{f(x) | x ∈ S} is a problem
min{f ′(x) | x ∈ S′} with the property that for any x ∈ S, there exists an x′ ∈ S′

for which f(x′) ≤ f(x). It is clear that the optimal value of the quasi-relaxation,
if it exists, provides a valid lower bound on the optimal value of the original
problem.

The following theorem provides conditions under which one may construct
a convex quasi-relaxation for problem (1). Let function g(x, yj) be convex in x
when g(x, v) is convex for any v ∈ Yj . Also let g(x, yj) be semihomogeneous in x if

g(αx, v) ≤ αg(x, v) for all α ∈ [0, 1], x ∈ IRn, v ∈ Yj (a)
g(0, yj) = 0 for all yj ∈ Yj (b)

(11)

Theorem 2. Suppose each gj
i (x, yj) in (1) is convex in x and satisfies at least

one of the following conditions:
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1. gj
i (x, yj) is convex.

2. gj
i (x, yj) is semihomogeneous in x and concave in yj.

Let (i, j) belong to J1 when gj
i satisfies condition 1 and J2 otherwise. Suppose

also that xL ≤ x ≤ xU and yL ≤ y ≤ yU . Then the following is a convex
quasi-relaxation of (1):

minimize x1

subject to gj
i

(
x, αjy

L
j + (1 − αj)yU

j )
) ≤ 0, all (i, j) ∈ J1 (a)

gj
i (x

j1, yL
j ) + gi

j(x
j2, yU

j ) ≤ 0, all (i, j) ∈ J2 (b)
αjx

L ≤ xj1 ≤ αjx
U , all j ∈ J (c)

(1 − αj)xL ≤ xj2 ≤ (1 − αj)xU all j ∈ J (d)
x = xj1 + xj2, all j ∈ J (e)
xj1, xj2 ∈ IRn, αj ∈ [0, 1], all j ∈ J

(12)

Furthermore, if each αj is 0 or 1 in the optimal solution of (12), then (12) has
the same optimal value as (1).

Proof. We first observe that (12) is convex. Constraint (a) is convex because
gj

i (x, yj) is convex for (i, j) ∈ J1, and a convex function composed with an affine
function is convex. Constraint (b) is convex because gj

i (x, yj) is convex when yj

is fixed. The remaining constraints are linear.
To show that (12) is a quasi-relaxation, take any feasible solution (x̄, ȳ) of

(1) and construct a feasible solution for (12) as follows. For each j ∈ J choose
αj ∈ [0, 1] so that ȳj = αjy

L
j + (1 − αj)yU

j . Set xj1 = αj x̄, xj2 = (1 − αj)x̄, and
x = xj1 + xj2. To see that this produces a feasible solution of (12), note first
that constraints (a) and (c)-(e) are satisfied by construction. Constraint (b) is
also satisfied, since for (i, j) ∈ J2 we have

gj
i (x

j1, yL
j ) + gj

i (x
j2, yU

j ) = gj
i

(
αj x̄, yL

j

)
+ gj

i

(
(1 − αj)x̄, yU

j

)

≤ αjg
j
i

(
x̄, yL

j

)
+ (1 − αj)g

j
i

(
x̄, yU

j

) ≤ gj
i

(
x̄, αjy

L
j

)
+ gj

i

(
x̄, (1 − αj)yU

j

)

= gj
i (x̄, ȳj) ≤ 0

where the first inequality is due to the semihomogeneity of gj
i (x, yj) in x, the

second to the concavity of gj
i (x, yj) in yj , and the third to the feasibility of (x̄, ȳj)

in (1). Also the objective function value of (12) is less than or equal to (in fact
equal to) that of (1), since x1 = x̄1. Thus (12) is a convex quasi-relaxation of (1).

Finally, when αj = 1 we have xj1 = x and xj2 = 0, and similarly if αj = 0.
It easy to verify, using the semihomogeneity of gj

i (x, yj) in x, that (12) reduces
to (1) when each αj ∈ {0, 1} and therefore has the same optimal value. This
completes the proof.

Let g(x, yj) be homogeneous in x when g(αx, yj) = αg(x, yj) for all α ≥
0, yj ∈ Yj .
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Corollary 1. Theorem 2 holds in particular when each gj
i (x, yj) is either (a)

convex or (b) homogeneous in x and concave in yj.

If the global optimization problem (1) satisfies the conditions of Theorem 2,
it can be solved by branch and bound as follows. Each node of the search tree is
processed as in the algorithm below, where zU is the value of the best feasible
solution found so far (initially zU = ∞), and [yL

j , yU
j ] is the interval in which yj

is currently constrained to lie (where yL
j , yU

j ∈ Yj). Initially the only unprocessed
node is the root node, which is processed first.

1. Compute an optimal solution x̄, x̄j1, x̄j2, ᾱj (for j ∈ J) of the convex quasi-
relaxation (12) at the current node. Set ȳj = ᾱjy

L
j + (1 − ᾱj)yU

j .
2. If x̄1 ≥ zU , go to an unprocessed node and begin with step 1.
3. If some ᾱj �∈ {0, 1}, let v, v′ be the values in Yj ∩ [yL

j , yU
j ] on either side

of ȳj that are closest to ȳj . (Possibly v or v′ is identical to ȳj .) Branch
on yj by creating an unprocessed node at which yj ∈ [yL

j , v] and a second
unprocessed node at which yj ∈ [v′, yU

j ]. Go to an unprocessed node and
begin with step 1.

4. The solution (x̄, ȳ) is feasible in (1). Set zU = min{x̄1, z
U}. Go to an unpro-

cessed node and start with step 1.
5. The solution (x̄, ȳ) is feasible in (1). Set zU = min{x̄1, z

U}. Go to an unpro-
cessed node and start with step 1.

The algorithm terminates when no unprocessed nodes remain. To ensure termi-
nation, one shouldfixαj at 0 or 1 (either yields the same result)whenever yL

j = yU
j .

7 Truss Structure Design

We conclude with a truss structure design problem and show how to solve it
with disjunctive programming as well as BBCQ. The model presented here is a
simplified version of that described in [1].
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ijθ
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Displacement ix

Fig. 1. Notation for a truss structure design problem
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The notation is illustrated in Fig. 1. A truss structure consists of a number of
bars j joined at nodes, each bar having length hj and a cost of cj per unit volume.
Each node can move in a specified number of directions. Thus if the problem
is solved in three dimensions, there are at most three degrees of freedom at
each node. Each degree of freedom i is associated with a load �i. The decision
variables are the thickness (cross-sectional area) yj of the bars. Other variables
are the elongation sj of bar j, the tension (pulling force) fj on bar j, and the
displacement xi along degree of freedom i. The objective is to minimize the cost
of the bars subject to bounds on elongation and displacement. Stress bounds
also exist and are factored into the elongation bounds. The model is

minimize
∑

j

cjhjyj cost of bars

subject to
Ej

hj
yjsj = fj , all j Hooke’s law

∑

j

fj cos θij = �i, all i equilibrium equations

∑

i

xi cos θij = sj , all j compatibility equations

sL
j ≤ sj ≤ sU

j , all j elongation bounds
xL

j ≤ xj ≤ xU
j , all j displacement bounds

yj ∈ Yj , all j discrete thicknesses

(13)

where Ej in Hooke’s law is the modulus of elasticity for bar j. Since structural
bars are generally available only in certain thicknesses, the variables yj can be
regarded as discrete.

Since the problem becomes convex (in fact, linear) when variables yj are
fixed, it is amenable to the methods described above. We will apply disjunctive
programming and BBCQ.

First we develop the disjunctive programming approach, using convex hull
relaxations. A disjunctive representation of (13) is

minimize
∑

j

zj cost of bars

subject to
∨

v∈Yj

⎡

⎢⎢⎢⎣

yj = v

zj ≥ cjhjv

Ej

hj
vsj = fj

⎤

⎥⎥⎥⎦ , all j cost, Hooke’s law

∑

j

fj cos θij = �i, all i equilibrium equations

∑

i

xi cos θij = sj , all j compatibility equations

sL
j ≤ sj ≤ sU

j , all j elongation bounds
xL

j ≤ xj ≤ xU
j , all j displacement bounds

(14)
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Using convex hull relaxations of the disjunctions, we obtain the following convex
relaxation of (14):

minimize
∑

j

zj

subject to zj =
∑

v∈Yj

zjv, sj =
∑

v∈Yj

sjv, fj =
∑

v∈Yj

fjv, all j

zjk ≥ cjhjvβjv, all v ∈ Yj , all j

Ej

hj
vsjv = fjv, all v ∈ Yj , all j

∑

j

fj cos θij = �i, all i

∑

i

xi cos θij = sj , all j

βjvsL
j ≤ sjv ≤ βjvsU

j , all j

xL
j ≤ xj ≤ xU

j , all j
∑

v∈Yj

βjv = 1, βjv ≥ 0 all v ∈ Yj , all j

(15)

The relaxation can be simplified, in part by summing each instance of Hooke’s
law over all v ∈ Yj .

minimize
∑

j

∑

v∈Yj

cjhjvβjv

subject to
Ej

hj

∑

v∈Yj

vsjv = fj , all j

∑

j

fj cos θij = �i, all i

∑

i

xi cos θij = sj , all j

βjvsL
j ≤ sjv ≤ βjvsU

j , all j

xL
j ≤ xj ≤ xU

j , all j
∑

v∈Yj

βjv = 1, βjv ≥ 0 all v ∈ Yj , all j

(16)

The disjunctive problem (14) can be solved as an MILP by solving (16) with the
integrality condition βjv ∈ {0, 1}. This MINLP model was in fact proposed by
Ghattas, Voudouris and Grossmann [5, 6].

We now develop a BBCQ approach to solving (14). Note first that the model
(13) satisfies the conditions of Theorem 2, since all of the constraints are convex
(in fact, linear) except Hooke’s law, which is convex (in fact, linear) when the
yjs are fixed. In addition, the constraint function in Hooke’s law is homogeneous
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in the continuous variables sj , fj and concave (in fact, linear) in the discrete
variable yj . The convex quasi-relaxation (12) therefore becomes

minimize
∑

j

cjhjyj

subject to
Ej

hj

(
yL

j sj1 + yU
j sj2

)
= fj , all j

∑

j

fj cos θij = �i, all i

∑

i

xi cos θij = sj , all j

αjs
L
j ≤ sj1 ≤ αjs

U
j , all j

(1 − αj)sL
j ≤ sj2 ≤ (1 − αj)sU

j , all j

xL
j ≤ xj ≤ xU

j , all j

xj = xj1 + xj2, all j

yj = αjy
L
j + (1 − αj)yU

j , all j

αj ∈ [0, 1], all j

(17)

                               

 

Fig. 2. A 10-bar cantilever truss, 25-bar electrical transmission tower, and 72-bar

building



Convex Programming Methods for Global Optimization 59

Table 1. Summary of solution times in seconds for MILP and BBCQ applied to truss

structure design problems. When there two “loads” (i.e., two sets of loads applied to

each degree of freedom), the structure is required to withstand each of the two loads,

and a constraint set is written for each one. BBCQ was enhanced with some simple

cutting planes when solving the cantilever and tower problems

Problem Instance MILP BBCQ

10-bar 1 load 1.3 0.3
cantilever 1 load, wider stress bounds 1.6 0.3
truss 1 load, still wider stress bounds 2.6 1.2

1 load, still wider stress bounds 2.6 1.4
2 loads 23.6 5.8
1 load, displacement bounds 1089.4 67.5
2 loads, displacement bounds 13743.9 1654.0

25-bar 2 loads 271.7 225.8
transmission
tower

Building 72 bars, 2 loads 12692.7 207.9
90 bars, 2 loads * 168.9
108 bars, 2 loads * 329.4

*No solution after 20 hours (72,000 seconds).

Bollapragada et al. [1] applied both the MILP and BBQC methods to the
structural design problems illustrated in Fig. 2. Each structural bar had 11
possible thicknesses. Symmetries in the transmission tower and buildings were
exploited to reduce the number of variables. Computational results are summa-
rized in Table 1. MILP was implemented in CPLEX, and BBCQ in C with calls
to the CPLEX linear programming solver. All problems were solved on a Sun
Sparc Ultra work station.

These results suggest that BBCQ can carry a substantial advantage over
a disjunctive approach when the constraint functions satisfy the conditions of
Theorem 2.
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8. J. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algo-
rithms, Vol. 1 (Springer-Verlag, 1993).

9. J. N. Hooker, Logic-Based Methods for Optimization: Combining Optimization and
Constraint Satisfaction, John Wiley & Sons (2000).

10. J. N. Hooker, Logic-based Benders decomposition for planning and scheduling,
manuscript, GSIA, Carnegie Mellon University 2003).

11. J. N. Hooker and M. A. Osorio, Mixed logical/linear programming, Discrete Ap-
plied Mathematics 96-97 (1999) 395–442.

12. J. N. Hooker and G. Ottosson, Logic-based Benders decomposition, Mathematical
Programming 96 (2003) 33–60.

13. Jain, V., and I. E. Grossmann, Algorithms for hybrid MILP/CP models for a class
of optimization problems, INFORMS Jorunal on Computing 13 (2001) 258–276.

14. R. Stubbs and S. Mehrotra, A branch-and-cut method for 0-1 mixed convex pro-
gramming, Mathematical Programming 86 (1999) 515–532.

15. M. Türkay and I. E. Grossmann, Logic-based outer-approximation algorithm for
MINLP optimization of process flowsheets, Computers and Chemical Engineering
19 (1996) S131–S136.



 

C. Jermann et al. (Eds.): COCOS 2003, LNCS 3478, pp. 61 – 70, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Method for Global Optimization of Large Systems of 
Quadratic Constraints 

Nitin Lamba, Mark Dietz, Daniel P. Johnson, and Mark S. Boddy 

Honeywell Laboratories, Adventium Labs 
{nitin.lamba, mark.dietz, daniel.p.johnson}@honeywell.com 

mark.boddy@adventiumlabs.org 

Abstract. In previous work, we have presented a novel global feasibility solver 
for the large system of quadratic constraints that arise as subproblems in the 
solving of hard hybrid problems, such as the scheduling of refineries. In this 
paper we present the Gradient Optimal Constraint Equation Subdivision 
(GOCES) algorithm, which incorporates a standard NLP solver and the global 
feasibility solver to find and establish global optimums for systems of quadratic 
equations, and present benchmarks. 

1   Introduction 

We are conducting an ongoing program of research on modeling and solving complex 
hybrid programming problems (problems involving a mix of discrete and continuous 
variables), with the end objective of implementing improved hybrid control systems 
and finite-capacity schedulers for a wide variety of different application domains. 

In this report we present an algorithm which is guaranteed either to find the global 
optimum or to prove global infeasibility for a quadratic system of continuous 
equations, and show the results of applying the algorithm on standard benchmark 
problems. 

2   Motivation 

Prediction and control of physical systems involving complex interactions between a 
continuous dynamical system and a set of discrete decisions is a common need in a 
wide variety of application domains.  Effective design, simulation and control of  
such hybrid systems requires the ability to represent and manipulate models including 
both discrete and continuous components, with some interaction between those 
components. 

For example, constructing a model of refinery operations suitable for scheduling 
across the whole refinery requires the representation of asynchronous events, time-
varying continuous variables, and mode-dependent constraints. In addition, there are 
important quadratic interrelationships between volume, rate, and time, mass, volume 
and specific gravity, and among tank volumes, blend volumes and blend qualities. 
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This leads to a system containing quadratic constraints with equalities and 
inequalities. 

A refinery planning problem may involve hundreds or thousands of such variables 
and equations. The corresponding scheduling problem may involve thousands or tens 
of thousands of variables and constraints. Only recently has the state of the art (and, 
frankly, the state of the computing hardware) progressed to the point where 
scheduling the whole refinery on the basis of the individual processing activities 
themselves has entered the realm of the possible. 

One requirement for efficient solution of hybrid problems is the ability to 
establish global infeasibility of a related set of continuous equations, which allows 
the algorithms to avoid searching infeasible subsets of the space of possible 
solutions. Current NLP codes are very efficient at finding local optima for large 
systems of equations, but suffer from two critical shortcomings in application to 
non-convex quadratic systems: when they succeed in finding a solution, the solution 
may only be a local optimum; or more critically for our applications, when they fail 
to find a solution the problem may in fact have a solution elsewhere in the  
domain. 

In previous years we have developed a method of establishing global infeasibility 
of large systems of quadratic equations using a combination of enveloping linear 
programs, bounds propagation methods, and subdivision search: the Gradient 
Constraint Equation Subdivision (GCES) algorithm [1]. 

The close correspondence of methods for proving global infeasibility and methods 
for finding global optimums [2] has subsequently motivated us to extend that method 
to finding global optimums as well.  The result of that effort is the subject of this 
paper. 

3   Subdivision Global Optimality Search 

The enhanced version of GCES, called Gradient Optimal Constraint Equation 
Subdivision (GOCES) has been under development for the past year. The GOCES 
solver accepts systems of quadratic equations, quadratic inequalities, and continuous 
variable bounds, and either finds a global optimal solution or establishes global 
infeasibility of the system, within the normal limits of numerical conditioning, time, 
and memory. The underlying problem space is NP-Complete, so in general there will 
be problems for which the algorithm would require exponential time and memory, but 
the method has proven effective for proving feasibility of large systems of equations 
(see [1] for further details). 

3.1   Overview 

The first version of the GCES solver [1] determined global feasibility of a quadratic 
system of equations, which is polynomial-time equivalent to finding global 
optimality. Therefore, a logical next step was to extend the solver to add finding 
global optimality directly to its capabilities. This was achieved in two phases: 
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1. Replacing the SLP feasibility subroutine (LLPSS) by an NLP subroutine capable of 
finding local optimums within each feasible sub-region. 

2. Adding a control structure to the overall subdivision search that is similar in spirit 
to branch-and-bound. 

For the NLP solver used to find a locally optimal solution, we wanted to have some 
flexibility to try different solvers. To this end, we integrated AMPL[3] with the 
GOCES solver, so as to have the flexibility of switching various NLP solvers without 
impacting integration costs due to re-implementing interfaces. 

3.2   Basic Algorithm 

Let mnxf ℜ→ℜ:)(  be a quadratic function of the form 

∑∑ ++=
ij

ijkji
i

ikikk xxBxACxf )(  . (1) 

With an abuse of notation, we shall at times write the function as  
BxxAxCxf ++=)(  . 

We then put upper and lower bounds mm ublb ℜ∈ℜ∈ , on the functions, and lower 

and upper bounds nn vu ℜ∈ℜ∈ , on the variables. (These bounds are allowed to be 
equal to express equalities.) Without any loss in generality, we can also assume that 
the first variable 0x is the objective value. The problem we wish to solve will have the 

form 

iii

kkk

vxui

ubxflbk

x

≤≤∀
≤≤∀

:

)(:

min 0

 . 

(2) 

In the course of solving the problem above, we will be solving a sequence of 
subsidiary problems. These problems will be parameterized by a trial solution x  and 
a set of point bounds vxuvu ≤≤:},{ . 

Given the point bounds, we define the gradient bounds 

uBvBGvBuBF −+−+ +=+= )()(,)()(  (3) 

(where the positive and negative parts are taken element-wise over the quadratic 
tensor) so that whenever vxu ≤≤  we will have GBxF ≤≤ . 

The centered representation of a function relative to a given trial solution x  is 

))(()()( xxxxBxxACxf −−+−+= , (4) 

where xxBxACCxBBAA ++=++= ,*)( . By also defining xuu −= , 

xvv −= , xBFF −= , and xBGG −=  the bounding inequalities will be equivalent 
to the centered inequalities 

.)( GxxBF

vxxu

≤−≤

≤−≤
 

(5) 
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In order to develop our enveloping linear problem, we then bound the quadratic 
equations on both sides by decomposing xx −  into two nonnegative variables 

xxwzwz −=−≥ ,0, , zxxxxw ≤−≤≤−≤− +− )(0)( . 

The GCES infeasibility test uses an enveloping linear program known as the Linear 
Program with Minimal Infeasibility (LPMI), which uses one-sided bounds for upper 
and lower limits on the gradients of the equations within the region. It has the form 
below (for more details, see [1]). 

⎪
⎪
⎪
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⎪
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⎪
⎪
⎪

⎬

⎫
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⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

≥
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−=−

−+−+≥

−+−+≤

≤−≤
+−Σ
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0,

),max(

)(

)(

))((min

:,:),,(

wz

uvwz

wzxx

wGzFxxACub

wFzGxxAClb

vxxu

wzFG

wzxvuxLPMI  

(6) 

The LPMI rigorously establishes the infeasibility of the original nonlinear 
constraints.  

The enhanced version of GCES currently uses AMPL with CONOPT [3] to 
determine local optimality/feasibility. As the ranges of variables are subdivided, we 
have also utilized the continuous constraint propagation methods developed earlier 
(see [1]) to refine the variable bounds. 

The central idea behind the global optimization search is to add an aggressive 
bound on the objective function value whenever a local optimum is obtained. For 
instance, in a minimization problem, if bestZ  is the objective value of the best 

available solution obtained so far, then the objective upper bound upperZ  of all the 

open nodes in the search tree can be updated as: 

),min( optbestupperupper ZZZ ε−=  (7) 

where optε  is the absolute optimization tolerance set for the system. For a 

maximization problem, the lower bound of the nodes is updated. As the search 
proceeds, if all the updated nodes are found to be infeasible using the LPMI, that 
suffices to prove that there is no better solution than the best available so far ( bestZ ).  

The abstract version of the algorithm steps are as follows: 

1. Among the current node candidates, choose the node with initial trial solution 
which has the minimal max infeasibility. If there are no open nodes left in the 
search tree, then success. Return with the best available solution. 

2. Use bound propagation through the constraints to find refined bounds. If the 
resulting bounds are infeasible, declare the node infeasible. 

3. Evaluate LPMI using CPLEX for infeasibility; if so, declare the node infeasible. 
4. Use AMPL/CONOPT to find a feasible solution within the current node. If that 

solution is a local optimum, update the best solution and the objective bounds for 
all the open nodes and re-propagate them. 
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5. Update the trial solution with the solution obtained from CONOPT solver and 
evaluate LPMI again for infeasibility; if so, declare the node infeasible. 

6. If (4) is successful (found a locally optimum solution), split the point optimal node 
into multiple sub-nodes by subdividing the range of the objective variable. Project 
the trial solution into each region, and go to step (1). 

7. If (2), (3), (5) are inconclusive for the node, split the point optimal node into 
multiple sub-nodes by subdividing the range of a chosen variable. Project the trial 
solution into each region, and go to (1). 

In later sections, we detail the strategies to choose a node in step (1) and a variable 
in step (7). 

3.3   Search Strategies 

The solver makes two main decisions on how to subdivide a node: which variable to 
divide and how to divide the range for that variable. In developing the feasibility 
solver GCES we investigated eight strategies for choosing the variable to split, 
reported in [1]. In developing global optimality, we restricted our attention to three 
strategies, covering the range from best worst-case behavior to most adaptive, which 
we have found to be most effective. 

The first strategy, Strategy L, uses the trial solution retrieved from CONOPT and 
chooses the constraint with maximum infeasibility and then chooses the variable with 
the largest bounds.  The second strategy, Strategy B, uses the trial solution retrieved 
from the final LPMI solved by CPLEX to choose the quadratic constraint k  with the 
highest infeasibility.  This strategy chooses a variable ix , in the constraint which 

maximizes )(*)( iikiki uvFG −− .  Then the variable jx  with the largest coefficient 

ijb  in constraint k  is chosen as the final variable to split.  The third strategy, Strategy 

K, uses the trial solution retrieved from the final LPMI solved by CPLEX to choose 
the quadratic constraint k  with the highest infeasibility.  The strategy chooses the 
quadratic variable  ix  that maximizes ii wz + . 

Once a variable has been chosen, its range must be divided in some way.  Tests 
were run using two strategies for range splitting.  Both range splitting strategies used 
Strategy K for variable selection in these test runs. 

The first strategy, R2, divides the variable range into three regions: 

vxx

xxx

xxu

≤≤+
+≤≤−

−≤≤

δ
δδ

δ
 

(8) 

where u  is lower bound, v  is upper bound, x  is the trial solution, and δ is 
computed to give the desired size of the center region. 

If the trial solution is closer than epsilon to the lower bound, then the range is 
divided into two regions, δ+≤≤ xxu  and vxx ≤≤+δ .  Similarly if the trial 
solution is near the upper bound, the regions are δ−≤≤ xxu and vxx ≤≤−δ . 
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The second strategy, R4, divides the variable range into n regions of equal size. It 
also splits the subdivision containing x  into two divisions around x . These divisions 
overlap by ε10  in order to insure round off error does not rule out a solution.  

In our development process, we typically use R4 to test variable choice strategies, 
because the resulting splits are only dependent on the variable bounds, and not on the 
numerical values of the particular local solutions. The resulting search patterns are 
much less sensitive to numerical vagaries of the CPLEX and NLP codes. 

3.4   Benchmarks 

We used a series of polynomial benchmarks taken from Floudas and Pardalos [4].  
The equations were rewritten as linear combinations of quadratic terms by adding 
variables where necessary. Table 1 below summarizes some statistics of the problems. 

Three variable selection strategies were run using the equal split strategy R4, n = 5. 
Table 2 summarizes the results. Strategy L is a simple, but ineffective strategy.  For 
test problem F2.8, a fairly easy problem for the other strategies, an incorrect solution 
was reached due to the extra computation. Strategy B and Strategy K performed 
similarly on most of the problems with an overall all edge to Strategy K. 

Table 3 below summarizes the results with R2, and n = 5 for R4, using variable 
choice strategy K. 

Table 1.  Benchmark Problems 

m = number of equations 
n = number of variables 
nz = non-zero entries in Jacobian 
mq = number of equations with quadratic terms 
nq = number of variables appearing in quadratic terms 

Problem  
Number 

Type m n nz mq nq 

F2.1 Quadratic programming 10 14 30 5 5 
F2.1 Quadratic programming 10 14 30 5 5 
F2.2 Quadratic programming 11 15 34 5 5 
F2.3 Quadratic programming 17 21 57 4 4 
F2.4 Quadratic programming 10 11 44 1 1 
F2.5 Quadratic programming 22 21 136 7 7 
F2.8 Quadratic programming 38 52 149 24 24 
F3.1 Quadratically constrained 15 17 40 5 8 
F3.2 Quadratically constrained 18 17 49 8 5 
F3.3 Quadratically constrained 16 16 43 6 6 
F5.4 Blending/Pooling/Separation 72 78 156 18 18 
F6.2 Pooling/Blending 12 15 37 2 3 
F6.3 Pooling/Blending 12 15 37 2 3 
F6.4 Pooling/Blending 12 15 37 2 3 
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Strategy R2 tends to perform better than R4.  R2 is able to rule out larger regions 
where R4 would divide the region into more parts and then have to rule out each 
individually.   

Table 2.  Number of Nodes Generated For Variable Choice Strategies 

  Number of Nodes Generated 
Test 
Problem 

Problem type Strategy L Strategy B Strategy K 

F2.1 Quadratic programming 232 58 58 
F2.2 Quadratic programming 1 1 1 
F2.3 Quadratic programming 9 9 9 
F2.4 Quadratic programming 121 14 14 
F2.5 Quadratic programming 9 9 9 
F2.8 Quadratic programming 24650* 78 78 
F3.1 Quadratically constrained 63089 7685 3051 
F3.2 Quadratically constrained 9 9 9 
F3.3 Quadratically constrained 133* 60 60 
F5.4 Blending/Pooling/Separation 1084780 24617 22943 
F6.2 Pooling/Blending 2838 444 274 
F6.3 Pooling/Blending 8212 576 620 
F6.4 Pooling/Blending 765 96 137 

* indicates suboptimal or infeasible solution given 

Table 3.  Number of Nodes Generated For Range Splitting Strategies 

  Number of Nodes 
Test Problem Problem type Strategy R2 Strategy R4 
F2.1 Quadratic programming 24 58 
F2.2 Quadratic programming 1 1 
F2.3 Quadratic programming 3 9 
F2.4 Quadratic programming 10 14 
F2.5 Quadratic programming 3 9 
F2.8 Quadratic programming 61 78 
F3.1 Quadratically constrained 790 3051 
F3.2 Quadratically constrained 3 9 
F3.3 Quadratically constrained 16 60 
F5.4 Blending/Pooling/Separation 9270 22943 
F6.2 Pooling/Blending 91 274 
F6.3 Pooling/Blending 158 620 
F6.4 Pooling/Blending 68 137 

3.5   Optimality Tolerance 

GOCES adds an aggressive bound on the objective function value whenever a local 
optimum is obtained. Whenever a local optimum is found, GOCES then imposes a 
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new constraint on the objective value, optlocZZZ ε−≤:min , and seeks to either 

prove that the resulting system is infeasible (e.g. locZ  is the global optimal objective 
value), or finds a objective value better than the old local optimum by at least the 
optimality tolerance. Hence the algorithm returns an objective value finZ  and a 

feasible point finX  at which that objective is achieved, and a guarantee that the true 

global optimal objective is no better than optfinZ ε− . 

However, as the optimality tolerance optε  is reduced, it becomes more difficult to 

prove infeasibility. This effect appears to be due to the clustering problem [5], where 
finer and finer subdivisions are necessary in the vicinity of the current candidate for 
global optimum. Table 4 lists the variation in the total number of nodes with 

optε while solving the test problems. Our testing shows a "critical threshold" effect, 

where the increase in computation time as the tolerance decreases is not particularly 
troublesome, until a threshold is reached, and the time necessary increases past the 
point at which we terminated our runs (several hours of runtime). 

To understand the global optimum tolerance, consider test problem F2.1, which 
had multiple local optima. With optε = 10-1, it found an “optimal” value at -16.5 and 

showed that there was no solution with a value better than -16.5* (1+ optε ) = 18.15. 

The global optimum was at -17.0, for an improvement of 3%. When the optimality 
tolerance was reduced to 10-2, the GOCES found the true global optimum. 

Table 4.  Number of Nodes Generated For Different Optimality Tolerances 

  Number of Nodes 
Test Problem Problem type tol = 

10-5 
tol = 
10-4 

tol = 
10-3 

tol = 
10-2 

tol = 
10-1 

F2.1 Quadratic programming 58 58 58 58 58 
F2.2 Quadratic programming 9 9 9 1 1 
F2.3 Quadratic programming 9 9 9 9 9 
F2.4 Quadratic programming 14 14 14 14 14 
F2.5 Quadratic programming 27 27 27 15 9 
F2.8 Quadratic programming  1347 1002 409 78 
F3.1 Quadratically constrained 17488 16842 12510 7894 3051 
F3.2 Quadratically constrained 51 51 51 39 9 
F3.3 Quadratically constrained 74 74 74 68 60 
F5.4 Blending/Pooling/Separation 21129 25538 21820 22943  
F6.2 Pooling/Blending  339 314 284 274 
F6.3 Pooling/Blending 1051 622 674 601 620 
F6.4 Pooling/Blending  143 143 143 137 

3.6   Other Practical Aspects 

The solver is coded in Java with an interface to the CPLEX linear programming 
library and an interface to AMPL for non-linear local optimizations. It takes as input 
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the expected magnitudes of the variables and objective function, which are used for 
scaling. 

3.7   Benchmark Timing 

As discussed in Section 3.4, we used a series of polynomial benchmarks taken from 
Floudas and Pardalos [4].  At the present time we lack access to timings for other 
comparable algorithms, so we present our timings only. Table 5 below summarizes 
some statistics of the problems for strategy K-R2, tol = 10-4. 

Execution time: Runs were made on a x86 class desktop PC (1.99 GHz Pentium 4, 
512 Mb RAM) running Microsoft Windows XP Professional. 

Local Optima Searched: The number of local (including the global) optima found 
before global optimality was established. 

Nodes Searched: Number of subdomains examined. 
LPMI Problems Executed: Number of enveloping linear programs executed. 
CONOPT Minor Iterations: Number of times CONOPT iterated (e.g. found a new 

search point and updated its gradient estimates). 

Table 5.  Benchmark Results  

 
Test 
Problem 

Execution 
Time 
(ms) 

Local 
Optima 
Searched 

Nodes 
Searched 

LPMI 
Problems 
Executed 

CONOPT 
Minor 
Iterations 

F2.1 3626 2 29 39 91 
F2.2 1012 1 3 3 11 
F2.3 1121 1 3 3 4 
F2.4 1643 1 10 11 21 
F2.5 2915 1 25 29 58 
F2.8 21001 4 201 278 1028 
F3.1 329105 1 4854 5711 8807 
F3.2 4276 1 44 57 63 
F3.3 4997 4 24 36 71 
F5.4 1058133 1 13132 12531 37614 
F6.2 13910 2 160 181 255 
F6.3 13269 2 159 160 281 
F6.4 7871 3 77 73 151 

 
The new version of the solver was also tested on the scheduling problem of 

refinery operations discussed in [1]. The problem consists of 6,771 variables with 
8,647 constraints and equations, with 1,976 of the equations being quadratic, 
reflecting chemical distillation and blending equations (problem 5.4 above is the 
largest benchmark we tested, consisting of 48 constraints, 54 variables, and 18 
quadratic equations). The solver found an optimum of 0.44 and proved that there was 
no solution with value greater than 0.84 but could not improve on that overnight. 
Difficulties identified were the scale of the problem and solution clustering near the 
optimum solution. 
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4   Future Work 

Nonlinear Functions: Given the fact that we have a solver that can work with 
quadratic constraints, the current implementation can handle an arbitrary polynomial 
or rational function through rewriting and the introduction of additional variables.  
The issue is a heuristic one (system performance), not an expressive one. The GOCES 
framework can be extended to include any nonlinear function for which one has 
analytic gradients, and for which one can compute reasonable function and gradient 
bounds given variable bounds. 

Efficiency: While we are constantly improving the performance of the search through 
various pragmatic measures, there is much yet to be done.  In addition to further effort 
in the areas listed here, we intend to investigate the use of more sophisticated scaling 
techniques, and effective utilization of more problem information that is generally 
available in nonlinear solvers. 

Other Application Areas: The current hybrid solver is intended to solve scheduling 
problems. Other potential domains that we wish to investigate include batch 
manufacturing, satellite and spacecraft operations, transportation and logistics 
planning, abstract planning problems, and the control of hybrid systems, and linear 
hybrid automaton (LHA). 

5   Summary 

We have extended our global equation solver to a global optimizer for system of 
quadratic constraints capable of modeling and solving scheduling problems involving 
an entire petroleum refinery, from crude oil deliveries, through several stages of 
processing of intermediate material, to shipments of finished product. This scheduler 
employs the architecture described previously [6] for the coordinated operation of 
discrete and continuous solvers. There is considerable work remaining on all fronts, 
especially improvement in the search algorithm.  
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Abstract. In this paper the problem of finding an affine lower bound
function for a multivariate polynomial is considered. For this task, a num-
ber of methods are presented, all based on the expansion of the given
polynomial into Bernstein polynomials. Error bounds and numerical re-
sults for a series of randomly-generated polynomials are given.
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1 Introduction

Finding a convex lower bound function for a given function is of paramount
importance in global optimization when a branch and bound approach is used.
Of special interest are convex envelopes, i.e., uniformly best underestimating
convex functions, cf. [5], [15], [21].

Because of their simplicity and ease of computation, constant and affine lower
bound functions are especially useful. Constant bound functions are thoroughly
used when interval computation techniques are applied to global optimization, cf.
[10], [13], [20]. However, when using constant bound functions, all information
about the shape of the given function is lost. A compromise between convex
envelopes, which require in the general case much computational effort, and
constant lower bound functions are affine lower bound functions.

Here we concentrate on such bound functions for multivariate polynomials.
These bound functions are constructed from the coefficients of the expansion of
the given polynomial into Bernstein polynomials. Properties of Bernstein poly-
nomials are introduced in Section 2; the reader is also referred to [4], [6], [18], [22].
In Section 3 we present a number of variant methods, together with a suitable
transformation that may be applied to improve the results. Numerical results
for a series of randomly-generated polynomials are given in Section 4, with a
comparison of the error bounds.
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2 Bernstein Polynomials and Notation

We define multiindices i = (i1, . . . , in)T as vectors, where the n components are
nonnegative integers. The vector 0 denotes the multiindex with all components
equal to 0, which should not cause ambiguity. Comparisons are used entrywise.
Also the arithmetic operators on multiindices are defined componentwise such
that i � l := (i1 � l1, . . . , in � ln)T , for � = +,−,×, and / (with l > 0). For
instance, i/l, 0 ≤ i ≤ l, defines the Greville abscissae. For x ∈ Rn its multipowers
are

xi :=
n∏

µ=1

xiµ
µ . (1)

Multipowers of multiindices are not required here; instead we shall write i0, . . . , in

for a sequence of n + 1 multiindices. For the sum we use the notation

l∑

i=0

:=
l1∑

i1=0

. . .

ln∑

in=0

. (2)

A multivariate polynomial p of degree l = (l1, . . . , ln)T can be represented as

p(x) =
l∑

i=0

aix
i with ai ∈ R, 0 ≤ i ≤ l, and al �= 0. (3)

The ith Bernstein polynomial of degree l is

Bi(x) :=
(

l

i

)
xi(1 − x)l−i, (4)

where the generalized binomial coefficient is defined by
(

l
i

)
:=

n∏
µ=1

(
lµ
iµ

)
, and x

is contained in the unit box1 I = [0, 1]n. It is well-known that the Bernstein
polynomials form a basis in the space of multivariate polynomials, and each
polynomial in the form (3) can be represented in its Bernstein form over I

p(x) =
l∑

i=0

biBi(x), (5)

where the Bernstein coefficients bi are given by

bi =
i∑

j=0

(
i
j

)
(

l
j

)aj for 0 ≤ i ≤ l. (6)

1 Without loss of generality we consider in the sequel the unit box since any nonempty
box in Rn can be mapped affinely thereupon. For the respective formulae for general
boxes in the univariate case see [19] and their extensions to the multivariate case,
e.g., Section 7.3.2 in [2].
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A fundamental property for our approach is the convex hull property
{(

x

p(x)

)
: x ∈ I

}
⊆ conv

{(
i/l

bi

)
: 0 ≤ i ≤ l

}
, (7)

where the convex hull is denoted by conv. The points
(
i/l
bi

)
are called control

points of p. The enclosure (7) yields the inequalities

min{bi : 0 ≤ i ≤ l} ≤ p(x) ≤ max{bi : 0 ≤ i ≤ l} (8)

for all x ∈ I. For ease of presentation we shall sometimes simply use bi to denote
the control point associated with the Bernstein coefficient bi, where the context
should make this unambiguous. Exponentiation on control points, Bernstein co-
efficients, or vectors is also not required here; therefore b0, . . . , bn is a sequence
of n + 1 control points or Bernstein coefficients (with bj = bij ), and u1, . . . , un

is a sequence of n vectors.

3 Affine Lower Bound Functions

In this section we explore a number of different methods for the computation of
affine lower bound functions for polynomials. In each case it is assumed that we
have a multivariate polynomial p given by (3) and that its Bernstein coefficients
bi, 0 ≤ i ≤ l, have been computed.

Theorems 1 and 2 below are independent of any particular method. They
characterize an affine lower bound function as the solution of a linear program-
ming problem. There is a degree of freedom in that the statements contain an
index set Ĵ which corresponds to a facet of the convex hull of the control points
of p. According to the choice of Ĵ and the way in which the linear programming
problem is posed (either all inequalities in (12) are considered or only a few),
numerous related methods can be designed. We discuss a few in the sequel.

3.1 Method 1

Constant bound functions can be computed easily and cheaply from the Bern-
stein coefficients: The left-hand side of (8) implies that the constant function
provided by the minimum Bernstein coefficient

c0(x) = bi0 = min{bi : 0 ≤ i ≤ l} (9)

is an affine lower bound function for the polynomial p given by (3) over the unit
box I. However, due to the lack of shape information, these bound functions
usually perform relatively poorly.

3.2 Method 2

This method was presented in [7] and relies on the following construction: Choose
a control point bi0 with minimum Bernstein coefficient, cf. (9). Let Ĵ be a set of
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at least n multiindices such that the slopes between bi0 and the control points
with Greville abscissae associated with Ĵ are smaller than or equal to the slopes
between bi0 and the remaining control points. Then the desired affine lower
bound function is provided as the solution of the linear programming problem to
maximize the affine function at the Greville abscissae associated with Ĵ under
the constraints that this affine function remains below all control points and
passes through bi0 . More precisely, the following theorem holds true.

Theorem 1. Let {bi}l
i=0 denote the Bernstein coefficients of the polynomial p

given by (3). Choose i0 as in (9) and let Ĵ ⊆ {ĵ : 0 ≤ ĵ ≤ l, ĵ �=i0} be a set of
at least n multiindices such that

bĵ − bi0

‖ĵ/l − i0/l‖ � bi − bi0

‖i/l − i0/l‖ for each ĵ ∈ Ĵ , 0 ≤ i ≤ l, i �=i0, i �∈̂J. (10)

Here, ‖ · ‖ denotes some vector norm. Then the linear programming problem

min (
∑

ĵ∈Ĵ

(ĵ/l − i0/l))T ·s subject to (11)

(i/l − i0/l)T ·s ≥ bi0 − bi for 0 ≤ i ≤ l, i �=i0 (12)

has the following properties:

1. It has an optimal solution ŝ.
2. The affine function

c(x) := −ŝT · x + (ŝT · (i0/l) + bi0) (13)

is a lower bound function for p on I.

In the univariate case, by definition (10), Ĵ can be chosen such that it consists
of exactly one element ĵ which may not be uniquely defined. The slope of the
affine lower bound function c is equal to the smallest possible slope between
the control points. Moreover, the optimal solution of the linear programming
problem (11) and (12) can be given explicitly in the univariate case.

Theorem 2. Suppose that all assumptions of Theorem 1 are satisfied, where
n = 1 and where ‖ · ‖ denotes the absolute value. Choose Ĵ = {ĵ}, where ĵ
satisfies

bĵ − bi0

|ĵ/l − i0/l| = min
{

bi − bi0

|i/l − i0/l| : 0 ≤ i ≤ l, i �=i0
}

.

There then exists an optimal solution ŝof the linear programming problem(11),(12)
which satisfies

ŝ = − bĵ − bi0

ĵ/l − i0/l
. (14)
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Fig. 1. The curve of a polynomial of fifth degree (bold), the convex hull (shaded) of

its control points (marked by squares), and an affine lower bound function constructed

as in Theorem 2

Figure 1 illustrates the construction of such an affine lower bound function.
In the univariate case the computational work for constructing such bound

functions is negligible, but in the multivariate case a linear programming prob-
lem has to be solved. In the branch and bound framework it may happen that
one has to solve subproblems on numerous subboxes of the starting region, so
that for higher dimensions solving the linear programming problems becomes a
computational burden.

3.3 Method 3

Overview. This method was introduced in [9]. It only requires the solution
of a system of linear equations together with a sequence of back substitutions.
The following construction aims to find hyperplanes passing through the control
point b0 (associated with the minimum Bernstein coefficient bi0 , cf. (9)) which
approximate from below the lower part of the convex hull of the control points
increasingly well. In addition to b0, we designate n additional control points
b1, . . . , bn. Starting with c0, cf. (9), we construct from these control points a
sequence of affine lower bound functions c1, . . . , cn. We end up with cn, a hy-
perplane which passes through a lower facet of the convex hull spanned by the
control points b0, . . . , bn. In the course of this construction, we generate a set of
linearly independent vectors {u1, . . . , un} and we compute slopes from b0 to bj

in direction uj . Also, wj denotes the vector connecting b0 and bj .
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Algorithm - First Iteration:

Let u1 =

⎛

⎜⎜⎜⎝

1
0
...
0

⎞

⎟⎟⎟⎠ .

Compute slopes g1
i from the control point bi to b0 in direction u1:

g1
i =

bi − b0

i1
l1

− i01
l1

for all i with i1 �=i01.

Let i1 be a multiindex with smallest absolute value of associated slope g1
i . Des-

ignate the control point b1 =
(

i1

l , bi1

)T

, the slope α1 = g1
i1 , and the vector

w1 = i1−i0

l . Define the lower bound function

c1(x) = b0 + α1u
1 ·

(
x − i0

l

)
.

Algorithm - jth Iteration, j = 2, . . . , n:

Let ũj =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βj
1
...

βj
j−1

1
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

such that ũj · wk = 0, k = 1, . . . , j − 1. (15)

Normalize this vector thusly:

uj =
ũj

‖ũj‖ . (16)

Compute slopes gj
i from the control point bi to b0 in direction uj :

gj
i =

bi − cj−1( i
l )

i−i0

l · uj
for all i, except where

i − i0

l
· uj = 0. (17)

Let ij be a multiindex with smallest absolute value of associated slope gj
i . Des-

ignate the control point bj =
(

ij

l , bij

)T

, the slope αj = gj
ij , and the vector

wj = ij−i0

l . Define the lower bound function

cj(x) = cj−1(x) + αju
j ·

(
x − i0

l

)
. (18)
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Remark: Solving (15) for the coefficients βj
1, . . . , β

j
j−1 requires the solution of a

system of j−1 linear equations in j−1 unknowns. This system has a unique so-
lution due to the linear independence amongst the vectors w1, . . . , wn, as proven
in [9].

For the n iterations of the above algorithm, the solution of such a sequence
of systems of linear equations would normally require 1

6n4 + O(n3) arithmetic
operations. However we can take advantage of the fact that, in the jth iteration,
the vectors w1, . . . , wj−1 are unchanged from the previous iteration. The solu-
tion of these systems can then be formulated as Gaussian elimination applied
rowwise to the single (n − 1) × (n − 1) matrix whose rows consist of the vec-
tors wn−1,1, . . . , wn−1,n−1 and right-hand side −(w1

n, . . . , wn−1
n )T . In addition, a

sequence of back-substitution steps has to be performed. Then altogether only
n3 + O(n2) arithmetic operations are required.

Let

L = n

√√√√
n∏

i=1

(li + 1).

There are then Ln Bernstein coefficients, so that the computation of the slopes
gj

i (17) in all iterations requires at most n2Ln + LnO(n) arithmetic operations.
This new approach therefore requires less computational effort in general than
Method 2, which is based on the solution of a linear programming problem with
upto Ln − 1 constraints. 2

The following results were given in [9]:

Theorem 3. With the notation of the above algorithm, it holds for all j =
0, . . . , n that

cj

(
ik

l

)
= bk, for k = 0, . . . , j.

In particular, we have that

cn

(
ik

l

)
= bk, k = 0, . . . , n, (19)

which means that cn passes through all n + 1 control points b0, . . . , bn. Since cn

is by construction a lower bound function, b0, . . . , bn must therefore span a lower
facet of the convex hull of all control points.

We obtain a pointwise error bound for the underestimating function cn which
also holds true for cn replaced by the affine lower bound function c constructed
by Method 2, cf. [7].

Theorem 4. Let {bi}l
i=0 denote the Bernstein coefficients of the polynomial p

given by (3). Then the affine lower bound function cn satisfies the a posteriori
error bound

0 ≤ p(x) − cn(x) ≤ max
{

bi − cn

(
i

l

)
: 0 ≤ i ≤ l

}
, x ∈ I. (20)

2 In our computations, we have chosen exactly Ln − 1 constraints.
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In the univariate case, this error bound specifies to the following bound which
exhibits quadratic convergence with respect to the width of the intervals, see [7].

Theorem 5. Suppose n = 1 and that the assumptions of Theorem 4 hold, then
the affine lower bound function cn satisfies the error bound (x ∈ I)

0 ≤ p(x) − cn(x) ≤ max

{(
bi − b0

i
l − i0

l

− b1 − b0

i1

l − i0

l

) (
i

l
− i0

l

)
: 0 ≤ i ≤ l, i �=i0

}
.

Theorem 5 also holds true for cn replaced by the affine lower bound function
c of Method 2 and i1 replaced by ĵ, cf. Theorem 2.

It was shown in [7] and [9] that affine polynomials coincide with their affine
lower bound functions constructed therein. This suggests that almost affine poly-
nomials should be approximated rather well by their affine lower bound func-
tions. This is confirmed by our numerical experiences.

In [8] we introduced a lower bound function for univariate polynomials which
is composed of two affine lower bound functions. The extension to the multivari-
ate case is as follows: In each step, compute slopes as before, but select α−

j as
the greatest negative gj

i value, and α+
j as the smallest positive gj

i value. From
each previous lower bound function cj−1, generate two new lower bound func-
tions, using α−

j and α+
j . Instead of a sequence of functions, we now obtain after

n iterations upto 2n lower bound functions due to the binary tree structure.
It is worth noting that in the current version of our algorithm the choice of the

direction vectors uj (16) is rather arbitrary. However our numerical experience
suggests that this may influence the resultant bound function (i.e. which lower
facet of the convex hull of the control points is emulated). A future modification
to the algorithm may therefore use a simple heuristic function to choose these
vectors in an alternative direction such that a more suitable facet of the lower
convex hull is designated. With the orthogonality requirement (15), there are
n − j degrees of freedom in this selection.

3.4 Methods 4 and 5

We also propose two simpler methods for the construction of affine lower bound
functions based on the Bernstein expansion, with the computation of slopes and
differences only, with still lower complexity. Method 4 is based on a choice of
control points corresponding to n+1 smallest Bernstein coefficients and Method
5 is based on a choice of a control point corresponding to the minimum Bernstein
coefficient and n others which connect to it with minimum absolute value of gra-
dient. In both cases, a lower bound function interpolating the designated control
points is computed, requiring the solution of a single system of linear equations.
A degenerate case may arise when this system has no unique solution — with
the terminology of Method 3, the set of vectors {wj} is linearly dependent. Such
cases are tested for and excluded from consideration during the designation of
the control points.

Additionally, both methods (unmodified) are not guaranteed to deliver a valid
lower bound function — exceptionally there may still occur control points below
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it. Therefore an error term (20) is computed. If this is negative, it is necessary to
adjust the bound function by a downward shift: the absolute value of this error
is subtracted from its constant term.

As will become evident from the numerical results in the following section,
both of these methods may perform unexpectedly poorly under certain config-
urations of control points. Two such examples are illustrated in the following
figures, where the small circles are the control points of a bivariate polynomial.
Those control points filled in black are those which are designated, leading to the
construction of a lower bound function (the shaded plane), in the first case after
a necessary downward shift. Although both methods usually deliver a bound
function with correct shape information (i.e. an improvement over Method 1),
this is seen not always to be the case. For this reason, there are no worthwhile
error bounds that can be presented for these two methods.

3.5 An Equilibriation Transformation

A limitation of all the above methods is that the resultant lower bound func-
tion must pass through the minimum control point bi0 (except in cases where a
downward shift is necessary for Methods 4 and 5). Whilst this is often a good
choice, it is not always so. Figure 4 gives a simple example where the optimal
lower bound function does not in fact pass through the minimum control point.
In this case it would seem sensible to utilise the shape information provided by
a broad spread of the control points (global shape information over the box) in
addition to that already given by a small number of specially designated control
points (which may be clustered) as per the above algorithms (local shape infor-
mation near the minimum control point). We can lift the restriction that the
lower bound function must pass through bi0 . Indeed, if there are many Bernstein
coefficients (i.e. for polynomials of high degree) the global shape information
may be at least as important, if not more so, as the local information. This
is especially evident in the cases where Methods 4 and 5 perform poorly (see
Figures 2 and 3).

To this end, we can envisage the determination of the lower bound function
as a three-stage process. Firstly, we apply an affine transformation to the control
points, which we call the equilibriation transformation, derived from the control
points on the edges of the box, and approximating the global shape information.
Secondly, we compute an affine lower bound function c∗ for the transformed
polynomial p∗ (and its control points b∗i ), by using one of Methods 1-5 above.
Lastly, we apply the transformation in reverse to obtain an affine lower bound
function c for the original polynomial.

We define the equilibriation transformation on the control points as follows:

bi �→b∗i := bi −
n∑

j=1

ij
lj

(
b(� l1

2 �,...,lj ,...,� ln
2 �) − b(� l1

2 �,...,0,...,� ln
2 �)

)
, 0 ≤ i ≤ l.

After applying this transformation, the global shape (i.e. the shape over the
whole box) of the polynomial has been approximately flattened, i.e.
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Fig. 2. Method 4 - Example of poor lower bound function

Fig. 3. Method 5 - Example of poor lower bound function

b∗(0,� l2
2 �,...,� ln

2 �) = b∗(l1,� l2
2 �,...,� ln

2 �),

...
b∗(� l1

2 �,...,0,...,� ln
2 �) = b∗(� l1

2 �,...,lj ,...,� ln
2 �),

...
b∗(

� l1
2 �,...,� ln−1

2 �,0
) = b∗(

� l1
2 �,...,� ln−1

2 �,ln
) .

The effect of this transformation is illustrated in Figure 4 with a univariate
polynomial of degree 6, yielding an optimal bound function which does not pass
through the minimum control point.
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Fig. 4. Result of applying the equilibriation transformation; the improved/transformed

bound function is given in bold dashed

3.6 Verification

Due to rounding errors, inaccuracies may be introduced into the calculation
of the Bernstein coefficients and the lower bound functions. Especially it may
happen that the computed lower bound function value is greater than the cor-
responding original function value. This may lead to erroneous results in appli-
cations. Suggestions for the way in which one can obtain functions which are
guaranteed to be lower bound functions also in the presence of rounding errors
are given in [7]. One such approach is to compute an error term (20) followed by
a downward shift, if necessary, as in Methods 4 and 5. For a different approach
see [3], [11], [14].

4 Examples

The above methods for computing lower bound functions, both with and without
the equilibriation transformation, were tested with a number of multivariate
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Table 1. Results for random polynomials

Method 1 (Constant/Affine)

n D k (D + 1)n time (s) δ δE time (s) δ δE

2 2 5 9 0.000040 1.414 0.777
2 6 10 49 0.00013 1.989 1.570
2 10 20 121 0.00039 2.867 2.505
4 2 20 81 0.00037 3.459 2.841
4 4 50 625 0.0024 5.678 5.145
6 2 20 729 0.0011 4.043 3.333
8 2 50 6561 0.0093 6.941 6.505

10 2 50 59049 0.091 7.143 6.583

2 (LP problems) 3 (Linear eqs)

2 2 5 9 0.00020 0.976 0.840 0.000069 0.981 0.866
2 6 10 49 0.0025 1.695 1.536 0.00031 1.677 1.533
2 10 20 121 0.023 2.543 2.383 0.00074 2.511 2.410
4 2 20 81 0.0082 2.847 2.690 0.0012 2.797 2.659
4 4 50 625 2.82 5.056 4.963 0.0093 5.045 4.880
6 2 20 729 4.48 3.403 3.292 0.016 3.353 3.201
8 2 50 6561 greater than 0.24 6.291 6.129

10 2 50 59049 1 minute 3.43 6.503 6.371

4 (min BCs) 5 (min gradients)

2 2 5 9 0.000085 1.147 0.905 0.00011 0.961 0.885
2 6 10 49 0.00031 4.914 3.165 0.00044 1.910 1.514
2 10 20 121 0.00090 11.49 8.175 0.0012 3.014 2.514
4 2 20 81 0.0012 4.797 4.609 0.0015 3.199 2.766
4 4 50 625 0.0088 14.05 14.91 0.011 5.940 5.843
6 2 20 729 0.015 5.921 5.921 0.017 3.687 3.453
8 2 50 6561 0.21 14.33 15.41 0.24 7.360 7.313

10 2 50 59049 2.69 17.11 19.84 3.11 7.680 7.966

polynomials (3) in n variables with degree l = (D, . . . , D)T and k non-zero
terms. The non-zero coefficients were randomly generated with ai ∈ [−1, 1].

Table 1 lists the results for different values of n, D, and k; (D + 1)n is the
number of Bernstein coefficients. In each case 100 random polynomials were
generated and the mean computation time and error are given. The results were
produced with C++ on a 2.4 GHz PC. Method 2 utilizes the linear programming
solver LP_SOLVE [1].

The time required for the computation of the Bernstein coefficients is in-
cluded; this is equal to the time for Method 1 (constant bound functions). An
upper bound on the discrepancy between the polynomial and its lower bound
function over I is computed according to Theorem 4 as

δ = max
i

{
bi − cn

(
i

l

)}
.

The error bounds for the bound functions resulting from application of the equi-
libriation transformation are labelled δE and are computed identically. Note that
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after application of the equilibriation transformation, Method 1 delivers an affine
function instead of a constant.

The mean δ values for Methods 2 and 3 are very similar, with Method 3
exhibiting a slight improvement in all but the first case. The poor mean δ values
for Methods 4 and 5 are greatly skewed by a small minority of cases where
the shape information is incorrect. These methods are unreliable. However for
any given individual polynomial, any one method may deliver a significantly
superior bound function to the other, with the results only frequently identical
in the n = 2 case. The equilibriation transformation is effective in reducing
the mean error bound in almost all cases, i.e. typically δ > δE . For n ≤ 4
the computation time for Methods 3-5 is of the same order of magnitude as
for Method 1 (constant bound function), and is faster by orders of magnitude
than Method 2. Under that method, one can typically compute bound functions
in less than a second only for n ≤ 4; for Methods 3-5 this can be done for
n ≤ 8.

5 Conclusions

We have presented several methods for the computation of affine lower bound
functions for multivariate polynomials based on Bernstein expansion. A simple
constant bound function based on the minimum Bernstein coefficient (Method 1)
can be computed cheaply, but performs poorly. It is possible to improve this by
exploiting the valuable shape information inherent in the Bernstein coefficients.
With Methods 4 and 5, we have demonstrated that a naive attempt to derive
such shape information based on simple differences and gradients is unreliable.
Methods 2 and 3 do this reliably and in general deliver a better quality bound
function. The principal difference between these two lies in the computational
complexity; the general construction of Method 2 requires the solution of a linear
programming problem, whereas affine bound functions according to Method 3
can be computed much more cheaply, and may therefore be of greater practical
use. Indeed one may compute up to 2n of these bound functions for a single given
polynomial which jointly bound the convex hull of the control points much more
closely than a single bound function from Method 2, in less time. Method 3 is
therefore our current method of choice.

Methods 1-5 are limited by focussing on the shape information provided by
a small number of designated control points, especially the minimum. Their
performance can therefore be improved by incorporating the wider shape infor-
mation provided by a broad spread of the control points. Our currently best
overall results are thus obtained by combining Method 3 with the equilibriation
transformation given in Section 3.5.

A fundamental limitation of our approach remains the exponential growth
of the number of underlying Bernstein coefficients with respect to the number
of variables. This means that many-variate (12 variables or more) polynomials
cannot currently be handled in reasonable time. Future work will seek to address
this limitation.
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We have implemented the use of affine lower bound functions in a branch
and bound framework for solving constrained global optimization problems in-
volving a polynomial objective function and polynomial constraint functions.
Relaxations based on these bound functions lead to linear programs. In practi-
cal problems, quite often only a few variables appear in the objective function
and in each constraint. In this case, Method 3 may be highly suitable. If vali-
dated results are required, the solution of the linear program must be verified.
This can be accomplished by using the results of [12], [16], [17].
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Abstract. This paper considers the use of cooperative solvers for solv-
ing global optimization problems. We present the cooperative solver Sib-
calc and show how it can be used in solution of different optimization
problems. Several examples of applying the Sibcalc solver for solving op-
timization problems are given.

Keywords: cooperative solvers, interval mathematics, interval constraint
programming, global optimizations, distributive computations.

1 Introduction

Global optimization problems arise in a huge number of different applications,
so the methods of effective solution of these problems are out of question. At
present, there are effective algorithms for solving linear optimization problems
of large dimensions, integer and quadratic optimizations, and some classes of
nonlinear problems. However, solution of general nonlinear problems of large
dimensions including constrained problems and mixed problems still remains
a very difficult task. Therefore, the development of new approaches to solving
such problems is very important and a lot of efforts are applied in this direction.
Recently, new approaches based on combination of classical optimization algo-
rithms and methods of interval mathematics and constraint programming were
successfully applied to real nonlinear optimization problems. Two last classes
of these methods use splitting of the search space into subspaces with further
processing the resulting subspaces and pruning the subspaces without solutions.
The strategies of splitting and processing determine the overall efficiency of the
algorithms. It is clear that one can use parallel or distributive computations to
speed up these processes. In this paper we suggest a cooperative solving ap-
proach that allows us to organize different computational schemes flexibly (in
particular, different parallel schemes) and consider possible ways of using the
approach.

One of the approaches to organize such computations is cooperative solving
of problems by different methods and solvers. Cooperative interaction is a pro-
cess of mutual solution of different parts (intersecting in general case) of the
initial problem by different methods where each method provides the results

C. Jermann et al. (Eds.): COCOS 2003, LNCS 3478, pp. 86–100, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Using a Cooperative Solving Approach to Global Optimization Problems 87

of its calculation to other methods. There are several approaches to solver co-
operation and some of them are in the field of constraint programming. The
following works that offer languages and environments for cooperative problem
solving can be considered as the most relevant for our purposes: [5], [8], [13], [14]
and [21].

The paper is organized as follows. Section 2 gives a brief comparison of our
approach with other works, considers our technology for constructing coopera-
tive solvers and the cooperative solver Sibcalc [10], the kernel of our approach. In
section 3 we describe how the solver can be applied to solve optimization prob-
lems. In section 4 some numerical experiments are presented and future works
are discussed in Conclusion.

2 SibCalc – An Environment for Building Cooperative
Solvers

At early 90th in Novosibirsk on the basis of the interval constraint propagation
and interval mathematics methods the UniCalc solver [2] has been developed. It
was an integrated environment with an embedded set of methods that allowed us
to solve the problems of a wide spectrum, but the solver itself was not a system
opened for new methods and for organization of their cooperative interaction.
But practical usage of UniCalc gave us an experience in application of such
solvers. As a result a general idea of how a new solver, of a similar purpose but
with an extended set of functionalities, should be developed. Based on this idea
the SibCalc solver has been developed. The solver has a wide set of embedded
methods and an architecture opened for new methods that allows us to use
different sets of methods in problem solving. On the base of SibCalc we started
the works on investigation of how to organize the cooperative problem solution
and how to build an environment for specification of the cooperation means and
organization of the cooperative computations. As a result, we have proposed
the GMACS architecture [17] for cooperative solvers and further, on its basis,
formulated an approach presented in this paper.

From all above mentioned, our main goal in the development of the ways to
cooperative problem solving was organization of joint work of the existing meth-
ods, as well as easy connection of new ones to our scheme. In our approach, a
cooperative solving does not necessarily mean a simultaneous running of meth-
ods, it is also allowed to run them sequentially. For example, from the source
model we may first choose a linear subsystem to be solved by the interval mathe-
matics methods, and the intervals obtained for variable values are used in solving
the remaining nonlinear subsystem. Note that in our approach each of methods
can use its own internal parallelization.

When comparing our approach with those mentioned above, we can say that
the closest works are the environments Mosel [5] and DICE [21]. Similarities to
Mosel are in the possibility to use the available methods and solvers, as well
as to create new algorithms of computations in the interaction language and
to place them in the library. But Mosel is inferior to our approach, since it is
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oriented only to optimization problems and has no means for specification of
parallel and distributed computations, which is a highly essential feature of our
approach.

A model of cooperative computations IWIM [1], on which DICE is based, is
very close to our model in ideology. Both define the notions of channels, ports,
processes (in our model, a process is a method or a solver) and anonymous
messages and provide the possibility to define various kinds of cooperative in-
teraction (asynchronous, with synchronization, etc.). At the same time, DICE,
like above mentioned projects, is oriented to organization of cooperative inter-
action between methods on the basis of constraint programming, whereas in our
approach we consider interaction of different methods and solvers, classical or
based on the interval mathematics, constraint propagation, symbolic transfor-
mations, etc. It is clear that some approaches from [8], [13], [14], [21] can also
be implemented in our model, which can result in construction of a hierarchical
cooperative model. At the same time, the approach of [8] in our environment is
completely identical to the previous one, since all solvers considered in the paper
are represented by one solver in our implementation.

We have developed an environment for creation of specialized cooperative
solvers for different classes of problems. The environment contains a modelling
language to formulate problems, means of description of architectures of coop-
erative solvers (which include an interaction language to describe scenarios of
computations), means of method communication, a calculation kernel, compo-
nents of graphical user interfaces, etc.

Here we describe only the parts of the environment related to the topic of
our paper.

2.1 SibCalc Model of Cooperative Solving

The basic concepts of our model are methods, ports, channels and calculation
schemes.

A method in our model can be treated like a process in the IWIM model.
There are one selected method that is the manager of computations and several
worker methods. Worker methods can communicate and it is the responsibility
of the manager method to coordinate these communications. Communications
between worker methods are anonymous, that is a method does not know who
it communicates with.

Methods receive and send information from or to other methods through
their input and output ports. Each method can have several input and output
ports that are used to exchange information in one direction. Ports can admit
any types of information. To interconnect the ports of methods, channels are
used. A channel connects an input port of one method with an output port of
another method. A channel may implement different types of data storage and
data transfer - a queue, a stack, a buffer, etc. Channels can also encapsulate
some network transmission protocol that automatically allows transfer of a co-
operative solver to a distributed architecture. The presence of channels allows
methods to receive and send both problem data and control commands. It is
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known that using any of the existing software for methods communication over
channels is very costly and can diminish all advantages of such computations.
To avoid this problem, we have implemented our own communication protocols
that significantly speeded up the process of data transferring over channels.

A cooperative interaction between methods is described by a calculation
scheme - a digraph whose nodes are methods and arcs are the data flows. A
calculation scheme completely defines the process of problem solving. It contains
the information about the set of applied methods, the order of their launching,
ways and directions of the data flows. In essence, a calculation scheme describes
where the input information is got, the way of its transformation and what is to
be received as the output. The description of a calculation scheme defines the
type of cooperative interactions between the methods.

2.2 Components of the Environment for Creating Cooperative
Solvers

The architecture of our environment for creating cooperative solvers is presented
in Fig. 1. The main components of the environment are:

– a calculation kernel;
– a module for description of mathematical models;
– a module for construction and execution of cooperative solvers.

Fig. 1. The architecture of the environment

The calculation kernel contains a library of methods and applications used
for problem solving. At present, the calculation kernel of the environment is
represented by the SibCalc library. The SibCalc library of methods includes:

– constraint programming algorithms over finite domains (AC-4, AC-5) [18];
– constraint programming algorithms over continuous domains;
– the Newton interval method;
– methods for solving systems of interval linear equations;
– an interval linear programming method (based on of the interior point method);
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– a large set of methods for search over continuous and finite domains;
– automatic and symbolic differentiation;
– a number of specialized methods for different areas of application.

The module for description of mathematical models gives the possibility to
describe a mathematical model in the form very close to the conventional mathe-
matical notation. For this purpose a special modeling language is provided that has
a wide set of types, control structures and other facilities that allow us to describe
any complex model in the declarative style. The language describes a model but
does not require defining the method(s) of solving as other modelling languages
do (AMPL [6], OPL [20]). With the help of a compiler the declarative description
of the model is transformed to the universal internal representation (UIR) that is
a kind of an attributed tree. This representation is used by all SibCalc methods
as the input and output data. It is possible to store a model in this representation
and to work later with it without repeated compilation of the source model.

The module for construction and execution of cooperative solvers pro-
vides the following facilities:

– A uniform interface which should be implemented for methods taking part in
cooperative interaction. It provides a common mechanism to organize coop-
erative interaction between the methods and to execute them. The methods
implementing this interface constitute the methods library of the environ-
ment.

– A language support of implementation of new methods - both from scratch
and on the basis of the library methods.

– Channels which connect the input and output ports of methods and provide
interactions between then and their control.

– The mechanism that allows us to describe the scheme of methods interaction.
Such a scheme is a description of a cooperative solver and can be considered
as a new method and used alongside with other methods as a component of
another cooperative solver. This mechanism allows creating of hierarchical
cooperative solvers.

– The mechanism that allows us to launch a cooperative solver, to arrange
methods on the nodes of a heterogeneous cluster, and to control the calcula-
tion interactively. This mechanism represents a description of the cooperative
solver behavior.

It should be noted here that we use Python [11] as an interaction language to
describe calculation schemes and new methods as well as a language for imple-
mentation of interaction means and interfaces. The choice of Python is motivated
by its power, multifunctionality and availability on different platforms. Almost
all methods of the kernel library are written in C++ and also can be used on
different platforms.

2.3 Technology of Cooperative Solver Construction

Using the above description of the main components of our environment, we
consider the general scheme of the cooperative solver construction.
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Fig. 2. The process of cooperative solver creating

When a user needs to calculate a mathematical model, he first formulates it
in a high-level specialized modeling language. Then he works out a strategy of
computing this model that comprises the following stages:

– decomposition of the mathematical model into components that can be
solved by separate methods of the library and/or by other applications;

– search for the most efficient computational means that can solve each part
of the problem;

– development of a scheme of cooperative interaction between computational
means (creation of a computational scheme).

After the strategy of solving the problem is chosen, we select the methods in-
tended to be used in cooperative solving of the problem. For each computational
tool which is necessary to solve the problem and not belonging to the current
library of methods, we implement a uniform method interface. A solver is being
constructed on the basis of the chosen methods and the elaborated scheme of
their cooperative interaction via mechanisms provided by the module for con-
struction and execution. The Python language is used to implement this stage.
Fig. 2 shows schematically the process of creating of a cooperative solver from
a set of methods.

The next stage is debugging of the cooperative solver. Here, the strategy
of computation of the mathematical model is improved in order to attain the
maximum efficiency when solving it. After that the solver is alienated from the
environment and is ready for practical use as a standalone tool.

3 Our Approach to Solution of Optimization Problems

There exist different classes of algorithms for solution of global optimization
problems. We divide them into three groups:

– Classical approaches that use common methods [9].
– Methods based on the algorithms of interval mathematics [3],[7].
– Methods that use a combination of interval and constraint programming

methods [4], [19].

The ways to increase efficiency in each of these groups are different. In par-
ticular, for the first group, efficiency of computation can be increased if parallel
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computation is organized on the basis of the algorithm properties (e.g., iterative
projection algorithms) or the problem structure (model decomposition, barrier
methods, etc.).

When optimization problems are solved by the methods of interval mathe-
matics, the main efforts are applied to processing of subdomains of the initial
domain so that either to find the global optimum in a subdomain, or to prune it
as not containing any solution. In fact, this is attained by using various modifi-
cations of the branch-and-bound method. The approaches to efficiency increase
of this method, as well as the interval algorithms used in its modifications, are
studied in many papers which show us that it is possible to achieve a rather high
efficiency of the algorithm as a whole and to obtain a guaranteed estimate for
the global optimum at the same time.

Recently, the algorithms based on constraint programming are more actively
used for solution of global optimization problems. These methods can be applied
to problems over finite domains (integer and combinatorial programming) and
continuous domains, as well. In the latter case, they are combined with the
interval mathematics methods. To increase efficiency of the combined methods,
we can apply their parallelized versions.

The computational kernel of our environment contains a number of efficient
methods for solving nonlinear systems and optimization problems with variables
of different types. In particular, we have implemented classical and interval-
based methods of linear and nonlinear optimization, several modifications of the
branch-and-bound method, and algorithms for solving the integer and mixed op-
timization problems. All these methods can be independently applied to solving
problems of certain classes. But we think that more advantage can be gained
from their joint work with the use of our cooperative model, for example, using
distributed computation when different methods are running on separate com-
puters. Information exchange during the computation essentially accelerates the
process of problem solving. Each method in turn can use its own internal paral-
lelism. It is also possible to arrange a ”sequential” cooperativity, when specialized
methods work one by one and pass their results to each other. We believe that
joint usage of different methods allows us to solve mixed problems efficiently.

4 Numerical Experiments

Below we consider three examples of optimization problem solving by different
cooperative solvers constructed by the technology described in Section 2. The
first example shows the possibility of joint application of interval constraint
propagation and bisection for solving optimization problems. The cooperative
solver in the second example shows sequential cooperative interaction between
solvers from the first example. The third example shows the distributed solution
of an integer optimization problem running on several computers in parallel. It
should be noted that we have just started to study how our approach can be
applied to optimization problem solving, so the examples can be considered too
simple. However, they show that our approach is rather efficient.
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4.1 Example 1. Optimization Problem Solver Constructed on the
Basis of the Interval Method of Constraint Propagation

In this example we apply our original strategy of solving optimization prob-
lems by splitting the function range [16]. The main idea of the algorithm is to
find bounds of the objective function with the help of interval mathematics,
split this interval into two subintervals and assign the left subinterval to the
objective. Then we solve this new problem by an interval constraint propaga-
tion algorithm to check consistency of all constraints for the current domains of
all variables of the problem. If the algorithm reveal inconsistency of the prob-
lem, we assign the right subinterval to the objective and repeat solving. If the
problem is consistent, we usually find narrower domains of the independent vari-
ables and continue the process with these new domains until the width of the
function range is less than the required accuracy. Then we apply a branch-
and-bound algorithm (or bisection of the variable domains) to find the pre-
cise values of the independent variables. If we have got inconsistency for both
subintervals, we backtrack to the subintervals of higher levels and repeat the
process.

This algorithm can be implemented by the solver that is shown in Fig. 3. CP
and BISECT are methods from the SibCalc library. CP implements the method
of interval constraint propagation and BISECT organizes a backtracking search
with repeated splitting over the problem variables.

Fig. 3. An example of Bisect and CP cooperation

In this solver the source model is at the input of the Bisect method that
divides the range of the objective function in two parts and passes them to
two CP methods working in parallel. The results of the CP methods are com-
pared and the model containing an interval with the minimal value of the
objective is chosen. If the width of the interval does not satisfy the speci-
fied accuracy, the domain is again split into two parts until the accuracy is
reached.

The solver constructed by the above computational scheme is saved in the
library of methods as a new CPBisect method which can be further used in
constructing other solvers. The Python script that describes the CPBisect com-
putational scheme is as follows:
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from scf.method import method

from scf.methods.cp import CP

from scf.methods.bisect import Bisect

class CPBisect(method):

def __init__(self, target, acc=1e-6, *args, **kwargs):

method.__init__(self, *args, **kwargs)

self.target = target

self.acc = acc

self.bisect = bisect = Bisect(target, acc=acc, \

name="%s->Bisect" % self.name)

self.cp_1 = cp_1 = CP(name="%s->CP-1" % self.name)

self.cp_2 = cp_2 = CP(name="%s->CP-2" % self.name)

bisect.to_workers.connect(cp_1.input)

bisect.to_workers.connect(cp_2.input)

bisect.from_workers.connect(cp_1.output)

bisect.from_workers.connect(cp_2.output)

bisect.input.connect(self.input)

bisect.output.connect(self.output)

def run(self):

self.bisect.start()

self.cp_1.start()

self.cp_2.start()

while self.works:

time.sleep(0.01)

self.bisect.stop()

self.cp_1.stop()

self.cp_2.stop()

In the first example we need to find the global optimum of a real function
whose parameters are bound by a set of additional constraints given by equali-
ties and inequalities. The problem was suggested by Janos Pinter [15] as a test
for SibCalc. The problem description below is in the SibCalc modelling lan-
guage.

real x1, x2, x3, x4, goal;

/* minimize goal */

goal = x1^2 + 2.*x2^2 + 3.*x3^2 + 4.*x4^2;

/* Constrained to: */

x1^2 + 3.*x2^2 - 4.*x3*x4 - 1. = 0.;

x4 = max(x4, 1.e-4);

sqrt(5.*abs(x1/x4)) + sin(x2) - 1. = 0.;
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(x1 - x2 - x3 + x4)^2 - 1.=0;

x2*x3 + (x1 - sin(x4))^2 - 3.=0;

-5 <= x1; x1 <= 3;

-3 <= x2; x2 <= 3;

-5 <= x3; x3 <= 4;

-6 <= x4; x4 <= 2;

To run the CPBisect method for this model that is in file example1.slv, the
following Python script can be used:

import time

from pysolver.model import model

from scf.methods import CPBisect

model = model("example1.slv")

cp_bisect = CPBisect(target="goal", acc=1e-5)

beg = time.time()

cp_bisect.input(model)

cp_bisect.run()

print "Result:\n", cp_bisect.output()

print "Time:", time.time() - beg

Applying the CPBisect method with accuracy 10−4, it takes 224.102 seconds
on the Athlon-1700Mhz processor to find the following solution:

x1 = [-0.8526256398303158, -0.8525175683959241];

x2 = [-0.8883181498321493, -0.8880895602332961];

x3 = [ 0.3871006162671068, 0.387350031063668];

x4 = [ 1.351541041416323, 1.351661572804863];

goal=[10.06104506101511, 10.0626879996752];

However, solving this problem with accuracy 10−6 requires 28062.6 seconds
that is unacceptable for real applications. The next example shows how it is
possible to reduce the calculation time and get results with a higher accuracy.

4.2 Example 2. A Solver That Implements the Sequential
Cooperativity with Varying Accuracy of Computations

The goal of this example is to show how the sequential cooperativity can help to
speed up the calculations. Here, we search for the minimum of the function goal
from Example 1 with the accuracy 10−10. To reduce the number of splittings,
we will increase the accuracy step-by-step. Each next step will take the reduced
domain from the previous step and bisect it with a higher accuracy. As a result,
such a solver can be described by the computational scheme from Fig. 4.

Note that in this example we build a cooperative solver on the basis of the
CPBisect solver from Example 1. The newly built solver also allows its further
reusage as a new method. The computational scheme from Fig. 4 corresponds
to the following method described in the internal language:
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Fig. 4. An example of a sequential cooperation

from scf.methods import method, CPBisect

class AccuracyChain(method):

def __init__(self, target, acc=1e-5, *args, **kwargs):

method.__init__(self, *args, **kwargs)

self.target = target

self.accuracy = acc

self.direction = dir

self.solvers = []

accuracy = 0.999999999999

channel = self.input

while accuracy > self.accuracy * 0.1:

bisect = CPBisect(name="CPBisect<%f>" % accuracy, \

target=self.target, acc=accuracy)

channel.connect(bisect.input)

channel = bisect.output

self.solvers.append(bisect)

accuracy *= 0.1

channel.connect(self.output)

def run(self):

for s in self.solvers:

s.start()

while not self.output.has_data():

time.sleep(0.1)

for s in self.solvers:

s.stop()

self.works = 0

This description shows how to build a solver which allows its further reusage.
Creation of a solver copy, its initialization, launch and output of a result should
be made as follows:

import time

from pysolver.model import model

from scf.methods import AccuracyChain
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model = model("example1.slv")

acc_chain = AccuracyChain(target="goal", acc=1e-10)

beg = time.time()

acc_chain.input(model)

acc_chain.run()

print "Time:", time.time() - beg

print "Result:\n", acc_chain.output()

The efficiency of this approach is proved by comparison of the calculation
times with Example 1. The running time of computations with the gradually
increasing accuracy using the solver above is only 1.5 seconds. The results are
as follows:

x1 = [-0.8525645916123212, -0.852564591516835];

x2 = [-0.8881772432353092, -0.8881772430316305];

x3 = [ 0.3872150020694321, 0.3872150022375183];

x4 = [ 1.351602350526265, 1.351602350686664];

goal=[10.06170604312326, 10.06170604446985];

4.3 Example 3. A Solver That Implements the Distributed
Asynchronous Interaction Between Several Methods
(Distributed Branch-and-Bound)

Let us consider an example of a cooperative solver which implements the dis-
tributive branch-and-bound method DBB. Taking into account the fact that this
is a search method, we can substantially accelerate the process of solving large
optimization problems by making computations distributed. The computational
scheme of the cooperative solver that implements the distributed branch-and-
bound method is represented in fig. 5.

The computations involve many copies of the branch-and-bound method con-
trolled by one distinguished method. In the search within its domain, this method
periodically asks the system if there is a free computational station. If so, it cre-
ates a new copy of the DBB method and passes its current search domain as
the input data of this copy. One of the possibilities provided by our environment
is the possibility to dynamically scale the computational cluster. Thus, if we
are in lack of computational capacity of a cluster, we can supply it with new
computational stations without a pause in the process of solution.

Fig. 5. The distributed branch-and-bound method
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It should be stressed that the main feature of the cooperative solver is the
possibility to dynamically change its configuration in the process of solving a
problem. In addition, this example shows the possibility of the distributed shared
data processing. This mechanism is implemented with a channel record writing
to which is synchronized (the data output consistency model).

The solver here presented has been applied to the traveling salesman problem
for various dimensions on the clusters of different computational capacity. Below
we give the results of several experiments on Ultra-Sparc1 (450 Mhz).

Number of computers
Dimension 1 2 3

12 17.93 10.62 6.46
15 77.94 42.04 28.12
20 1403.79 684.73 497.23

5 Conclusion and Future Work

This paper describes the use of the cooperative approach to solution of opti-
mization problems. The architecture for cooperative solver construction here
proposed differs from the common ones. In particular, we do not restrict the
spectrum of methods that can be used for solver constructing and provide a
user with a possibility to implement any computational scheme. There are syn-
chronization channels and channels for transmission of the control signals, which
allows us to implement mixed asynchronous-synchronous schemes. The poten-
tialities for constructing the distributed solvers based on this architecture allow
one to use powerful computational capacity of the cluster systems, as well as
local networks. Summing up, we can state that the key points of our approach
are the ability to organize different computational schemes and flexible means
for organizing these schemes.

As it was mentioned above, we have employed Python [11] as an interactive
language. This language makes it easy to embed new computational libraries into
the system when reusing existing components. Python have also been used in
implementation of our own data exchange protocols and this made it possible to
significantly increase efficiency of distributed computations. When we embedded
SibCalc as the computational kernel of the environment, we have implemented
the Python interface for the whole library of the solver. The environment can
be extended with other applications in a similar way.

To increase efficiency and to build practical applications, it is necessary to
conduct further investigations, experiments and projects. This relates to supple-
ment of the library with new optimization methods and parallelization of the
existing methods of the library, as well as to creation of computational schemes
that efficiently use these methods. At present, the library of methods comprises
only the methods that were developed for the computational kernel of the Sib-
Calc solver but there are no methods implemented as computational schemes
for cooperative problem solving.
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On this basis, our plans for future consist of the following tasks:

– Extension of the set of methods used in solution of optimization problems.
– Creation of specialized methods for solution of global optimization problems

and computational schemes based on these methods.
– Development of cooperative parallel solvers for optimization problems.
– Development of specialized solvers for mixed optimization problems.
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Abstract. A global optimization approach for convex multiplicative
problems based on the generalized Benders decomposition is proposed.
A suitable representation of the multiplicative problem in the outcome
space reduces its global solution to the solution of a sequence of quasi-
concave minimizations over polytopes. Some similarities between convex
multiplicative and convex multiobjective programming become evident
through the methodology proposed. The algorithm is easily implemented;
its performance is illustrated by a test problem.
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1 Introduction

This paper is concerned with convex multiplicative problems, a class of mini-
mization problems involving a product of convex functions in its objective or
in its constraints. Applications of multiplicative programming are found in ar-
eas such as microeconomics and geometric design [1]. An important source of
multiplicative problems are certain convex multiobjective problems in which the
product of the individual objectives plays the role of a surrogate objective func-
tion. A usual strategy adopted by algorithms for convex multiplicative problems
is to project this (generally nonconvex) problem onto the m-dimensional real
space, where m is the number of convex functions, so as to coordinate its global
solution from the outcome space [1], [2] [3].

Projection and decomposition are well-established strategies in the mathe-
matical programming literature [4] and their principles have been progressively
extended to global nonconvex optimization problems [5], [6]. The algorithm we
propose for the special class of convex multiplicative problems is inspired in a
traditional projection-decomposition technique based on convex duality theory,
known as generalized Benders decomposition [7]. The distinguishing feature of
our algorithm is to handle the individual convex function values as complicating
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variables (in the terminology of [7]), in order to obtain an outer approxima-
tion of the problem in the outcome space. The solution of this relaxed problem,
based on an adequate vertex enumeration procedure, is then sent to a min-max
subproblem, which tests it with respect to its ε-feasibility. If not ε-feasible, the
solution leads to an improved outer approximation of the original problem, whose
ε-optimum is eventually obtained by the algorithm after finitely many iterations.

The approach adopted in this paper naturally exposes similarities between
convex multiplicative and convex multiobjective programming. The implemen-
tation of the resulting algorithm is simple and preliminary experience with test
problems has shown that its convergence to the ε-optimum is actually attained
in a relatively small number of iterations.

The paper is organized as follows. In Section 2 we formulate the convex
multiplicative problem and analyse its connections with convex multiobjective
programming. In Section 3 a decomposition approach for convex multiplicative
programming based on duality theory is proposed. Implementation and conver-
gence issues are also discussed. A numerical example is discussed in Section 4.
Conclusions are presented in Section 5.

2 A Multiobjective View of Multiplicative Problems

Multiobjective programming concepts and results [8] have implicitly provided
a basis for the development of some algorithms for multiplicative programming
problems [1], [2], [3]. An explicit relationship between these two fields of the
mathematical programming based on the concept of efficient solution is presented
in this section.

Consider the convex multiplicative problem

(PM )

∣
∣
∣
∣
∣
∣
∣
∣
∣

minimize F (f(x)) =
m∏

i=1

fi(x)

subject to gi(x) ≤ 0, 1, 2, . . . , p,

where fi : �n → �, i = 1, 2, . . . ,m (m ≥ 2) and gj : �n → �, j = 1, 2, . . . , p,
are continuous convex functions. As usual, we assume that

Ω := {x ∈ �n : gj(x) ≤ 0, j = 1, 2, . . . , p}

is a nonempty, compact (convex) set, and that each fi is positive over Ω.
We associate to (PM ) the problem of minimizing the vector-valued objective
f := (f1, f2, . . . , fm) over Ω, with F : �m → � playing the role of a special disu-
tility function [8] that aggregates the individual objectives f1,f2,. . . ,fm. Under
these assumptions, F (f(x)) is generally nonconvex over Ω but quasiconcave over
{f(x) : x ∈ Ω} [9].

Multiobjective minimization problems are comprehensively treated in [8], for
example. A solution x∗ ∈ Ω is said to be an efficient solution of the multiobjective
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(multiplicative) problem (PM ) if there exists no other x ∈ Ω such that (in the
componentwise sense) f(x) ≤ f(x∗) and f(x) �=f(x∗). We denote the set of all
efficient solutions as effi(Ω). Given that

∂F (f(x))
∂fi(x)

=
m∏

j�=i
fj(x) > 0

for all x ∈ Ω, it follows that F (f(x)) is increasing with respect to each fi(x),
thus assuring the validity of a fundamental property derived in [10].

Proposition 1. Let x∗ ∈ Ω be an optimal solution of the convex multiobjective
(multiplicative) problem (PM ). Then x∗ ∈ effi(Ω).

It is well-known is the multiobjective programming literature [8] that x ∈ Ω
is an efficient solution of (PM ) if and only if there exists a nonnegative vector
w ∈ �m such that x is also a solution of the convex weighting problem

(PW )
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∣
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∣
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minimize 〈w, f(x)〉 :=
m∑

i=1

wifi(x)

subject to gi(x) ≤ 0, 1, 2, . . . , p.

Without loss of generality, it can be assumed that

w ∈ W := {w ∈ �m : w ≥ 0,
m∑

i=1

wi = 1}.

There is an obvious relationship between the weighting problem (PW ) and
the following characterization (in terms of (PW )) of the optimal solution of the
multiplicative problem (PM ) [11].

Theorem 1. Let x∗ be an optimal solution of (PM ). Then any optimal solution
of (PW ) is optimal to (PM ) if w = w∗ where

w∗
i =

∏

j�=i
fj(x∗) > 0, i = 1, 2, . . . ,m.

Incidentally w∗
i > 0, i = 1, 2, . . . , m is a sufficient condition for efficiency

[8], that is, the optimal solution of (PM ) is surely an efficient solution of the
associated multiobjective problem. However, the optimal weighting vector w∗

depends on the (unknown) optimal solution of (PM ), which prevents Theo-
rem 1 from being directly applied. What we propose in this paper can be
viewed as an iterative method for obtaining w∗ and thus the optimal solution
of (PM ).
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3 A Decomposition Approach

The use of outcome space formulations in multiobjective programming is very
common [8]. Thus it is not surprising that some algorithms [1], [3] adopt the
following outcome space formulation for convex multiplicative programs:

(PY)

∣
∣
∣
∣
∣
∣
∣
∣
∣

minimize F (y) =
m∏

i=1

yi

subject to y ∈ Y,

where
Y := {y ∈ �m : y = f(x), x ∈ Ω}

is the outcome space. The continuity of f and the compactness of Ω imply
the compactness of Y. The set of all efficient solutions in the outcome space is
given by effi(Y) = f(effi(Ω)). It is readily seen that if y ∈ effi(Y) then y ∈ ∂Y,
where ∂Y denotes the boundary of Y. Furthermore, Y admits a supporting
hyperplane at each y ∈ effi(Y) [8], which has motivated the development of
outer approximation algorithms for convex multiplicative problems.

Defining the sets D := {d ∈ �m : d ≥ 0}, the nonnegative orthant in �m,
and Y + D := {z ∈ �m : z = y + d, y ∈ Y, d ∈ D}, the following statements
hold [8].

Theorem 2.
a) effi(Y) = effi(Y + D);
b) Y + D is a convex set.

The convex set Y + D can be explicitly represented as

F := {y ∈ �m : f(x) ≤ y for some x ∈ Ω},
given that any y ∈ F is actually a sum of elements of Y and D. Theorem 2
allows us to reformulate (PY) as a problem with a convex feasible set:

(PF )

∣
∣
∣
∣
∣
∣

minimize F (y)

subject to y ∈ F .

Theorem 3. Let y∗ ∈ F be an optimal solution of (PF). Then y∗ ∈ effi(Y),
and y∗ is also an optimal solution of (PY).

Proof: If y∗ ∈ F solves (PF ), there exists a x∗ ∈ Ω such that y∗ = f(x∗) ∈ Y.
Otherwise, if y∗ ≥ f(x∗) and y∗ �=f(x∗), then y0 = f(x∗) would contradict the
optimality of y∗, since y0 ∈ F and F (y0) < F (y∗). Hence y0 = y∗ = f(x∗). It
is also evident that y∗ ∈ effi(Y). Because Y ⊂ F , we conclude that y∗ is also an
optimal solution of (PY). �
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A fundamental step towards the solution of (PF ) is to determine whether
some y ∈ �m belongs to F or not. This question is answered by an important
convex analysis result [7].

Theorem 4. y ∈ F if and only if y satisfies the infinite system of linear in-
equalities

min
x∈Ω

〈w, f(x) − y〉 ≤ 0 for all w ∈ W, (1)

where

W := {w ∈ �m : w ≥ 0,

m∑

i=1

wi = 1}.

In practice, we implement the following Corollary of Theorem 4: y ∈ F if and
only if Θ(y) > 0, where

Θ(y) := max
w∈W

φ(w) (2)

and
φ(w) := min

x∈Ω
〈w, f(x) − y〉. (3)

Any optimal solution of the convex minimization problem in (3) for a given
w ∈ W is represented as x(w). Then it is possible to show that ξ = f(x(w))− y
is a subgradient of φ at w ∈ W and that an outer approximation procedure can
be used to solve the min-max problem in (2). See [12] for details.

Algorithm A1

Step 0: Choose w0 ∈ W and set l ← 0;
Step 1: Solve the convex programming problem

(PW )

∣
∣
∣
∣
∣
∣

minimize 〈wl, f(x)〉

subject to x ∈ Ω,

obtaining x(wl);

Step 2: Solve the linear programming problem

(PL)

∣
∣
∣
∣
∣
∣
∣
∣

minimize σ

subject to σ ≥ 〈w, f(x(wi)) − y〉, i = 0, 1, . . . , l
w ∈ W, σ ∈ �.

obtaining σl+1, wl+1 and φ(wl+1). If σl+1 − φ(wl+1) < ε1 where ε1 > 0 is a
small tolerance, make Θ(y) = σl+1 and stop. Otherwise, set l ← l + 1 and
return to Step 1.
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A second outer approximation procedure is employed to solve the multiplica-
tive problem in the outcome space. We denote the k-th outer approximation of
F , problem (PF ), as Fk. An initial approximation F0 containing F can be de-
fined as F0 := {y ∈ �m : y ≥ y}, where y denotes the utopian vector composed
of the individual minima of the convex functions f1,f2,. . . ,fm over Ω.

Algorithm A2

Step 0: Find F0 and set k ← 0;
Step 1: Solve the relaxed multiplicative problem

(PFk)

∣
∣
∣
∣
∣
∣

minimize F (y)

subject to y ∈ Fk,

obtaining yk;

Step 2: Find Θ(yk) = 〈wk, f(x(wk)) − yk〉 using algorithm A1. If Θ(yk) < ε2,
where ε2 > 0 is a small tolerance, stop: yk solves (PF ) and x(wk) solves
(PM ). Otherwise, define

Fk+1 := {y ∈ Fk : 〈wk, y〉 ≥ 〈wk, f(x(wk))〉},
set k ← k + 1 and return to Step 1.

Theorem 5. Any limit point y∗ of the sequence {yk} generated by algorithm A2

is an optimal solution of the convex multiplicative problem (PF).

Proof: Note that problem (PFk) always has an optimal solution; its optimal
objective value is bounded below at y = y. At any iteration k, the last linear
inequality incorporated into Fk is

〈wk, y − f(xk)〉 ≥ 0,

and can be rewritten as

〈wk, y − yk〉 ≥ 〈wk, f(xk) − yk〉,

= Θ(yk).

At any subsequent iteration p > k of algorithm A2, we must have

Θ(yk) ≤ 〈wk, yp − yk〉,

≤ ‖wk‖ ‖yp − yk‖,

≤ ‖yp − yk‖,
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because ‖wk‖ ≤ 1 for all wk ∈ W. As k → ∞, we obtain yk → y∗, yp → y∗ and
Θ(y∗) ≤ 0. Therefore, y∗ ∈ F , that is, y∗ is a feasible solution of (PF ). Denoting
by F ∗ the optimal value of (PF ), and knowing that F ⊂ Fk for all k = 0, 1, 2, . . .,
we conclude that F ∗ ≥ F (y∗). Consequently, y∗ is an optimal solution of (PF ). �

A number of practical considerations have been taken into account while im-
plementing Algorithm A2.

Initial Approximation of F . We initially approximate F by the convex poli-
tope F0 = {y ∈ �m : y ≤ y ≤ y}, where y is such that effi(Y) ⊂ F0.
The components of y can be defined as the individual maxima of the convex
functions f1,f2,. . . ,fm over Ω, which involves the solution of another m convex
maximization problems. An alternate numerical procedure for finding F0 has
been suggested in [3].

The solution of (PFk). Since the global minimum of any quasiconcave objec-
tive over a polytopic set is attained at a vertex of the polytope [9], the global
minimum of problem (PFk) is attained at a vertex of Fk. We have implemented
a vertex enumeration procedure based on the adjacency lists algorithm proposed
in [13] (see also [9]). Given that any optimal solution of (PFk) is necessarily an
efficient vertex, only efficient vertices on the lists need to be evaluated. As an
example, initially there are 2m vertices in the list but the solution of (PF0) is
obviously y0 = y, the efficient one.

The use of Deepest Cuts. If Θ(yk) < ε2, the algorithm terminates with an
ε2-optimal solution of (PM ). Otherwise, the most violated constraint by yk (in
the sense that the left-hand side of (1) is maximized over W) is determined and
added to Fk, significantly improving the outer approximation of F . Thus a deep-
est cut in Fk is produced at each iteration. Although any violated constraint,
that is, any linear inequality such that

〈wk, f(x(wk)) − yk〉 > 0, wk ∈ W,

could be used to define Fk+1, the extra effort invested in finding the most vio-
lated constraint has resulted in a faster convergence of the algorithm. By using
the most violated constraints, we also limit the growth of the number of vertices
in problem (PFk);

Convergence of Algorithm A2. The most violated constraint supports F at
xk = x(wk). Numerical experience has shown that Θ(yk) is related to the infinity
norm between yk and f(x(wk)) ∈ F , which has been used to guide the selec-
tion of ε2. Numerical tests with algorithm A2 have also shown that, in general,
a relatively small number of iterations (cuts in F0) are needed for obtaining a
sufficiently good outer approximation of F .

Computational Effort. Most of the computational effort required by algorithm
A2 is concentrated at Step 2, where Θ(yk) is computed by algorithm A1. While
the linear programming minimizations (Step 2 of A1) are relatively inexpensive,
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the nonlinear ones (Step 1 of A1) demand some effort, although their convexity
enable the use of very efficient convex programming algorithms. The codification
and preparation efforts related to the approach proposed (Algorithms A1 and
A2) seem to be small compared with other approaches available in the literature
[1], [3]. The numerical results reported in the next section have been obtained
with an implementation of the algorithms in MATLAB (V. 6.1)/Optimization
Toolbox (V. 2.1.1) [14].

4 Numerical Examples

Consider the illustrative example discussed in [3], where an alternate algorithm
for convex multiplicative problems combining branch and bound and outer ap-
proximation techniques is proposed. The data involved are: n = m = 2,

f1(x) = (x1 − 2)2 + 1, f2(x) = (x2 − 4)2 + 1,

g1(x) = 25x2
1 + 4x2

2 − 100, g2(x) = x1 + 2x2 − 4.

Letting y = (1, 1), y = (18, 38) (as in [3]), ε1 = 0.001 and ε2 = 0.01, we have
obtained the results reported in Table 1.

Table 1. Convergence of Algorithm A2

k yk wk x(wk) Θ(yk)

0 (1.0000,1.0000) (0.4074,0.5926) (0.0000,2.0000) 4.0000

1 (1.0000,7.7500) (0.6585,0.3415) (1.3547,1.3226) 0.4170

2 (1.0000,8.9711) (0.8129,0.1871) (1.7014,1.1493) 0.1016

3 (1.0000,9.5139) (0.8907,0.1093) (1.8509,1.0745) 0.0247

4 (1.0000,9.7394) (0.9451,0.0549) (1.9009,1.0495) 0.0074

Algorithm A2 has converged after only 5 iterations to the ε2-global solu-
tion x4 = (1.9009, 1.0495). The optimal multiplicative function value has been
f1(x4)f2(x4) = 9.8008. As expected, x4 is an efficient solution for the associated
convex bi-objective problem, as both components of w4 are positive. Indeed, all
the intermediate solutions generated by algorithm A2 are efficient. With a con-
vergence criterion equivalent to ε2 = 0.025, the algorithm proposed in [3] has
converged after 8 iterations.

A more detailed investigation about the performance of the proposed algo-
rithm will be carried out with basis on the following subclass of convex multi-
plicative problems [15]:

(Pq)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

minimize
(〈c0, x〉 + d0

)
q

∏

j=1

[

〈cj , x〉 + xT diag(dj
1, d

j
2, . . . , d

j
n)x

]

subject to Ax ≤ b, 0 ≤ x ≤ x̄.
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Table 2. Results from Kuno et al. (1993) (q = 2)

n 40 60 80 100 100 120 120
m 50 50 60 80 100 100 120

AC 34.6 45.5 43.1 43.7 43.0 52.7 51.4
SD 8.62 19.41 12.51 10.63 14.72 10.74 17.60

AV 140.7 192.9 181.9 185.3 181.3 226.9 222.6
SD 40.71 99.68 63.14 50.54 70.93 51.36 87.26

AT 25.12 100.61 239.44 659.80 685.04 1268.57 1801.33
SD 25.44 71.23 88.88 532.53 303.05 680.56 1136.87

where A ∈ �m×n, b ∈ �m, cj ∈ �n and dj ∈ �n (j = 0, 1, . . . , q) are constant
matrices with entries randomly generated in the interval [0, 102] (x̄ = 106) The
objective function in (Pq) is the product of one linear and q quadratic (convex)
functions. Table 2 reproduces the results obtained in [15] for q = 2 with an outer
approximation method. Ten examples have been solved for each size (n,m) of
problems. The average number of cuts (AC) and vertices (AV), the average CPU
time (AT, in seconds), as well as their standard deviations (SD), are indicated
in Table 2.

The results obtained with Algorithm A2 are presented in Table 3. The av-
erage number of cuts and vertices produced are significantly smaller than those
generated by the method discussed in [15]. (Note that AC is the number of times
that problem (PW ) is solved.) The use of most violated constraints has acceler-
ated the convergence of the algorithm and fewer cuts has been actually needed.
In addition, as AV is proportional to AC, the number of vertices produced is
considerably smaller. The size (n,m) of the problem does not seem to have a
significant effect on AC (and hence, on AV), whatever the method considered
(Tables 2 e 3). In Table 3 we also present the average number of times that Al-
gorithm A1 is invoked by Algorithm A2 (AS). The average CPU times reported
have been obtained by using a personal computer (Pentium IV, 2.4GHz, 512MB
RAM).

Table 3. Results with Algorithm A2 (q = 2)

n 40 60 80 100 100 120 120
m 50 50 60 80 100 100 120

AC 10.75 12.55 9.60 11.40 11.30 9.75 10.05
SD 5.10 7.25 6.23 6.10 7.34 5.03 6.21

AV 48.85 58.35 41.80 49.05 50.10 39.30 42.75
SD 28.49 37.93 32.95 28.45 37.69 20.91 28.38

AT 5.67 12.93 22.17 40.89 43.87 66.62 64.71
SD 1.10 3.03 4.70 9.05 9.83 18.07 11.89

AS 4.79 4.39 5.30 4.80 4.87 5.52 5.11
SD 2.22 1.98 1.88 1.63 2.24 1.74 2.09
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Table 4. Results with Algorithm A2 (q = 5)

n 20 40 40 60 80
m 30 30 50 50 60

AC 22.00 23.60 34.10 25.20 33.55
SD 4.80 8.35 25.92 11.98 31.55

AV 692.2 754.8 1243.3 797.4 1049.9
SD 377.6 444.4 1022.4 584.1 1089.2

AT 50.3 78.3 718.1 138.6 1384.7
SD 46.8 65.7 1999.4 217.7 3803.1

AS 5.51 5.69 4.47 5.46 4.66
SD 0.94 1.47 1.60 1.56 1.92

We have reached to the same conclusions by comparing the performance
of the two methods for q = 3. However, the growth of AV as a function of q
is much faster in the method derived in [15], where objective functions with
q > 3 would require more efficient procedures for solving the problem in the
outcome space. On the other hand, as the growth of AV is delayed by Algorithm
A2, comparatively larger problems can be solved. Table 4 presents the results
obtained by Algorithm A2 for q = 5. The average number of times that Algorithm
A1 is invoked by Algorithm A1 (AS) increases very slowly.

As a final remark, it is worth mentioning that as long as the objective function
is a product of linear and quadratic (convex) functions, problem (PW ) will be
a convex quadratic programming problem, for which very efficient solvers are
available.

5 Conclusions

An algorithm for convex multiplicative problems inspired in the generalized Ben-
ders decomposition has been proposed in this paper. Connections between convex
multiobjective and multiplicative programming based on existing results from the
multiobjective programming literature have been established. In particular, some
properties related to the concept of efficient solution have been used to derive pro-
gressively better outer approximations of the multiplicative problem. Convex du-
ality theory has been employed to decompose the multiplicative problem into a
master, quasiconcave subproblem in the outcome space, solved by vertex enumer-
ation, and a min-max subproblem, coordinated by the master subproblem.

Numerical experience has shown that the computational effort invested in
generating deepest cuts in the outcome space through the solution of min-max
subproblems is compensated by a faster convergence of Algorithm A2. The use
of deepest cuts also limits the growth of vertices in the master subproblem and
enables its effective solution by vertex enumeration. An adjacency list algorithm
that takes into account that only efficient vertices need to be evaluated has been
implemented.
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The overall algorithm is easily programmed by using standard optimization
packages. Further properties of the algorithm as well as its extension to more
general multiplicative and fractional global optimization problems are under
current investigation.
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Abstract. This work presents a Simulation Based Design environment
based on a Global Optimization (GO) algorithm for the solution of op-
timum design problems. The procedure, illustrated in the framework of
a multiobjective ship design optimization problem, make use of high-
fidelity, CPU time expensive computational models, including a free sur-
face capturing RANSE solver. The use of GO prevents the optimizer to
be trapped into local minima.

The optimization is composed by global and local phases. In the
global stage of the search, a few computationally expensive simulations
are needed for creating surrogate models (metamodels) of the objec-
tive functions. Tentative design, created to explore the design variable
space are evaluated with these inexpensive analytical approximations.
The more promising designs are clustered, then locally minimized and
eventually verified with high-fidelity simulations. New exact values are
used to improve the metamodels and repeated cycles of the algorithm
are performed. A Decision Maker strategy is finally adopted to select the
more promising design.

1 Introduction

Simulation-Based Design (SBD) in the engineering design community context
still suffers from some major limitations: first, while real design problems are
multiobjective, practical applications are mostly confined to single objective
function problems; second, it is relying exclusively on local optimizers, typically
gradient-based, either with adjoint formulations or finite-differences approaches;
third, the use of high-fidelity, CPU time expensive solvers is still limited by the
large computational effort needed in the optimization cycles so that simplified
tools are still often adopted to guide the optimization process.

The availability of fast computing platforms and the development of new and
efficient analysis algorithms is partially alleviating the third limitation. However,
when the evaluation of the objective function involves the numerical solution of
a partial differential equations (PDE, such as the Navier-Stokes equations to
give a real-life example) a single evaluation might take many hours on current
generation of computers. For this reason the number of PDE-constrained opti-
mization in ship design are still limited: [13], [30], [22], [18]. Moreover, the use of

C. Jermann et al. (Eds.): COCOS 2003, LNCS 3478, pp. 112–126, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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these computational expensive models is still confined to single objective prob-
lems solved with local optimizers. Recent advances ([23], [25], [24], [17]) were
dedicated to address this challenge, expanding optimization applications from
single- to multiobjective problems.

Our present goal is the development of a new optimization procedure to
solve multiobjective problems searching for the global optimum, overcoming the
aforementioned limitations through the use of metamodels and of an alternate
global-local stage in the algorithm. The intent of the present paper is to illustrate
the procedure and to give numerical evidence of its capability.

2 Open Problems in SBD

When dealing with a complex ship design, open problems in SBD are easily
recognized. Optimization typically involves a large number of design variables
and a number of different disciplines and objectives, requiring hundreds or thou-
sands of function evaluations to converge to an optimal design. It is also clear
that (1) the size of the design space increases exponentially with the number of
design variables, (2) both gradient-based optimization methods, which need the
evaluation of the gradient components of the objective functions, and gradient-
free pattern search methods become more and more expensive with the use of
complex, high-fidelity CFD solvers as analysis tools and (3) nonconvex feasible
design variable space and multimodal objective functions (i.e. functions with
many local minima) can trap local optimizers in local minima preventing these
from locating the best design, while the use of Global Optimization (GO) algo-
rithms would lead back to a further increase of the computational efforts.

While item (1) is obviously an unavoidable consequence of the complexity of
the design problem, a number of possible strategies to face item (2) exist. When
using gradient-based optimization methods, the control theory approach allows
for dramatic computational cost advantages over the finite-difference method of
calculating gradients, being substantially independent of the number of design
variables. Sensitivity Equations Methods and Adjoint Methods belong to this
class. However, even if automatic differencing compilers exists (for example TAF,
Transformation of Algorithms in Fortran [8]) these approaches often require an
”appropriate code preparation” [31], i.e. a development phase on the source
code of existing in-house CFD solvers, which is not always negligible and openly
recognized.

The second alternative strategy is to utilize global approximation models
which are often referred to as metamodels, as they provide a ”model of the
model”, partially replacing expensive simulation models during the design and
optimization process. Metamodelling techniques have been widely used for design
evaluation and optimization in many engineering applications (for reviews of
metamodelling applications in structural and multidisciplinary optimization see
[1] [27]).

With regard to item (3), another key issue in ship design optimization will
become the use of GO methods [32]. Many engineering applications use accepted
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methods for single-extremum function minimization without any prior investi-
gation of unimodality. Researchers of the ship design community often recognize
the problem of starting from a ”good” parent hull form but the consideration
of rigorous practical GO procedures have been outside their attention. However,
as recalled in item (3), often the feasible design spaces are nonconvex and the
objective functions distribution in the design variable spaces are multimodal,
so that even a simplified design problem includes many local optima that can
trap local optimizers. In such design variable spaces, unsophisticated use of local
optimization techniques is normally inefficient (an example will be given in the
next paragraph.) GO algorithms are hence important from a practical point of
view and should be used despite an increase of the computational effort.

In order to handle such difficulties the considered design problem is converted
into a GO one. The solution strategy of GO methods consists of a global stage
and local stages. A uniform covering method, namely the LPτ grid of Sobol [29]
is adopted to get global information on the objective functions and to explore
the design variable space.

Design Of Experiment (DOE) is chosen for the initial construction of the
metamodels: from now on, the high-fidelity solvers are only applied for verifica-
tion once a promising solution is detected by the actual metamodels. Successive
high-fidelity computations (used for verifying the promising solutions) are added
to DOE to enlarge the training set of the metamodels, increasing also their re-
liability.

In the present paper, the GO procedure has been used to solve a multiob-
jective problem for the DDG51. Five objective functions have been considered,
governed by three different PDEs; again, the RANSE code has been used for the
prediction of the free-surface flow past the ship.

3 Why Global Optimization?

Before we start the description of the developed GO procedure, an example is
given to illustrate how local optimization is rarely the appropriate technique
for shape optimization, even in a simple design variable space. Indeed, due to
nonlinear constraints (even a simple equality constraint on the displacement
is non linear), nonconvex feasible design spaces are quite common in practical
problems (e.g. [16]) as well as multimodality of the objective functions, and
local optimization techniques are inefficient in solving these problems. A simple
ship design problem for the S175 Containership is presented. The goal is the
minimization of the peak value of the Response Amplitude Operator (RAO, a
measure of the ship’s response in waves analyzed in the frequency domain) for
the heave motion in head seas, for the ship advancing at 16 knots. Only six design
variables are used in this simple numerical test. As geometrical constraints, lower
and upper bounds on the beam and on the ship’s displacements are enforced. A
simple strip-theory code is used as analysis tool.

The inadequacy of the local optimization approach may be observed in Figs.
1 and 2. In Fig. 1 the RAO for the original hull is reported versus those of
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Fig. 1. Optimization results on the S175 containership as from different optimization

algorithms: solid line is the original hull shape RAO (heave motion in head seas, speed

of 16 kts), dashed line represents the result obtained by means of a standard gradient-

based method, dotted line is the result of a Global Optimization Method
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two optimized solutions. The dashed line indicates the design obtained with
a standard gradient-based local optimization technique while the dotted line
represents the performances of the globally optimized design.
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The local optimization procedure is able to improve the original design ob-
taining a new shape which displays a reduction of the RAO’s peak value. However
the reduction is small and a much better result might be obtained using the GO
approach.

The result can be easily understood when looking at Fig. 2, where the his-
tograms of the design variables distribution have been reported for all the designs
of the feasible solution set constructed by the GO procedure. The ”holes” in the
distribution of the feasible solutions (gaps in the design variables No. 2,3 and 6)
are caused by the nonlinear constrains.

In the histogram the original ship is given by assuming all the design variables
equal to zero. Blue symbols indicate values of the solution obtained with the
local optimization while red ones are those of the GO technique. It is clear that,
starting from the original shape, the local optimization algorithm would never
be able to jump across the holes created by the nonlinear constraints and that
the local optimizer has been trapped by a local optima which was very close to
the initial design. On the contrary, the GO algorithm explores the whole design
variable space without remaining trapped in the local minima or confined by the
nonconvex design space.

4 Description of the GO Algorithm

This section is devoted to the description of the developed algorithm and its
definition in the group of GO techniques. For an extensive coverage of various
methods of GO, useful reference is [32].

The algorithm is illustrated in the case of a multiobjective problem but it
is also applicable to solve single objective function problems. Different ways of
classifying Global Optimization methods exist. The proposed method belongs
to the class of deterministic optimizer, and to the family of Covering Methods,
but with some features similar to the Adaptive Clustering COvering (ACCO)
- Adaptive Clustering covering with Descent (ACD) schemes proposed in [28].
It is basically founded on the consideration that the only way to find out the
global minimum of an unknown objective function, whose global characteris-
tics of continuity are not available, is to search uniformly the design parameter
space.

The algorithm hence consists of two main stages: (i) a global search phase,
where a GO algorithm is used to explore the design space avoiding local minima
and trying to locate regions where attractive solutions are found and (ii) a local
refinement phase, where best configurations (according to the Decision Maker)
are grouped in clusters and then locally optimized with a multiobjective gradient-
based technique. The fundamental elements of the global algorithm are described
in the following.

Formulation of the GO problem: In the most general way, the GO problem
for a single objective function can be stated as follows. Let us consider a function
f : Z → R, where Z ⊂ RN :
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find x ∈ Z
such that

f(x) = minf(x), x ∈ Z.

In the constrained problem, bounds on the N design variables d and m func-
tional constraints should be considered:

gj(x) ≤ 0, j = 1, ...,m
dL

j (x) ≤ d ≤ dU
j (x) j = 1, ..., N

In general f(x) and g(x) may be nonconvex, nonsmooth functions. The mul-
tiobjective optimization problem can now be easily defined:

min{ f1(x), f2(x), ... , fk(x) }
where we have k(≥ 2) objective functions fi : Z → R.

Manipulation of the ship geometry and of the mesh: In the implemen-
tation of an algorithm for shape optimization there is the obvious need for a
geometry modification procedure and several attempts have been made to deal
with this item. We decided not to rely on the use of a specific commercial CAD
program but to induce modification in the ship’s geometry by controlling a per-
turbation polynomial surface, which is added to the unmodified original geom-
etry (details in [22]). The control points of this polynomial surface will become
the design variables d of the design problem. General guidelines for this proce-
dure are the following: (i) when only a part of the ship is directly involved by
shape optimization, the modified region should join the original design without
discontinuities and should be generally smooth; (ii) the number of design vari-
ables should be kept as small as possible to minimize the number of evaluations
of the gradient of the objective function, but (iii) the algorithm should be as
flexible as possible in order to achieve the most number of possible solutions.

The above requirements have been obtained by using Béziér patches gradually
reducing to a zero level while approaching the unmodified hull shape. In this way,
geometric continuity between grid boundaries is guaranteed and if the number
of control points is kept sufficiently small, realistic geometry can be obtained
that do not need major refinements prior to construction. Once the geometry is
modified, the volume grid is adjusted accordingly.

Metamodel identification from CFD analysis results: As recalled before,
when the number of the design variables increases calculations of the gradient com-
ponents become more expensive. Under this perspective, the application of CFD
for the evaluation of the objective functions is discouraged. Anyway, the possible
existence of a (unknown) relationship between the results coming from CFD and
a much simpler analysis tool could help in reducing the number of solutions ad-
dressed to the high-fidelity model. An interesting possibility is to explore the ana-
lytical structure of the data coming from the CFD over the design variables space
trying to derive a metamodel. Obviously, a specific surface must be constructed
for each different objective function considered in the multiobjective problem.
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A variety of metamodelling techniques exist (for an analysis of their perfor-
mances see [15]). Polynomial regression models [20] is a widely known approach
for the design and analysis of computer experiments. The coefficients of the poly-
nomial functions may be computed by using a least square technique, or a more
sophisticated identification parameter technique, as the Levemberg-Marquard
method. Moreover, performing the Analysis Of the VAriance (ANOVA) of the
response surface it is also possible to enhance their quality, deleting terms not
really affecting the approximation [9]. Obviously, this method is capable to cor-
rectly describe only objective functions up to a certain order. If the objective
function is more complicated, the degree of the polynomial may be increased,
but the metamodel quality may decrease because of numerical instabilities.

Artificial neural networks [26], [5] are well-known approaches for identifying
approximations of complex simulation codes and to fit a wide class of objective
functions. In the following, a neural network of radial basis function (RBF neural
network) has been selected as metamodel to solve the GO problem. Given a set
of T points, the interpolating function has the form:

y(x) =
T∑

t=1

wtΦ(||x − xt||)

where Φ is a continuous function, which can be chosen among radial functions.
The most used function in an RBF network is a Gaussian

Φ = e−r2

RBF networks are feedforward with only one hidden layer. RBF hidden layer
units have a receptive field, which has a centre (a particular input value at which
they have a maximal output). Their output tails off as the input moves away
from this point.

To construct the metamodel one has to select the T training points that have
to be computed with the high-fidelity model. This can be performed using a
Design Of Experiment (DOE) technique. A complete factorial design usually re-
quires at least LN solutions to be computed with the high-fidelity model, where
N is the number of design variables and L is the number of levels in which each
design variable interval is subdivided. The minimum value is 2N, the vertices of
a hypercube constructed in the design variables space around the initial design.
Consequently, the number of solutions needed to build the metamodel with a
complete factorial design rapidly grows. Hence, an incomplete factorial design,
in which some extremes of the design variable space are discharged, is usually
applied. The criterion for the vertices elimination generates a huge number of dif-
ferent methodologies. In this paper we have selected an Orthogonal Array (OA)
technique [12], for which only N+1 points (i.e. CFD solutions) are requested to
build the metamodel.

The search in the design variables space: Once an interval for the design
variables has been fixed, trial points (i.e. solutions to be evaluated with the meta-
model) must be distributed into the design space. Uniformity of the distribution
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of the trial points is a crucial characteristic for the success of the optimization,
since an under-sampling of some region could deceive the optimizer forcing to
discharge that portion of the design space. A regular sampling (cubic grid) would
produce an uniform hexahedrical mesh on the hypercube defined in the design
space, with two major drawbacks: too many points are needed when the number
of design variables increases, and a marked shadow effect is produced (i.e. the
coincidence of the projections of some points on the coordinate axes). LPτ grids
[29], belonging to the family of the Uniformly Distributed Sequences (UDS),
have some attractive features, like an high degree of uniformity with a reduced
set of trial points and a moderate shadow effect. In [29] the maximum number of
points in the LPτ distribution is 216 and this value has been selected to sample
the design space during the numerical test.

Once an UDS is placed in the design variables space, geometrical constraints
are verified on these configurations and a discrete approximation of the Feasible
Solution Set (FSS) is obtained. The density of trial points belonging to the FSS

is clearly connected with the adopted UDS and it is desirable the number of
points in the FSS to be as highest as possible. On the other hand, CPU time
needed for the constraints verification may be not negligible for real applications
and a very long time for constructing the FSS may be necessary in the case of
an excessive sampling. Anyway, local refinement techniques described below aid
to reduce this problem, allowing for an increase of the number of points in the
FSS near the best configurations during the process of optimization.

Pareto optimality: In multiobjective problems, the problem of finding opti-
mal solutions among those belonging to the feasible set is solved employing the
concept of Pareto optimality:

Definition: a configuration identified by the objective vector xo is called optimal
in the Pareto sense if there does not exist another design x ∈ FSS such that
fk(x) ≤ fk(xo)∀k = 1, ...,K, where K is the number of objective functions, and
fk(x) < fk(xo) for at least for one k ∈ [1, ...,K].

By applying the Pareto definition on the feasible solutions it is possible to find
all the design vectors where none of the components can be improved without
deterioration of one of the other components (non-dominated solutions). These
designs belong to the Pareto optimal set P.

Decision maker: Mathematically, all x ∈ P are acceptable solutions of the
multiobjective problem. However, the final task is to order the design vectors
belonging to P according to some preference rules indicated by the designer
and select one optimal configuration among them. In general, one needs the co-
operation between the decision maker and the analyst. A decision maker may
be defined [19] as the designer who is supposed to have better insight into the
problem and can express preference relations between different solutions. On the
contrary the analyst can be a computer program that gives the information to the
decision maker. A wide number of different methodologies exist in literature (see
[19] for an extensive summary of the subject) depending on the role of the deci-
sion maker in the optimization process. In no-preference methods the opinions
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of the decision maker are not taken into consideration and the selection is ac-
complished by measuring (in the objective function space) the distance between
some reference points (the ”ideal” objective vector) and the Pareto solutions. It
is the simple Global criterion, which can use different metrics. A powerful and
classical way to solve this problem from the standpoint of practical application
is the use of the ideas of goal programming. The procedure is simple: a list of
hypothetical alternatives with assigned values (aspiration levels) of the objective
functions is ranked by the designer according to his preference and experience
(these are the goals). The problem is then modified into the minimization of
the distance from these goals. Designer data may be used for constructing a
metamodel of the preference order. In this way, the optimization process will be
mainly driven by the real needs of the designer, and the portion of Pareto set
explored by the optimizer will contain the subset of the most preferable solution
in the opinion of the designer.

Local refinement of the best solution: During the development of the opti-
mization process some designs show better characteristics than others, and the
probability that the optimal solution is located in the vicinity of these points
is high. As a consequence, those portions of FSS around promising points are
deemed more interesting than others. The local refinement may follows two dif-
ferent strategies: (i) use a local method, able to give small improvements for
all the objective functions in the neighborhood of a promising point, and/or (ii)
adopt a clustering technique [3] in order to identify the region for which a deeper
investigation is required and an increased density of trial points is wanted.

Cluster analysis of the promising solutions and refinement of the clus-
ters: The task of any clustering procedure is the recognition of the regions of
attraction, i.e. those regions of the objective space such that for any starting
point x, an infinitely small step steepest descent method will converge on an es-
sential global minimum [32]. In a multiobjective formulation the points belonging
to the Pareto optimal set are the most promising solutions for the problem un-
der consideration. Hence, we decide to assume these points as centers of regions
of attraction. Some clustering algorithms are described in [32]. Here, the one
proposed by Becker and Lago [3] has been adopted.

The local refinement of the Fss is then obtained by placing a reduced LPτ

net, with smaller radius and fewer points, around the center of the clusters.
The radius of the investigated region in the neighborhood of the Pareto point
decreases during the optimization process. The distribution is rotated at each
step, in order to spread out points in all the directions.

The algorithm for the GO problem: Main steps of the algorithm may be
summarized as follows:

1. Initial exploration of the design space - Orthogonal Array is adopted for the
initial exploration of the design space and trial points are distributed.

2. Model Identification from CFD results - Trial points are evaluated using
the CFD for the construction of the metamodels (one for each objective
function);
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3. The search in the design variables space - New trial designs (216 points =
65536) are uniformly distributed in the design variable space by using the
LPτ -grid;

4. Derive the feasible set - Enforcing the geometrical and functional constraints
(i. e. stability) a large part of these trial points is discharged and the feasible
solution set is derived;

5. Identify the Pareto front - Analyse feasible points using the metamodels and
find all x ∈ P;

6. Adopt a Decision Maker strategy for ordering the designs and finding non-
dominated solutions;

7. Local refinement of the best solution with a multiobjective gradient step
based on the metamodels (or with a scalarization of the problem according
to the DM);

8. Verification of the best solution using the CFD solvers. The new solution
will be added to the metamodel for its improvement;

9. Clustering of the Pareto solutions is performed in the design space around
dominating solutions identified by the DM. A reduced number of sets is
obtained;

10. Refinement around the center of the clusters: new trial designs are uniformly
distributed with smaller LPτ -grids centered around the clusters;

11. go to step 4 until no more regions of attraction are found;

An important feature of this algorithm is that, as a consequence of both
the refinements (steps 7 and 10), new added points may fall in a region of the
design space which was not considered in the initial distribution of trial points.
This is a useful quality of the method: in fact, in our particular case, since
there is not a strong connection between design variables (the control points
of the Béziér patches) and geometrical constraints, a correct estimation of the
boundaries of the design parameters is non trivial. For this reason, the initial
distribution does not cover the whole FSS , since the investigated volume must
be as small as possible in order to retain the point density of the FSS . The local
refinement technique automatically corrects the underestimation of the design
space extension: the optimization problem is still constrained, but bounds on the
design variables may change dynamically within the course of the optimization
problem solution.

5 Multi-objective Optimization Test

A multiobjective problem for a frigate ship (model 5415 of the David Taylor
Model Basin, an early design of the DDG51 of the US Navy) has been set up as
described in the following.

Objective functions description: The goal is the minimization of five objec-
tive functions at the service speed (20 knots):
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– Function F1 is the wave resistance of the ship at the service speed, as com-
puted by using a non-linear panel solver for steady free surface potential
flow [2].

– Functions F2 and F3 represent some seakeeping performances of relevance
in the definition of the operability of the ship: they are respectively the
peak values of the heave and the pitch motions in head seas. Their values
are estimated by applying a 3D panel code in the frequency domain (the
FreDOM code, details in [14].

– To compute functions F4 and F5, the MGShip RANSE solver for steady
free surface flows [6] has been used. F4 represents a measure of the uni-
formity of the axial velocity at the propeller disk, considered a relevant
parameter in the design of the ship’s propeller, while F5 is related to the
minimization of the vortices produced at the junction of the sonar dome
with the bare hull, expressed as the mean of the vorticity in an area just
behind the dome. F4 and F5 control regions are two circles or radius 0.018
LPP and 0.014 LPP respectively, placed at X=7.1m and X=113.6m from
the fore perpendicular. Control region of F5 has been positioned on the
base of the location of the sonar dome vortices, as seen from experimental
measurements.

It may be observed that the wave resistance of the DDG51 could have been
computed by using the RANSE free surface code by applying on the numerical
wave pattern some linear method for extracting the wave resistance information
(longitudinal or transverse cut methods). However, we have had the feeling that
the free surface grid used in the RANSE computation inside the optimization
process was not enough dense to capture correctly the wave pattern. For this
reason the nonlinear panel code has been preferred for the evaluation of F1.
Moreover, a test about the connection between different solvers in a multidisci-
plinary framework was of great interest in the construction of the optimizer and
to add an additional solver was helpful under this perspective.

Design variables definition: For the optimization of the hull shape, 15 design
variables have been used, acting both on the side of the entire hull and on the
bulb. Stem and transom stern have been left unchanged, as well as the ship
length LPP . The ship modification is performed by means of superposition of
three different Béziér patches to the original ship geometry, two acting in the y
direction, for the hull and the bulb, and one acting in the z direction for the
bulb geometry only.

Geometric and functional constraints: A specific (nonlinear) constraint is
applied on the total displacement: a maximum variation of about (2% is al-
lowed. Bounds on the design variables are also enforced, even if those limits are
trespassed during the cycles, as explained before.

Numerical solvers and conditions for the test: Summarizing, three differ-
ent solvers are applied: a non-linear potential flow solver (for the evaluation of
F1), a potential solver in the frequency domain for the prediction of the response
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of the ship in waves (F2 and F3) and a surface capturing RANSE steady solver
(F4 and F5). Consequently, five metamodels are constructed using RBF neural
networks.

All the computations but the seakeeping ones are performed for the ship free
to sink and trim, and control regions for F4 and F5 are translated consequently.

Numerical results: An Orthogonal Array (OA) of 16 elements has been ap-
plied for the DOE phase for the metamodel, obtained by adopting a RBF neural
network. During the initial search in the design space 65536 points have been
disseminated. After having enforced the constraints, about 11064 designs fall in-
side the FSS . After 140 optimization cycles (which imply 157 objective function
evaluations with the high-fidelity solvers: 140 + 16 for the initial construction
of the metamodels with the OA + 1 for the original design), 15273 points be-
long to FSS , due to the effect of the clustering and resampling, with a mean of
about 30 new points added to FSS per each iteration. While the optimization is
proceeding, the number of the new design solutions added to the FSS per cycle
is increasing, because the algorithm focuses the resampling area in progressively
smaller regions near the Pareto solutions.

The final resulting Pareto front, restricted only to the configurations showing
a reduction of all the objective functions, is reported in Table 1. Results are
reported in a table because of the impossibility of representing the Pareto front
in RN . Each column reports an objective function, non-dimensionalized by its
initial (original) value. First column indicates an identification number of the
configuration, and the last two columns report the mean value and variance
of the objective functions, giving an indication about the homogeneity of the
enhancements. All the designs for which one objective function displays the best
performance are reported in bold.

Table 1. Pareto Optimal Set for the here depicted test case. All the objective functions

are non-dimensionalized by their initial value: configurations showing values greater

than unit have been deleted. Best values for each objective function are plotted in bold

ID. # F1 F2 F3 F4 F5 Mean Fi σ

39 0.58279 0.94629 0.97535 0.76555 0.22946 0.69988 0.27420
41 0.54586 0.97397 0.98408 0.72584 0.29821 0.70559 0.26133
53 0.57674 0.94155 0.97050 0.61619 0.51789 0.72457 0.19177
57 0.52733 0.96629 0.98395 0.66259 0.53376 0.73478 0.20216
59 0.58851 0.89009 0.90445 0.75741 0.58808 0.74570 0.13838
29 0.57447 0.98353 0.98154 0.75522 0.48378 0.75570 0.20479
35 0.55503 0.97043 0.97903 0.77654 0.77882 0.81197 0.15582
21 0.84752 0.92517 0.95868 0.70223 0.64447 0.81561 0.12300
48 0.72060 0.93431 0.96585 0.68400 0.77633 0.81621 0.11363
67 0.57716 0.89578 0.93559 0.99313 0.75175 0.83068 0.14976
89 0.66554 0.85228 0.91643 0.94391 0.89387 0.85440 0.09909
69 0.99273 0.93034 0.95144 0.98579 0.54357 0.88077 0.17013
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Data are ordered by the mean value. Configuration #59 is an interesting
solution, being the one with the lowest variance among those designs display-
ing enhancements w.r.t. all Fi. Some of the extreme designs may show sig-
nificant worsening on one Fi and of course they do not represent interest-
ing solutions for the optimization problem. However, they give an idea about
the extremes of the boundary of the Pareto set. Also, differences in the hull-
forms are relevant, giving account of the volume of the investigated design
space.

Configuration #57 is the best for resistance (function F1). Design #59 is the
best as to the heave and pitch response.

Configuration #53 is the best for the uniformity of the flow at the propeller
plane Obtained results are very encouraging, being the mean value of the axial
component of the velocity at the propeller disk greatly enhanced, and also its
variance being reduced.

Finally, configuration #39 is the best for the flow quality behind the sonar
dome. The core of the dome vortex is smoothed out, and the primary objective
is obtained: in fact, the non-dimensional value of the objective function is of the
order of 0.2, with a reduction of about 80%. The reduction of the vorticity will
result in a reduction on the flow noise in this region. This is a promising result
for the design of ship’s sonar dome which can be very difficult to be obtained
by using traditional design approaches, guided only from the experience of the
designers. Indeed, the identification of the those hull parameters affecting the
vorticity production is not easy.

As a final comment, when more than a single design criteria is assumed (as
is always in the real design), the task is for the designer becomes complex, and
there is no guarantee that a good solution can be found by traditional design
process.

6 Conclusions

Optimisation tools could help the designer and GO techniques can lead to new
design concepts. The final goal of the authors is to develop a useful GO solver
for ship design and techniques for reducing CPU-time needs, a fundamental step
if a GO problem has to be solved. To this aim, a GO problem in a multiobjective
context has been formulated and solved with an original algorithm. Although
the numerical results are still preliminary, strong reductions on the interesting
quantities have been obtained. The applied numerical solvers are able to give
reliable information on the flow field, allowing improvements otherwise difficult
to be obtained in the absence of correlations law between main geometrical
parameters and local flow variables. The optimization tool seems to be able to
co-ordinate the different objectives and the analysis tools used in the procedure
are used in a rational way. The inclusion of this approach into the spiral design
cycle is recommended, in particular when some special requests are present in
the design specifications.
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Abstract. This paper deals with an original simultaneous localisation and map 
building paradigm (SLAM) based on the one hand on the use of an 
omnidirectional stereoscopic vision system and on the other hand on an interval 
analysis formalism for the state estimation. The first part of our study is linked 
to the problem of building the sensorial model. The second part  is devoted to 
exploiting this sensorial model to localise the robot in the sense of interval 
analysis. The third part introduces the problem of map updating and deals with 
the matching problem of the stereo sensorial model with an environment map, 
(integrating all the previous primitive observations). The SLAM algorithm was 
tested on several large and structured environments and some experimental 
results will be presented. 

1   Introduction 

The stage of  incremental construction of the robot’s environmental map is preponderant 
for the increase of its autonomy [11]. It consists in managing a coherent update of the 
cartographic primitives’ state during the robots movement. This function is directly 
correlated to that of the localisation : the robustness of the cartographic primitives’ 
state estimation is linked to that of the estimation of the robot’s position. In this 
context it is necessary to take into account the interaction between both the 
localisation and the modelisation errors. The interval analysis formalism provides us 
with an answer to this problematic. Furthermore the soundness of the localisation’s 
paradigm and the simultaneous modelisation are tightly linked to the quantity and 
quality of the sensorial data. The omnidirectional vision sensor’s systems are, in this 
case, well adapted to this constraint, especially to a stereoscopic use.  

In background literature, we can distinguish two main groups of methods used to 
build the evolution field of a robot: the “metric” methods and the “topologic” ones. 

The first approach consists of managing the notion of distance and we can find 
principally two types of mapping paradigm in this context :  

- The first ones consist in managing the notion of distance, where the Extended 
Kalman Filtering (EKF) is used to build a Cartesian representation of the 
environment [4].  
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- The second where the occupational grid notion is used to provide a metric 
representation. These occupancy grids manage the “occupation”, the “non-
occupation” or the “potential occupation” of the group of cells representing 
the environment. [8][1]. 

The second category of map representation is the topological one. This approach 
consists of determining and managing the location of significant places in the 
environment along with an order in which these places were visited by the robot. In 
the topological mapping step, the robot can generally observe whether or not it is at a 
significant place. The definition of significant places can be linked for example to the 
notion of “distinctive places” in the Spatial Semantic Hierarchy proposed in [14], and 
the notion of “meetpoints” in the use of Generalized Voronoi Graphs proposed in [3]. 
This kind of method is interesting to use in complement with an occupancy grid, in 
order to take into account the semantic aspect. 

In this paper we will present an alternative method to the two main ones 
mentioned above. Owing to the interval analysis formalism, the presented method 
guarantees the environment’s representation. This way, the estimation of both the 
robot’s state and the landmarks is characterised by subpaving. 

2   Sensorial Model Building  

We have developed a perception system called SYCLOP, which is similar to the 
COPIS system used by Yagi [18]. Our system is used to achieve both the localisation 
and the modelisation of the environment, based on the co-operation between two 
sensors. The SYCLOP prototype measures 60 cm in height and is composed of a 
conical mirror and a CCD camera. This vision system allows us to detect vertical 
parts in the environment with a 2D projection onto the camera’s image plane [5]. 

2.1   The Omnidirectional and Stereoscopic Perception System   

The idea behind this co-operation is that two image acquisitions are taken at two 
different positions separated by a known distance d. The translation between the two 
positions is achieved by two horizontal rails. These rails allow us to guarantee a 
known rigid in-line movement between these two previous positions (Figure 1). 

d
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b

Yrobot 

Xrobot 0robot 

 

Fig. 1. Principal of the omnidirectional and stereoscopic sensor 

In each acquisition, a vertical landmark of the world (doors, corners, edges, …) is 
characterised onto the image plane by a strongly contrasting radial straight line. 
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If the same radial straight line is matched in both conical images, it is quite simple 
to compute the location of the intersection point in the robot’s reference frame. This 
point corresponds to a vertical landmark. This can be extended to all pairs of matched 
radial straight lines (Figure 1). 

It is necessary to specify that the calibration of the vision system has been done 
before applying any sort of image processing. 

The reader can find further information about the complete calibration of the 
SYCLOP sensor in [2](Cauchois et al, 1999). 

2.2   The Sensorial Primitives Calculation  

Our goal is to match the angular sectors of homogenous grey levels in the two images. 
These sectors are delimited by the radial straight lines mentioned above. 

All the radial straight lines in a conical image converge to a single point called O 
(the projection of the revolution axis of the cone onto the image plane). This means 
that only the angular reference determines a radial line in the image. Thus a 2D image 
processing can easily be reduced to a 1D computation.  

We therefore consider a concentric circle of a grey level on the image, centred on 
the previous point O. In order to obtain a maximal density of 1D signal information, 
this circle is designed on the periphery of the conical image. A 1D grey level signal is 
computed to characterise each image.  

We have applied a segmentation algorithm based on a derivative filtering of the 
1D grey level signal in order to proceed to the matching step. The reader can find 
more details on this method in [7]. In our case, the matching phase consists in 
matching two by two all the detected grey level sectors of the two stereoscopic 
images. As the robustness of the matching is primordial, we will use several different 
complementary criteria. The criteria will be merged according to the Dempster-Shafer 
combination rules. 

As the viewpoint is different for the two images (shifted by the distance d), the 
landmarks in both images cannot be observed in the same way. We have retained four 
significant and robust criteria : 

- The inclination of the approximate lines corresponding to the set of sector grey 
level, 

- The average of the grey level of the sector 
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Fig. 2. Segmentation and final matching of sectors for an acquisition 
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- The standard deviation of the grey level of the sector. 
- The geometric constraints of the sector imposed by the view point ; which can be 

categorised as a “simplified epipolar geometry”. 

We use the Dempster Shafer theory to perform the fusion [6][16]. The Dempster-
Shafer method also enables us to function with partial knowledge. A final example of 
matching is given in Figure 2, where we can see that a large number of sectors are 
correctly matched [7]. 

Once the mutual matching of sectors has been achieved, all that we need to do is 
to calculate the co-ordinates of the segment points that they represent. We know the 
orientation angle of the two straight lines that border the sides of the angular sectors 
and the distance d that separates the two cones (the two images). The co-ordinates of 
all the points in the sensor’s reference frame (situated on the centre of cone O) are 
calculated through triangulation using the following formulas :  

)tan()tan(

)tan(d
x

α−β
β×=       

)tan()tan(

)tan()tan(d
y

α−β
α×β×=  (1) 

3   Localisation of a Mobile Robot Using Interval Analysis 

When the imprecision is not taken into account, the localisation / modelisation 
process is rendered incomplete, and therefore the influence of the error of the robot’s 
position estimation on the estimation of the vertical landmarks’ parameters cannot be 
processed, whilst this is a main factor. There actually is an obvious interaction 
between the committed errors with regards to the robot’s position and those 
introduced by the calculation of the position of the landmarks. It is this interaction 
that – in the process of incremental construction – is at the origin of the cumulative 
errors. This is the reason why we wish to present an alternative that allows to 
integrate the imprecision notion as of the stage of localisation and therefore, we 
decided to use interval analysis method. 

3.1   Localisation of a Mobile Robot Using SIVIA 

The SIVIA (Set Inversion Via Interval Analysis) algorithm was developed by Luc 
Jaulin and Eric Walter [12]. It enables us to determine the solution of the set inversion 
problem via subpaving (rectangular-sub-sets). The subpaving gives an approximate 
but guaranteed solution. 

The algorithm consists in sub-dividing an initial box into two boxes. They are then 
both examined to determine if they are to be kept or disregarded. If a box is not valid, 
it is eliminated. If it is valid, it is re-divided into two and so on and so forth until the 
boxes are of the required precision. 

Our sensor works in the same way as a goniometre. In other words, sensorial data 
represents the observation angles of the environment’s vertical landmarks. This means 
that they can not be linked to other elements on the map (such as horizontal landmarks). 
This is an advantage as it necessarily decreases the amount of matching combinations. 

The localisation of a mobile robot using the theory of interval analysis has, of 
course, already been achieved, e.g. with telemetric sensors [15][13]. In a parametric 
sense, it is easy to see that our sensorial data are of the same nature as telemetric  data  
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Fig. 3. Error modelisation Approach 

used by M. Kieffer. Thus we have extrapolated the error model of Kieffer to our 
problem. This error model is characterised by both a distance and angular error. 

At this level, we assume that our sensor provides the positions of the 
environment’s vertical landmarks contaminated by an angular and a distance error. 
This forms an emission cone that resembles the one obtained by a telemetric sensor. 
The apex of this cone lies in the middle of the two images and on the axis that runs 
through their centre. As we know the angles α and β, we have the co-ordinates of the 
landmark, which enables us to calculate ϕ, the landmark’s observation angle, and  
l, the distance measured (Figure 3). 

If (xr, yr, θr) represents the robot’s position, l the distance measured and ϕ  the 
measured angle, then the computation of the co-ordinates of a point i on the map is 
calculated with the following formulas : 
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We then apply a rotation in the robot’s reference frame that is equal to the 
orientation θr of the robot, followed by a switch from the robot’s reference frame to 
the world’s reference frame. Stating [li]=[l i -ε,l i +ε] and [ϕi]=[ ϕ i -ρ,ϕ i +ρ] and 
using the inclusion functions +, −, ×, ÷, cos() and sin() relative to the interval analysis, 
we obtain the following inclusion function: 
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It is this inclusion function that will be used with the SIVIA algorithm. 
First of all, once this box [Si] that corresponds to a sensorial data is found, we 

need to test if one of the map’s elements is actually in this box. Given the fact that we 
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are trying to estimate the position of the environment’s vertical landmarks using a 
subpaving in order to obtain the imprecision, a landmark j of the environment is not 
represented by a point Pj, but by a subpaving made out of n boxes, that we note down 

as [ ][ ] jP  = {[T]r / 1 ≤ r ≤ n}. 

In order to obtain the Boolean inclusion function which will allow us to possess a 
global validity test, we apply this algorithm to the total of the sensorial data. The 
inclusion function used by SIVIA during this stage can be explained in the following 
way: For each localisation’s box, we calculate if there is an intersection between the 
considered observation and the rectangular-set to be tested. As soon as the 
intersection is non-void, the function returns the undetermined value. During the 
initialisation of the map, the algorithm is limited, because there is no box representing 
the robot’s localisation. Thus, we immediately have the subpaving that corresponds to 
the observation. 

This situation only represents the case where there are no aberrant data. As a 
matter of fact, the algorithm successively tests all the boxes associated to the sensorial 
data and if only one is not valid, neither is the robot’s position. Evidently, this 
situation presents several problems as it is quite common to have several aberrant data 
per acquisition.  

Our solution to the problem is the same as the one adopted by M. Kieffer. It 
implements the algorithm whilst taking into account that there are no aberrant data. If 
no solution is found, the algorithm is repeated with one aberrant data, then two,  etc.
This solution gives a result no matter the ratio of “aberrant data /valid data”. 

In this case, the boxes are always divided until the minimal size that is defined by 
the error has been attained. We solely have the exterior approximation of the robot’s 
position. Nevertheless it is the unique information that we are interested in for ulterior 
processing-computations that we will implement. 

When using SIVIA, the first step is the search for a solution from a box received 
as an argument that has to contain the real position of the robot. One solution is to 
initialise this root box using the dimensions of the environment. The problem we are 
faced with however, is that on the one hand the calculation time is higher and on the 
other hand, in relatively symmetrical environments, the solution can be multiple and 
may not even contain the real position of the robot. 

Bearing these facts in mind, we decided to use dead-reckoning information to 
refine the search for solutions. One method to use this information is based on the 
same principle as Kalman filtering, i.e. using successive phases of 
prediction/correction. This method works but needs specific algorithms that use 
subpaving and binary trees to compute the predicted state. Furthermore, modified 
SIVIA versions need to be used to take these particularities into account. 

Having the most precise prediction phase as possible is very useful when the 
number of boxes is relatively high, as in the case of use of telemetric sensors. In our 
case, sensorial data represent the vertical landmarks of the environment and therefore 
the imprecision will be smaller and the number of boxes will be relatively low (as can 
be seen from the experimental results). 

This is why we decided to only use dead-reckoning in order to initialise the initial 
box P0  that is used to start the search for the robot’s actual positions. From a 
rectangular-subpaving that results from a localisation process, we compute the 
minimal box that draws round the subpaving. This box is then increased with the 
maximum dead-reckoning error, which is a function of the distance covered. 
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Fig. 4. Intersection test used in the localisation algorithm 

This method is purely an initialisation phase and as we raise the dead-reckoning 
error, this implies that the possible results, which are incompatible with the actual 
position of the robot do not need to be tested during the localisation process. 

3.2   Modelisation of the Environment 

The representation of the data on the map is at the base of the SLAM paradigm. In our 
case, we need to focus on landmark's representation that is first of all compatible with 
the set interval analysis formalism and furthermore easy to use in an update phase. At 
this stage, the only solution that seems possible is a representation in subpaving. 

The result of the localisation stage being a subpaving [ ][ ]L , we can compute for 

each box [ ]gL  (element of [ ][ ]L ) and for each sensorial data [ ]iϕ and [ ]il , the box 

resulting in [ ] [ ] [ ]( )iig
I lLf ,, ϕ  thanks to the inclusion function that was already 

used in the localisation algorithm. 
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Fig. 5. Representation of all the rectangular-sets characterising a sensorial data 

If we apply this inclusion function to the total of boxes rendered by the 
localisation stage, at the end of this process we obtain a set of boxes that correspond 
to each observation that can have a non-void mutual intersection and, therefore, do 
not constitute a subpaving (Figure 5). 

This problematic has already been broached by [13]. As a matter of fact, he 
developed the ImageSP algorithm, which auto-decomposes into three phases, just to 
be able to calculate the image of a subpaving : 



134 C. Drocourt et al. 

 

- Hashing : Calculates a regular subpaving [ ][ ]A of which all the boxes have a size 

that is inferior to ε, 
- Evaluation : Calculates the image of each of these boxes using the considered 

inclusion function f I,  

- Regularisation : Approximation of the union of these boxes [ ][ ]( )Af I using a 

new subpaving [ ][ ]B . 

The first phase (Hashing) is unnecessary, given the fact that the subpaving [ ][ ]L  

obtained during the localisation process is already made up solely of boxes that are 
smaller than the expected precision.  

Thanks to the former inclusion function, we can directly compute the resulting 
box for each of these boxes and for all the sensorial data in the evaluation phase. 

Finally, the Regularisation consist in using the new algorithm SIVIA to obtain the 
desired subpaving. The representation that we chose to use is a set of boxes of 
identical size, equal to the fixed minimal precision that characterises the two 
preceding sets. The advantage of this representation is that no bisection will be 
necessary when we need to process such a set. The boxes will be either accepted or 
rejected, as they are all of an inferior size to the expected precision. Using this method 
simplifies the representation of data in the map, but also the calculations that will be 
applied in the following phases. This may cause some problem if we want a very 
small precision but it is not applicable with the use of this sensor. Another method 
would be to use the exterior and interior approximation (Figure 6). 

We now need to determine the inclusion function that will be used by the SIVIA 
algorithm during the addition of a new landmark in the map. As we want to obtain the 
set of boxes of an inferior size to the expected precision, this function should never 
render anything but two values: “true” or “undetermined”. As a matter of fact, a 
“true” value rendered by this inclusion test would immediately stop the pending 
bisection of the box. 
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Fig. 6. Approximation of a set using the two former methods 
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Fig. 7. Approximation of a set of rectangular-sets using SIVIA 



 Incremental Construction of the Robot’s Environmental Map Using Interval Analysis 135 

 

This inclusion function plays a double role because it will be used to initialise the 
environmental map using the data issued from the first acquisition but also each time 
a new landmark is added to the map. 

These two possibilities force us to differentiate between the two applications of 
this inclusion function. As a matter of fact, the robot's position is not a subpaving but 
a position during the initialisation phase, as it represents the origin of the map. 
However, when a new landmark is added the robot's position is defined by a set of 
boxes issued by the localisation phase. We will explain in detail our inclusion 
function in this second, more complicated case.  

At this stage, we have to remind the reader that, of course, the direct observation 
image from a subpaving issued from the localisation phase provides a set of boxes, 
but not necessarily disjointed. This means that we need to estimate it, using a more 
practical and representative subpaving. Its only intersections' zones are the boxes' 
borders. In order to compute this set, we will again use the SIVIA algorithm: starting 
with an initial box, this will provide us the required subpaving. This will allow us to 
estimate each new landmark to be inserted in the map. Therefore, before running 
SIVIA, we need to compute an initial box. This can easily be done when calculating 
the minima and maxima from an observation for each box (Figure 7). 

3.3   Decision Method for Matching 

3.3.1   Determination of the Belief Put in Each Association 
We now need to determine which information will have to be merged and which will 
have to be added to the map as new primitives. The decision method used here 
consists in determining a belief for each association, using the Dempster-Shafer 
theory [6][16]. This part of the process is crucial and decisive in the localisation 
paradigm and the simultaneous modelisation. In fact, it is this stage that will condition 
the maintenance of the environmental map's coherence. A wrong choice between a 
new insertion or fusion will generally be at the root of an excess of primitives in the 
map, which will lead to cumulative errors and, hence, a divergence in the algorithm. 

At the start of this phase, we have three imprecision's data at our disposal that will 
be uses: 

- An environmental map made up of subpaving each representing the imprecision 
associated to the modelled landmark. 

- A set of sensorial data characterised by information of the distance/angle type in 
the form of intervals, providing the imprecision in the measure, 

- A subpaving resulting from the localisation stage, representing the imprecision 
associated to the robot's position. 

We therefore have to resolve two principal problems:  
- Define and use the set resulting from the association of the localisation and the 

measure imprecision;  
- Find a comparison criteria that can be implemented to determine the belief 

attributed to the fusion of this set with a map's subpaving.  

These two problems are tightly linked and in order to know if an observation can 
indeed be associated to a mapped primitive, we need to find a comparison criteria 
between the two: the intersection of the two subpavings. In fact, the more the set 
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associated to an observation contains the subpaving that represents a point on the 
map, the more certain we are that it represents the same information, which implies 
that they have to be merged.  

Given the fact that the set of boxes of an observation can overlap, several of them 
can have a non-void intersection with one of box representing a point on the map. 
This is why we cannot directly use the intersection notion between these different 
boxes to calculate the volume. In fact, if we were to consider the three sets A, B and C 
so that A∩B∩C ≠∅, we would obtain the following inequation: 

 Volume(A∩C) + Volume(B∩C) > Volume(A∩B∩C)  (4) 

This signifies that the volume that corresponds with the intersection of the sets A 
and B with C is counted twice in the left part of the inequation. The chosen solution is 
then the same as when adding a new observation to the map. In other words, we 
calculate the image of the subpaving issued from a localisation and then SIVIA is 

applied to obtain a subpaving associated to the observation that we note  as [ ][ ] iS  =

[K]q / 1 ≤ q ≤ m } with 1 ≤ i ≤ s and m representing the amount of boxes constituting 
the subpaving. 

Our comparison criterion is therefore based on the value: 

[ ][ ]( ) [ ][ ] [ ][ ]( )( ) 100×∩−= ijj SPVolumePVolumeτ , (5) 

that represents the percentage of [ ][ ] jP included in [ ][ ] iS . 

The formalism used to determine the certainty associated to a fusion is based on 
the search of the maximum of belief compared to the application of the Dempster-
Shafer rules. We therefore have to determine our discernment-frame constituted out 
of two elements: Θ = {YES, NO} 

- "YES" the observation i needs to be merged with the element j on the map 
- "NO" the observation i should not be merged with the element j on the map 

If the subpaving issued from an observation contains more than 50 % of the boxes 
that define a landmark, we consider that the belief must be the highest. Thus, we use 
the Basic Probability Assignment (B.P.A.) as represented in figure 8.  
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Fig. 8. Matching functions for the fusion stage 
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All we now need to do is to compute the intersection volume that exists between 

each subpaving [ ][ ] iS  issued from an observation and each subpaving [ ][ ] jP  that 

represents a landmark on the map. 
For an observation Si, we now have p triplets: 

mi,1( 1P )  mi,1( 1P )  mi,1(Θ1) 

mi,2( 2P )  mi,2( 2P )  mi,2(Θ2) 

…    …    … 

mi,p( pP )  mi,p( pP )  mi,p(Θp) 

We can now compute these p triplets for the s observations, which will give us s×p 
triplets. The problematic introduced at this level resides in the fusion of all the 
information, in order to be able to choose. We resolved this problem by using the 
generalisation of the combination operator of Dempster-Shafer introduced by D. 
Gruyer and V. Cherfaoui [10].  

3.3.2   Decisional Algorithm 
The decisional algorithm that we use is based on the maximum of the probability 
obtained in the Dempster-Shafer sense. The precedent phase allowed us to calculate 
for each observation, p triplets that correspond to the match with each element on the 
map. We can now apply the generalised Dempster-Shafer operator in order to obtain a 
matrix of belief with the dimensions s×(p+2). The hypothesis "*" signifies that the 
observation Si does not correspond with any element on the map. This means we work 
in a extended open world. 

The result of our matrix of belief provides a belief onto the singletons hypothesis, 
i.e. a rule of decision based on the maximum pignistic probability will not add 
anything here because this last one use a group of elements. Furthermore, the values 
of this matrix are directly credibilist measures. This is why we have based our 
decisional criterion on the maximum credibility of this matrix. 

The algorithm used is based on the search for the maximum value in the matrix 
previously built. The value that is found this way allows us to determine if the 
observed point is in relation with an existing point or if a new point has been created. 
In case of doubt (maximum credibility on "Θ"), we choose to create a new point 
defined by a subpaving. 

Once this match has been carried out, all the elements of the line that contain the 
maximal value are put on 0, as well as those of the colon but only if this last one is 
different from "*"and from "Θ". In fact, the initialisation of all the elements of the 
line to 0 signifies that an observed element cannot be in relation to one single element 
on the map. The same applies for the colon that corresponds to the fact that several 
observations cannot be matched to the same point on the map. On the other hand, 
several observations can be new points ("*") just like the ignorance can be maximal in 
several ("Θ") observations. The algorithm is reiterated as long as there are positive 
values. 

Finally, this algorithm gives us two sets. The first is made up of observations that 
need to be merged with an element on the map. The second is made up of new 
landmarks that need to be added. The processing and management of these two sets 
will be presented in the next part.  
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3.4   Incremental Update of the Environment's Map 

The former decisional integration/fusion stage, has provided us with two sets of 
points: the first contains those that need to be merged and the second those that need 
to be added to the map. The integration of a new element on the environment's map 
has already been given previously. 

The last stage that needs to be processed is the fusion between an element from 
the map and an observation. Here, the data are defined by sets and as we find 
ourselves in a context of bounded error, the actual position of the landmark has to 
belong to the two sets. The result of the fusion of an observation with an element of a 
map is therefore the intersection of the two sets. 

 At this level we need to resolve a problem. In fact, each set is defined by several 
boxes. The one that represents the observation even contains boxes that can overlap. 
The calculation of the intersection is brought back to processing the problem of 
multiple intersections of disjointed boxes. It is far from a trivial problem.  

 In order to overcome this difficulty, we part from the following fact: as the 
solution belongs to both sets, one of the two can first be considered. Then, we can 
check if each box from the first set, is an element of the second set. If this is the case 
the box is kept, otherwise it is eliminated. The set of boxes most adapted to be the 
first set is then the one that represents the landmark on the map, as it is uniquely made 
of separate boxes, i.e. a subpaving (Figure 9). 

We can observe at this point that the result of our fusion method can only contain 
a reduction of subpaving representing the imprecision of a landmark on the map. No 
matter the set associated with the observation, after fusion there can only be an 
addition of information in the sense that the subpaving of the landmark cannot 
increase. 

 
Subpaving

of map
Set of boxes associated

with observation
Final

subpaving

 

Fig. 9. Example of fusion between observation and element on the map 

In order to validate our approach, we present the experimental results in the next 
part. These results were obtained in two distinctive environments. 

3.5   Experimental Results 

We have tested our SLAM method in two types of structured environments. 
The first series of 8 acquisitions has enabled us to validate our paradigm of 

localisation and simultaneous modelling in a small environment. 
The second series of measures contains 45 acquisitions realised during a trajectory 

consisting of a return trip. The distance covered is approximately fourteen meters. 
Here, we use dead-reckoning to reduce the size of the box that looks for the possible 
positions of the robot. We remind the reader that the dead-reckoning error is 
maximised in order to serve uniquely in the initialisation of the SIVIA algorithm. 
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Certain elements of the map can be eliminated as we go along updating the 
localising. In fact, the filtering that we have developed and that we use here, allows us 
to keep the elements in the map that have already been observed several times. 

 
 
 
 

Fig. 10. Results of the environment's modelling 

First, from a general viewpoint, the simultaneous process of localisation and 
modelling provides coherent results in terms of precision and in terms of robustness. 
Furthermore, we can see that the SLAM process does not diverge. In fact, the 45 
acquisitions result in a coherent construction of the environmental map with no 
preliminary knowledge. 

From a localisation viewpoint, we can affirm that the absence of the preliminary 
knowledge had not effected the estimation phase of the robot’s configuration using  
interval analysis. The coherence of the localisation phase is also proved by the 
variation during the movement of the robot. We see that the subpaving decreases on 
the way back (in other words after the U-turn) than on the way there. From a 
modelling viewpoint, and still linked to the observations of a general order, we can 
affirm that the map generated is coherent in comparison with the actual terrain. The 
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amount of cartographic integrated primitives is coherent, proving the validity of the 
fusion and integration process. 

The evolution of the subpavings during the incremental modelling process is 
robust and coherent. Two points can justify this statement: First of all, the 
contribution of sensorial data is accompanied by a reduction of the size of the error 
domain and by a convergence of subpaving to the actual position of landmarks. 
Secondly, the interaction between the localisation error and the modelling error is 
taken into account because the higher the localization precision, the more the  
subpavings on the cartographic primitives are significantly reduced. This decisive 
factor allows the process of simultaneous localisation and modelling not to diverge 
after a certain amount of acquisitions. This test on large environments is important as 
it is put forth by several works, such as those of Dieter Fox [9]. 

Rather than an alternative, the interval analysis approach is proposed as a solution 
that allows us to integrate intrinsically the imprecision notion. The fact that we can 
manage the imprecision implies the possibility to take the interactions into account, 
which is not possible with other formalisms. It is this rigorous management of these 
interactions that leads to a successful outcome of the map process generation on long 
distances. 

4   Conclusion 

In this work, we have developed a method of localisation and simultaneous modelling 
(SLAM) of the environment based on the use of the interval analysis. This method is 
different from classical algorithms found in literature and that are generally 
probabilistic. The novelty of the proposed formalism resides in the fact that the 
obtained imprecision domains linked to the state’s estimation are equiprobable and 
guaranteed. 

We have given preference to the use of the Dempster-Shafer rules, that allow us to 
manage a belief in different cases that can appear in a map-generation process from 
each observation (fusion, insertion or rejection). 

The strategy to integrate primitives carried over is the reduction of the subpaving 
matched to the examined and mapped primitive. This technique processes rapidly but 
first needs all the elements to be inserted as subpavings reduced to the minimum. In 
other words, the size of each box has to be inferior to the expected precision. 

We have seen that the method developed provides excellent results. First of all the 
paradigm, validated on a trajectory in a long corridor, gives a high precision on the 
localisation and the estimation of the landmarks’ position. Secondly, no localisation 
drift has been observed.  

Here we have a system that can simultaneously localise the robot from a non-
reliable map and at the same time incrementally model the robot's evolution in the 
environment in a relatively precise way. These two stages being intimately linked, the 
quality of the one depends on the precision of the other. The use of the interval 
analysis has allowed us to propagate the imprecision introduced during each stage of 
our method on the next phases. 
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1 Introduction

During the last few years, control schemes using interval analysis have been in-
vestigated. Several approaches have been proposed in order to get robust control
in presence of model uncertainties [7, 10] or for state estimation [6].

In this paper, we investigate the design of a nonlinear model predictive con-
troller [1], using set computation. The motivation for using NMPC control is its
ability to handle nonlinear multi-variable systems that are constrained in the
state and/or in the control variables. The NMPC problem is usually formulated
as a nonlinear constrained optimisation one, and is solved using classic non lin-
ear optimisation techniques. However, most of the NMPC constraints are easily
expressed using intervals. Therefore, we will use interval analysis techniques [8]
in order to compute an NMPC constraints satisfying solution. Classic interval
branch and bound algorithms have been investigated for predictive control in [3].
They conclude that the pessimism introduced by interval computation in the es-
timation of the states leads to high computational cost and may only be used on
control of low dynamic systems. Therefore, we propose a new approach based on
a spatial discretisation of the input and state domains to improve interval model
predictive control and to be applied on high dynamic systems. The proposed
strategy will be numerically simulated on an inverted pendulum model.

The paper is organised as follows : section 2 presents the classical nonlinear
model predictive control technique, section 3 introduces interval analysis, set
inversion and the proposed algorithm for its application to the NMPC problem.
Finally section 4 exhibits numerical simulation results.

2 Nonlinear Model Predictive Control

The NMPC problem [1] is usually formulated as a constrained optimization
problem

C. Jermann et al. (Eds.): COCOS 2003, LNCS 3478, pp. 142–153, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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min
u

Np
k

J(xk,u
Np

k ) (1)

subject to

xi+1|k = f(xi|k, ui|k) x0|k = xk (2)
ui|k ∈ U, i ∈ [0, Np − 1] (3)
xi|k ∈ X, i ∈ [0, Np] (4)

where
U := {uk ∈ R

m|umin ≤ uk ≤ umax}
X := {xk ∈ R

m|xmin ≤ xk ≤ xmax} (5)

Internal controller variables predicted from time instance k are denoted by a dou-
ble index separated by a vertical line where the second argument denotes the time
instance from which the prediction is computed. xk = x0|k is the initial state of
the system to be controlled at time instance k and u

Np

k = [u0|k, u1|k, . . . , uNp−1|k]
an input vector.

Predictive control (fig. 1) consists on computing the vector u
Np

k of consecutive
inputs ui|k over the prediction horizon Np and applying only the solution input
u0|k. These computations are updated at each sampling time.

The dynamic model of the system is written as a nonlinear equality constraint
on the state (eq. 2). Bounding constraints over the inputs ui|k and the state
variables xi|k over the prediction horizon Np are defined through the sets U and
X (eq. 5).

The objective function J is usually defined as

J(xk,u
Np

k ) = φ(xNp|k) +
Np−1∑

i=0

L(xi|k, ui|k) (6)

where φ is a constraint over the state at the end of the prediction horizon, called
state terminal constraint, and L a quadratic function of the state and inputs.
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Fig. 1. Principles of the predictive constrained optimal control approach
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The solution u
Np

k of the NMPC problem has two properties. Firstly, it satisfies
the constraints over the inputs (uk ∈ U) and the states (xk ∈ X), including the
state terminal constraint. Secondly it is optimal with respect to the criteria J .
In this article, we will consider the computation of a solution satisfying the
constraints, without considering the optimisation.

Except for the dynamic model of the system (eq. 2) which is nonlinear, NMPC
constraints (eqs. 3,4) are inequality constraints and can directly be written as
intervals. Therefore, it would be interesting to use interval techniques in order
to compute a solution satisfying the NMPC constraints. The following section
introduces interval analysis concepts used to compute such a solution.

3 Constraints Satisfaction

3.1 Interval Analysis and Set Inversion

Initially dedicated to finite precision arithmetic for computer [11] and after used
in a context of guaranteed global optimization [4], the interval analysis is based
on the idea of enclosing real numbers in intervals and real vectors in boxes.

Let f be a function from R
n to R

m and let Y be a subset of R
m. Set inversion

is the characterization of

X = {x ∈ R
n | f(x) ∈ Y} = f−1(Y) (7)

Set inversion algorithms [8] are based on consecutive bisections of an initial
domain [x] for X. They can perform inner (X) and outer (X) approximation of
X (X ⊂ X ⊂ X). The image f([x]) of [x] is computed and compared to Y. Four
cases may be encountered:

1. f([x]) ∩ Y = ∅, then [x] is rejected as a subset of X (fig. 2(b)).
2. f([x]) ⊂ Y, then [x] is a subset of X and therefore [x] is stored into X and X.
3. f([x]) �⊂Y and f([x]) ∩ Y �=∅, then [x] may contain a part of the solution

set. If its width is greater than a precision threshold ε, then [x] is bisected
and the test is recursively applied (fig. 2(b)).

4. If the test gives the same results as in case 3, and if the width of [x] is lower
than ε, then [x] is stored into X.

Figure 2(c) illustrates the inner approximation of f−1(Y) finally computed by
the set inversion algorithm.

Considering the initial domain [xmin,xmax], the algorithm brackets the solu-
tion set X

′ = [xmin,xmax] ∩ f−1(Y) by two subpavings X and X.

X
′ = {x ∈ [xmin,xmax]| f(x) ∈ Y} ⊆ f−1(Y) (8)

3.2 Application to the NMPC Problem

The purpose is to apply the set inversion algorithm to compute a solution sat-
isfying the NMPC constraints.
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Fig. 2. Set inversion algorithm steps

Considering the set inversion formulation, Y domains are defined by the limits
over the state variables, and the initial domain which will be bisected during the
algorithm is defined by the limits over the inputs (eq. 5).

The dynamic model function f is applied over the horizon starting from the
current state xk. The computation of a new state domain [xi+1] from previous
state domain [xi] and input domain [uimin , uimax ] is followed by the set inversion
algorithm (fig. 3).

This procedure bisects the initial domain [uimin , uimax ] and provides a domain
[ui] such that

f([xi], [ui]) = [xi+1] and [xi+1] ⊆ [xi+1min , xi+1max ] (9)

where [xi+1min , xi+1max ] is the feasible domain for the state xi+1 (eq. 4).
The bisection procedure reducing the width of an interval, [ui] is such that

[ui] ⊆ [uimin , uimax ] (10)

and therefore any punctual value in the interval [ui] is a solution satisfying the
NMPC constraints.

xi+1min ≤ xi+1 ≤ xi+1max

f ([xi], [ui])

[ui]

f−1(Y)

Y

[xi+1]

Fig. 3. Set inversion algorithm applied on NMPC
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Fig. 4. Validation of incorrect input due to outer approximation of the state

The computation of an input satisfying the NMPC constraints implies the
state estimation of the system with interval values (eq. 9). State estimation
involves the computation of the dynamic model of the system followed by an
integration and therefore introduces pessimism in the estimation of the states
domains. State estimation on intervals are based on interval Taylor series [5, 12]
and lead to guaranteed but outer approximation of the system state. Therefore
the intersection of the computed state with the state constraints during the set
inversion algorithm may be composed of outer state values. Consequently, the
input is validated by the set inversion algorithm whereas it does not satisfy the
NMPC constraints (fig. 4).

In the following, we will propose a solution to get an inner approximation
of the state and thus use the set inversion algorithm to compute a NMPC con-
straints satisfying solution.

3.3 NMPC Constraints Satisfaction

Classical state estimation over intervals leads to outer approximation. However
the preceding section exhibited the need for an inner approximation of the sys-
tem state. Therefore, we will compute state estimation over the horizon using
punctual values distributed in the considered domains.

In the following, we will omit the index |k assuming that prediction is made
at time instance k.

On each iteration, the set of inputs u1
i , . . . , u

n
i which define a spatial distribu-

tion of the input domain [uimin , uimax ], is applied on each punctual state values
x1

i , x
2
i , . . . , x

m
i defining a spatial discretisation of [xi]. This gives a new set of

punctual values defining a spatial discretisation of [xi+1] (fig. 5).
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Fig. 5. Spatial discretisation

Assuming that f is continuous, the spatial discretisation of [xi+1] computed
by the algorithm provides an inner approximation of f([xi], [uimin , uimax ]). In-
deed, for any punctual value xp

i in [xi], p ∈ [1,m], and any inputs ul
i and ul+1

i ,
l ∈ [1, n − 1] continuity of f leads to

[min(f(xp
i , u

l
i), f(xp

i , u
l+1
i )),max(f(xp

i , u
l
i), f(xp

i , u
l+1
i ))] ⊆ f(xp

i , [u
l
i, u

l+1
i ])

(11)
therefore the set of input variables S

′ considering the inner approximation of the
state

S
′ = {ui ∈ [ul

i, u
l+1
i ] |

[min(f(xi, u
l
i), f(xi, u

l+1
i )),max(f(xi, u

l
i), f(xi, u

l+1
i ))]

⊆ [xi+1min , xi+1max ]}
(12)

is an inner approximation of the set of input variables S in case of perfect state
estimator over intervals.

S = {ui ∈ [ul
i, u

l+1
i ] | f(xi, [ul

i, u
l+1
i ]) ⊆ [xi+1min , xi+1max ]} (13)

The inner approximation of the state of the system allows the use of the set
inversion algorithm to compute a solution satisfying the NMPC constraints. The
efficiency of the solution depends on the sampled values ul

i of the initial input
interval [uimin , uimax ], and on the accuracy threshold ε defining the minimum
width for an interval allowed to be bisected during the set inversion procedure.

One of the drawback of the inner approximation of the state is that state
values outside the inner approximation are not considered and therefore could
violate the constraints (fig. 6). This leads to the validation of an incorrect input
domain. However, the punctual values defining the spatial discretisation of the
state are guaranteed to belong to the constrained space. These values have been
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inner approximation
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system state space

Fig. 6. Constraints violation due to the inner approximation of the state

computed from punctual input values defining the spatial discretisation of the
input domain. Therefore, theses punctual input values are guaranteed to lead to
the constrained state space. However, picking any punctual value in the com-
puted input interval may lead to constraint violation. This constraint violation
has not been characterized yet and will be the object of future work.

4 Simulation Results

The control scheme presented in this paper is applied on the stabilisation of an
inverted pendulum. The pendulum is free to rotate around an horizontal axis and
is actuated by a linear motor whose acceleration is the input of the system. Friction
has been neglected and the hypothesis is made that the pendulum is a rigid body.

Let’s consider the inverted pendulum (fig. 7) which is a classical benchmark
for nonlinear control techniques [2, 9]. Its dynamic equation (eq. 2) where x =
[q, q̇]T is based on the following equation

q̈t+1 = Ksin sin(qt) − Kcos ut cos(qt) (14)

Friction has been neglected and it has been assumed that the pendulum is a
rigid body.

pendulum

carriage

q

u : acceleration of the carriage

Fig. 7. The inverted pendulum
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The acceleration q̈t+1 is integrated twice using:

– first order Taylor series in the predictive controller,

q̇t+1 = q̇t + δt q̈t+1 (15)
qt+1 = qt + δt q̇t+1 (16)

where δt is the time sampling period
– Runge-Kutta formula in the simulator.

In the simulations, a single [u] value is bisected over the horizon. Parameters
Ksin and Kcos have been computed from a real pendulum available at the lab-
oratory. The parameter nbsamples define the number of punctual values used in
the spatial discretisation of [u]. Np is the prediction horizon, the initial state is
[qini, q̇ini]T , the precision threshold used for bisection in the set inversion algo-
rithm is ε. The feasible values are those defined by NMPC inequalities (eqs. 3,4).

The common parameter values are regrouped in the following table

Ksin Kcos q̇ini (rad.s−1) δt (s)
109 11.11 0 0.001

[qfeasible] (rad) [q̇feasible] (rad.s−1) [ufeasible] (m.s−2)
[−π − 3π

2 ;−π + 3π
2 ] [-150;150] [-800;800]

The punctual value u applied on the system is the closest to zero in the
solution interval.

The simulations have been computed using Matlab with a 2Ghz Pen-
tium IV.

In simulations 4.1 to 4.2, the computation of the domain [u] is stopped as
two valid punctual values defining the spatial discretisation of [u] have been
determined. In simulations 4.4, the computation of [u] is achieved completely.

4.1 Initial Position Downwards

This simulation has been executed with the initial position downwards.

Np qini (rad) ε (m.s−2) [qNp ] (rad) nbsamples

40 −π 1.0 [-0.1;0.1] 5

Figure 8 displays the results of this simulation. The pendulum starts from
initial position −π and is stabilised by the control law in its terminal position
q = [−0.1; 0.1] rad.

4.2 Initial Position Close to 0 Rad

This simulation has been executed with the initial position close to the terminal
position. It exhibits the computation time variation due to the reduction of the
prediction horizon.
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Np qini (rad) ε (m.s−2) [qNp ] (rad) nbsamples

5 −0.1 1.0 [-0.001;0.001] 5

Figure 9 displays the results of this simulation. As in the previous simulation,
the pendulum is stabilised in its terminal position. However, the computation
time is reduced by a factor ∼ 6.
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Fig. 10. Simulations with model parameters errors

4.3 Robustness with Respect to Model Error

The following simulations have been executed with the parameters used in sim-
ulation 4.2. Model error have been introduced through errors on the parameters
Ksin and Kcos.
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Fig. 11. Computation time with different nbsamples values
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Fig. 12. Domain size percentage with respect to the domain size with nbsamples = 5

Figure 10 exhibits the robustness of the method by displaying the joint po-
sitions. In each presented case, the control method leads the pendulum to the
final constrained position. In the case of a value inferior or equal of 70% of the
exact model value for Kcos, the algorithm is unable to find a solution.

4.4 Spatial Discretisation Variation

The simulations presented in this section exhibit the influence of the parameter
nbsamples on the calculation of the domain [u] and on computation time. The
more samples there is, the longer is the computation time (fig. 11). However,
the computed domain for [u] is not increased a lot (fig. 12). This is due to the
algorithm used. Whatever the number of samples, the domain will be bisected
until the bisected domains will be too small (< ε) to be bisected. Increasing the
number of samples avoid bisections but introduces much more small domains to
deal with.

5 Conclusion

This paper introduces a nonlinear control approach associated with interval anal-
ysis. The guaranteed state estimation techniques have been demonstrated to be
inappropriate. Therefore, an inner bounding state estimation method for con-
tinuous systems has been presented. The complete simulation results show the
efficiency and the robustness of the proposed method.
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Future work will concern the following two points. Firstly, the computational
efficiency improvement by taking into account contraction procedure based on
constraints propagation. Secondly, the characterisation of the inner approxima-
tion of the state in order to compute input boxes satisfying the constraints
completely.
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Abstract. The problem of robust model based fault detection of dynamic  
systems using interval observers has been mainly addressed checking if the 
measured output is inside the interval of possible estimated outputs obtained 
considering uncertainty on model parameters. This task can be computationally 
expensive because the interval observers can be affected by the wrapping effect. 
In this paper, a mixed approach consisting in determining a computationally 
cheaper inner approximation of the estimated output interval, based only on 
simulating vertices of parameter uncertainty region (forward test), is combined 
with a backward consistency check when the real measured output falls outside 
this inner solution (backward check). The backward check is implemented  
using interval constraint satisfaction algorithms which can perform efficiently 
in deciding if the measured output is consistent with the interval model. The 
classical alternative to this backward check will force to solve a global optimi-
sation problem, or equivalently, a global consistency problem. Finally, this  
approach will be tested on a gas turbine nozzle servosystem. 

1   Introduction 

Model-based fault detection is based on generating a difference, known as a residual, 
between the predicted output value from the system model and the real output value 
measured by the sensors. If this residual is bigger than a threshold, then it is deter-
mined that there is a fault in the system. Otherwise, it is considered that the system is 
working properly.  However, it is very important to analyse how the effect of model 
uncertainty is taken into account when determining the optimal threshold to be used in 
residual evaluation. In case that uncertainty is located in parameters (interval model), 
an interval observer has been shown to be a suitable strategy to generate such thresh-
old. But, in general, computing an exact threshold using interval observers is time 
consuming because of the optimisation problem that must be solved at each time 
instant in order to avoid the problems presented in Stancu [15], namely: the wrapping 
effect, the interval function range evaluation and the uncertain parameter time de-
pendency. The aim of this paper is to present a new algorithm for fault detection using 
interval observers, less computational demanding, based on a forward/backward test. 
Basically, this algorithm consists in two steps: first a forward test based on checking 
if measurements belong to the inner solution of the estimated output interval  
computed using an interval observation algorithm that only uses the vertices of the 
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parameter uncertain region and a backward test based on a consistency test between 
measurements and the interval model. Forward test cannot assure that a fault occurred 
when measurements are outside the inner solution because of its incompleteness. To 
check whether or not this measurement signals a fault, a consistency test must be 
performed to verify if there are system parameters that can explain this output value. 
This stage represents the backward test and is equivalent with a system identification 
using a single pair of input/output data.  
    The structure of rest of the paper is the following: in Section 2, fault detection 
based on interval observers is presented. In Section 3, forward and backward fault 
detection tests are introduced. In Section 4, the implementation of forward and back-
ward tests is presented. Finally, in Section 5, the forward-backward fault detection 
algorithm is tested on the nozzle servosystem of a gas turbine.  

2   Problem Formulation  

2.1   Residual Generation and Robustness Issues 

Considering a non-linear dynamic system in discrete-time with disturbances (or 
noises) d(k),  faults f(k) and the modeling uncertainty located in parameters θ that 
affect the behaviour of the system, the state-space relationship can be written as 

 
)),k(),k(),k(),k(()k(

)),k(),k(),k(),k(x()1k(

!fduxhy

!fdugx

=
=+

 (1) 

where: 

-  x∈ ℜnx, u∈ ℜ nu and y∈ ℜny are state, input and output vectors of dimension nx, 
nu and ny respectively; 

- d∈ ℜnd, n∈ ℜnn and f∈ ℜnf are process disturbances, measurement noise and 
faults of dimension nd, nn and nf respectively; 

- g and h are the state space and measurement non-linear function; 
- θ is the vector of uncertain parameters of dimension p with their values bounded 

by a compact set "! ∈ of box type, i.e., }|{ p !!!!" ≤≤ℜ∈= . This type 
of model is known as an interval model. 

Model-based fault detection algorithms generally consist of two stages [4]: 

- Residual generation: The model and the input/output measurements are 
used to determine residuals, which describe the degree of consistency be-
tween the plant and the model behaviour. 

- Residual evaluation: The residual is evaluated in order to detect and isolate 
faults. 

A residual generator can be constructed by 

 )k(ˆ)k()k( yyr −=  (2) 
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Fig. 1. Model based fault detection 
 

 

where: r(k) is the vector of residuals, y(k) and )k(ŷ  are vectors of measured and 
estimated outputs. Ideally, the residuals should only be affected by the faults, there-
fore when a residual deviates from zero a fault should be indicated. However, the 
presence of disturbances, noise and modeling errors causes the residuals to become 
nonzero interfering with the detection of faults. Therefore, the fault detection proce-
dure must be robust in the face of these undesired effects. Robustness can be achieved 
in the residual generation (active robustness) or in the decision making stage (passive 
robustness) [2]. The passive approach is based not in avoiding the effect of uncer-
tainty in the residual, but in propagating the effect of uncertainty to the residual. If the 
residual  

                                        [ ])k(),k()k(ˆ)k()k( rryyr ∈−=                             (3) 

no fault can be indicated, because the residual value can be due to the parameter un-
certainty.   

2.2   Passive Robustness Based on Interval Observers 

Instead of using directly the interval model of the monitored system to produce the 
output estimation, an observer will be considered. Considering a non-linear interval 
model, the interval observer equation with a Luenberger-like structure without noise, 
faults and disturbances is: 

                                     
ˆ ˆ ˆ( 1) ( ( ), ( ), ) ( ( ) ( ))

ˆ ˆ( ) ( ( ), ( ), )

k k k k k

k k k

+ = + −
=

x g x u ! K y y

y h x u !
                         (4) 

where: 
 
- x̂ ∈ ℜnx and ŷ ∈ ℜny are estimated state and output vectors of dimension nx and 

ny respectively; 
- K is the gain of the observer designed to guarantee observer stability for all 

"! ∈ . 
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The evaluation of the interval for estimated output provided by the interval observer 

(3): ( ), ( )k k! "# $y y in order to evaluate the interval for residuals: ( ), ( )k k! "# $r r will be 

computed by means of a worst-case (or interval) observation. It consists in comput-

ing a region of confidence for system state set ˆ
k+1X , based on the confidence region 

for the system parameters Θ, the previous confidence region for the system state set 
ˆ

kX  (in the case of one step algorithms), or the previous confidence regions for the 

system state set ˆ ˆ, ,k k L−…X X ( in the case of sliding time window algorithms) and the 
measurements available.  

The observer equation (4) can be reorganised as a system with one output and two 
inputs, according to  

                                           oˆ ˆ( k 1) ( ( k ), ( k ), )

ˆ ˆ( k ) ( ( k ))

+ =
=

ox g x u !

y h x
                                 (5) 

 

where: [ ]t
o )k()k()k( yuu =  and 

)),k(),k(ˆ()k()),k(),k(ˆ()),k(),k(ˆ( oo !uxKhKy!uxg!uxg −+=  is the observer 
non-linear function. Then, worst-case observation can be formulated as a worst-case 
simulation. 

3   Forward and Backward Tests in Fault Detection 

Because of the problems that can appear in interval observation and the complexity 
and computational exponential time for algorithms, passive robust fault detection for 
the interval non-linear models is far from a straightforward problem as it was shown 
in [15]. 
    In this paper we propose an alternative way to deal with the passive robust fault 
detection based on interval models. A new fault detection algorithm that combine 
approximate interval observation, that can be viewed as a direct interval mapping 
(forward test), with the use of the inverse interval mapping (backward test) using 
interval constraint satisfaction algorithms is proposed. In the forward test, a direct 
mapping based on an interval observer is used to propagate from step to step the in-
terval of the possible system outputs, and then checking if the measurement coming 
from sensors belongs or not to such interval. On the other band, in the backward test, 
an inverse mapping, also based on an interval observer, is used to check if the meas-
urement invalidates or not the interval model used to monitor the system. 

3.1   Forward Test for Fault Detection  

Model based fault detection using observers is based on estimating each system out-
put using measured inputs and outputs and the model. In fact, an observer can be 
viewed as a multi input single output (MISO) system according to (5). Then, consid-

ering the interval of uncertain parameters Θ , and assuming that k
og is the observer 
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function that transport the system from initial state to the present state, the forward 
interval propagation of Θ  will produce an interval hull for system states k"X or for 

system outputs k"Y  (considering in this case that ( )k k=y h x ) such that at time k 

will provide the following fault detection test: 

         ( )measured k ∉y k"Y → fault                         (6) 

         ( )measured k ∈y k"Y → no fault can be indicated                      (7) 

However, in practice the interval hull for system output k"Y is very hard to compute 
[13]. On the other hand, inner and outer approximations to this interval hull can be 

computed. An inner approximation of k"Y , denoted by k

#
"Y , can be computed by the 

vertex algorithm [8]. While an outer solution of k"Y , denoted by k

$
"Y , can be com-

puted for example using the optimisation algorithm presented in [14]. The use of 
these approximate solutions of k"Y will provide two different set of tests for fault 
detection: 
 

Table 1. Fault detection based on inner and outer solutions 
 

Outer solution fault detection test Inner solution fault detection test 

( )measured k ∉y k

$
"Y → fault 

( )measured k ∈y k

$
"Y → undetermined 

( )measured k ∉y k

#
"Y → undetermined 

( )measured k ∈y k

#
"Y → no fault  

 
 

These two sets of tests are complementary. The outer solution test allows to detect the 
faulty situations while the inner solution the non-faulty. There is an undecided zone 
corresponding to the following situation: 

                     ( )measured k ∈y k

$
"Y     but    ( )measured k ∉y k

#
"Y         (8) 

This region can only be reduced refining either the inner or the outer approximations 
of k"Y , but always at a high cost since some bisection mechanism should be intro-
duced. A fault detection algorithm that combine this inner and outer forward tests is 
proposed by [1]. 
    However, in case the forward test would be applied to an observer with multiple 
outputs (MIMO system), it would not work correctly in general. The reason is be-
cause the forward test represents the output space using intervals, but in general, this 
output space in the case of several outputs is not an interval but instead a more com-
plex region (in general non-convex if the observer is non-linear) since there are de-
pendencies between outputs and parameters. The phenomenon is intuitively illustrated 
in Figure 2 where it can be seen the spurious outputs included because the real region 
A’B’C’D’ is wrapped using a box. Then, for example, point S will belong to the out-
put envelopes in time domain. These spurious outputs corresponds to parameters in 
the white zone added to the original parameter presented in the Figure 2, i.e., the 
original parameter uncertain domain has been “artificially” augmented. Then, point S 
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can be obtained with a combination between one point from the initial states domain 
ABCD and one point from “augmented” white zone in the parameter uncertainty  
domain.  If point S belongs to the system output envelopes, the decision that point S 
corresponds to a normal behaviour is not correct in this case since it has been  
produced by a set of parameters out of the original parameter domain. As conclusion, 
in this paper the focus of the proposed algorithms will be on the case of multiple input 
and single output (MISO) observers where the output space can be correctly  
represented with an interval, leaving for further research the case of MIMO observers. 
 

 

Fig. 2. Inclusion of spurious outputs in the case of a multiple-output observer 

3.2   Backward Test for Fault Detection 

In this paper the fault detection test based on the combined used of inner and outer 
forward tests will be improved in the following way. Since outer solutions of k"Y  
solving the interval observation problem are generally hard to obtain [15] instead the 
following backward test is proposed to detect the faulty situations assuming zero 
initial conditions1: 
 

       "! ∈∃ such that ( ))()k( k
omeasured !ghy =                        (9) 

 

where Θ is the interval of uncertain parameters and k
og is the observer function that 

transports the system from initial state to the present state, and h is the measurement 
function. In case that such test is not verified a fault can been indicated, otherwise no 
fault can be indicated. Additionally, the backward test allows very easyly the inclu-
sion of additive bounded noise [ ]εε +− )k(,)k( measuredmeasured yy  being ε the noise 

bound.  
 

                                                           
1  In case that initial conditions are not zero can be easily included just modifying (9) adding 

oo Xx ∈∃ and considering the dependence of ( ))(k
o !gh  on the initial condition. 
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Alternatively, test (9) can be viewed as computing the set of parameters consistent"  

consistent with the measured output measuredy . Then, the backward fault detection can 
be stated as 
 

 ∅=∩ consistent"" → fault (10) 

 ∅≠∩ consistent"" → no fault can be indicated (11) 

 
 
The result  ∅≠∩ consistent"" in practice will result in an undecided test since it will 
be efficiently implemented using interval constraint satisfaction algorithms that use 
only local consistency and do not use bisections and provide only and outer solution 
for consistent"" ∩ , as it will be explained later (see Section 4).  

3.3   Forward-Backward Tests for Fault Detection 

In the forward fault detection tests presented in Table 1: 

-   the test based on an inner solution is used to check the consistency between a 
measurement and the interval model, testing if the measurement belongs or not 
to the predicted inner interval. In the case of passing the test no fault can be  
indicated, otherwise nothing can be stated, 

- while the test based on an outer solution is used to detect the fault occurrence  
when a measurement does not belong to the predicted outer interval since the  
interval model is invalidated. Otherwise, nothing can be stated.  

As it was presented in [15], in general ,it is very difficult to compute an outer solution 
for interval observation and therefore to prove that a measurement invalidates the 
interval model. In order to avoid this hard computational problem, here the forward 
test based on the outer solution will be substituted with a backward test based on 
interval constraint satisfaction that will allow to detect a fault when a measurement 
invalidates the interval model. It is known that the constraint propagation approach is 
a very powerful tool to proof the no-consistency. With such modification the fault 
detection strategy presented in Table 1, now it will be composed by two tests  
presented in Table 2. This fault detection strategy will be called in the following as 
forward-backward. 

Table 2. Fault detection based on forward and backward tests 

Backward fault detection test Forward (inner) fault detection test 

∅=∩ consistent"" →fault 

∅≠∩ consistent"" → undeterrmined 
( )measured k ∉y k

#
"Y → undetermined 

( )measured k ∈y k

#
"Y → no fault 
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Using the forward-backward test, of course, there still will be an undecided zone 
corresponding to the following situation: 
 

         ∅≠∩ consistent""     but    ( )measured k ∉y k

#
"Y                     (12) 

 
This region can only be reduced refining either the inner approximation of k"Y  either 

the backward test that provides consistent" , but always at a high cost since some bisec-
tion mechanism should be introduced. 

4   Implementation of Forward-Backward Algorithm  

Because of interval observation computational complexity associated to the computa-
tion of the exact output interval, the forward-backward algorithm has a practical sig-
nificance when applied to detect system faults on-line where real-time performance is 
required. The aim of this algorithm is not computing the exact interval for estimated 
measurements but instead on verifying if they are consistent with real measurements.  
    This algorithm is based on a two decision tests (Table 2). First test checks if real 
measurements are inside to inner approximation of the interval for estimated meas-
urements (forward) using a computational cheap algorithm. If a measurement belongs 
to the inner solution, the measurement does not invalidate the interval model. Second 
test is activated when measurements are outside the inner approximation of the inter-
val for estimated measurements (backward). In this case, the measurement is used to 
invalidate the interval model detecting the fault in case of invalidation is confirmed. 
This test guarantees that any fault that invalidates the interval model is detected. 

 

4.1   Implementation of the Forward Test  

The forward test requires an inner solution of the interval for estimated system out-
puts. Kolev’s algorithm [8] based on vertex simulation will produce an inner solution, 
i.e. a subset of solutions when the interval system is non-monotonic respect all the 
states. The inner solution provided by Kolev’s algorithm coincides with the exact 
interval hull of the solution set for some particular systems, in particular, in the case 
of systems without the wrapping effect, according to [10]. Those systems satisfy the 
isotonic property according to [3]. And, moreover, according to [8], for a constant 
input u(k)=u, the inner solution coincides over the time intervals [0,k1] and [k2,∞) 
with the exact solution. 
    Kolev’s algorithm provides an inner solution for the interval observation problem  

by determining the interval vector ! [ ])k(),k(k yyY
###

=  through the solution of the 

following global optimisation problems: 
 

))((min)t(and))((max)k( k
o

k
o !ghy!ghy == ##

                                (13) 
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subject to:   )(V "! ∈  where )( k
ogh denotes a solution of the output estimated tra-

jectory of interval observer (5) at time k for some value of the vector of parameters in 

)(V " that denotes the set of vertices of the uncertain parameter set " . The interval 

vector ! kY
#

 provides an inner solution of  ! [ ])k(),k(k yyY =  for time k since 

 
)k()k( yy ≥#
                     (14) 

)k()k( yy ≤#
        (15) 

 
because only a subset (the vertices) of the parameter set " are considered.   

 

4.2   Implementation of Backward Test  

The backward test can be viewed as the computation of the inverse image of  
measured output )k(measuredy , that it is known to belong to 

[ ]εε +− )k(,)k( measuredmeasured yy  assuming that the noise is bounded by ε,  through 
the observer output estimated trajectory providing the set of parameters consistent 
with it 

                                  ( )( ) )( measured
1k

oconsistent ygh"
−

=     (16) 

Once the set of parameters consistent with the measurement is obtained, the fault 
detection test is given by (10) and (11). 
    Jaulin in [7] has proposed an algorithm called SIVIA that computes the inverse 
image of an interval function using subpavings. However, when the dimension of the 
set to characterize is of high dimension since SIVIA uses bisection in all directions 
the computational complexity explodes. In this case the use of contractors and bisec-
tion when needed using constraint satisfaction principles (constraint projection) save a 
lot of computation.  
    An interval constraint satisfaction problem (ICSP) can be formulated as a 3-tuple 

),,( CDVH = , where { }n1 v,,v %=V  is a finite set of variables,  [ ] [ ]{ }n1 v,,v %=D  

is the set of their domains represented by closed real intervals and { }n1 c,,c %=C  is a 

finite set of constraints relating variables of V. A point solution of H is a n-tuple 
V∈)v~,,v~( n1 %  such that all constraints C are satisfied. The set of all point solutions 

of H is denoted by S(H). This set is called the global solution set. The variable iiv V∈  

is consistent in H if and only if: 

  
[ ] [ ] [ ]

)()v~,,v~(

)vv~,,vv~,,vv~(v

n1

nnii11ii

HS

V

∈
∈∈∈∃∈∀

%
%%

       (17) 

The solution of an ICSP is said to be globally consistent, if and only if every variable 
is consistent. A variable is locally consistent if and only if it is consistent with respect 
to all directly connected constraints. Thus, the solution of an ICSP is said to be locally 
consistent if all variables are locally consistent. Several algorithms can be used to 
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solve this type of problem, including Waltz’s local filtering algorithm [17] and  
Hyvönen’s tolerance propagation algorithm [5]. The first only ensures locally  
consistent solutions while the second can guarantee global consistent solutions.  
    The principle of algorithms for solving ICSP using local consistency techniques 
consists essentially in iterating two main operations, domain contraction and propa-
gation, until reaching a stable state. Roughly speaking, if the domain of a variable vi 
is locally contracted with respect to a constraint cj, then this domain modification is 
propagated to all the constraints in which vi occurs, leading to the contraction of other 
variable domains and so on. Then, the final goal of such strategy is to contract as 
much as possible the domains of the variables without loosing any solution by remov-
ing inconsistent values through the projection of all constraints. To project a  
constraint with respect to some of its variables consists in computing the smallest 
interval that contains only consistent values applying a contraction operator. 
    Being incomplete by nature, these methods have to be combined with enumeration 
techniques, for example bisection, to separate the solutions when it is possible.  
Domain contraction relies on the notion of  contraction operators computing over 
approximate domains over the real numbers.   
    According to (9),  the backward test can be formulated as an interval constraint 
satisfaction problem assuming again zero initial conditions 

   

                

[ ]
[ ]

( ))()k(

)k(,)k()k(

,,

k
omeasured

measuredmeasuredmeasured

!ghy

yyy

"!

=

+−∈
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εε
εεε

                                  (18) 

The function )( k
ogh  that denotes the output estimated trajectory from the initial con-

dition is growing with time. In case of stable interval observer, it can be approximated 

using a time window L, )( Lk
o

−gh  instead of solving it with respect to the initial state. 
These modifications reduce the computation time, allowing operation in real time. 
The length of L and its relation with the approximation degree introduced using this 
approach has been studied by [12] in case of linear observers. 
    The solution of the above ICSP, if there exist, will  only provide an outer approxi-
mation of consistent"" ∩  denoting the set of parameters consistent with the measure-
ment interval that belong to initial parameter set since local consistency is used. 
Therefore the fault detection test is undetermined when such outer approximation is 
not empty. On the other hand,  if  there is no solution, it means that there are no  
system parameter consistent with the measurement coming from the sensor and it can 
assured that a fault has occurred. The backward test based on ICSP can only be  
refined using bisections until an inconsistency is detection, or performing the  
consistency using more measurements taken at different time instances. 

4.3   The Forward-Backward Fault Detection Algorithm 

Finally, the proposed forward-backward algorithm fault detection algorithm can be 
formulated as: 
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Algorithm 1. Forward-backward fault detection algorithm 
 

a) Forward fault detection test (Vertex Simulation) 
 
The interval for the estimated system outputs k"Y  at time instant k using the inter-

val observer formulated as in (5) is obtained using vertex simulation (see Section 4.1). 
Let ( )measured ky  be the measurement coming from the sensor at time instant k. 

Then: 
 
- If ( )measured k ∈y k"Y → no fault can be indicated, i.e., the interval model is not 

invalidated by the   measurement 
- If ( )measured k ∉y k"Y  then GOTO b) 

 
b) Backward test (Parameter Consistency Check)  
 
An outer approximation of consistent"" ∩ is obtained solving ICSP (18) for each 

measurement (see Section 4.2). Then: 
- If  ∅=∩ consistent""  then model invalidated by ( )measured ky and then a fault 

can be indicated. 
- If ∅≠∩ consistent""  the test is undecided, being necessary more measurements 

to make a decision.  

5   Application 

The forward-backward fault detection algorithm will be tested using a real benchmark 
problem, pinpointing its advantages and drawbacks. 
    The example is based on the nozzle servosystem of a gas turbine and comes from 
the TIGER ESPRIT project [16]. The goal of TIGER project was to monitor a com-
plex dynamic system such a gas turbine in real-time and make an assessment of 
whether it is working properly.  

5.1   Interval Observer and Its Properties 

Mathematical equations that describe the behaviour of observer for the nozzle servo-
system are 

x1(k) = a1 x1 (k-1) + a2 (r (k)-x2 (k))+ a3(r (k-1)-x2 (k-1)) + a4                                  (19) 
x2 (k) = x2 (k-1) + θ1x1 (k-1) + θ2 

where: r is the set-point for the nozzle position in degrees , x1 is the input of the actua-
tor that positions the nozzles, x2 is the nozzle position in degrees and the system  
parameters were obtained from experimental data using parameter identification  
techniques being: 

 
a1 = 0.7572  a2 = 0.2298  a3 = 0.1202  a4 = 0.0202 
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with uncertain parameters: 
 

θ1 ∈ [0.1032, 0.3372]        θ2 ∈ [0.0155, 0.0923]        (20) 
 

Making some algebraically arrangements, the system matrix will be:  
 

1

1

0.7572 0.2298 0.35

1
A

θ
θ
− −! "

= % &
# $

                                                                           (21) 

 
This system suffers from the wrapping effect because do not fulfil the propriety of 
isotony2 (Cugueró, 2002). It can also be seen that the system suffers an instable wrap-

ping effect because the system matrix is not contractive3, since ( )1 1.3372A θ
∞

≤ .   

    Uncertain parameters in (20) are considered unknown in their intervals but time-
invariant (Puig, 2003a), i.e., 1θ  and 2θ  can be considered as extended states with the 

following dynamics: 
 

( ) ( )1 1 1k kθ θ= −                         (23) 

( ) ( )2 2 1k kθ θ= −                         (24) 

 
Then, the interval observer (19) is non-linear because of the products between pa-
rameters and system states. 

5.2   Inner and Outer Approximation of the Exact Output Estimated Interval 

In the Figure 3, the exact and the inner approximation of the estimated output interval 
are presented for a step input and initial conditions x1(0)=-4.5 and x2(0)=-0.42.  Note 
that the exact solution is obtained using GlobSol Solver [7] as a global optimiser with 
a precision 10-5 on a Pentium 475 MHz with a very high computational time [13]. The 
inner solution is obtained using Kolev’s algorithm. Because of the incompleteness of 
the method that generates the inner solution, it  does not coincide with the exact solu-
tion at any time instant. In this case because a  constant input is introduced, the inner 
solution coincides over the time intervals [ ]9,0k ∈   and [ )+∞∈ ,38k  with the exact 
solution, being consistent with results presented in [8].  

                                                           
2  A non-linear system has the isotony property iff the variation of the state function respect all 

the states and parameters is positive. 
3  A non-linear function : n nf R R→  is a contraction mapping means that if there is a number s, with 

0<s<1, so that for any vectors x and y we must have ( ) ( ) ( ), ,d f x f y sd x y≤! "# $ where s is the con-

tractivity. As special in case of linear systems s∞ =A .  
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Fig. 3. Exact and inner approximation of the estimated output interval 

 
In the Figure 4, the exact, inner  and various outer solutions with different degree 

of approximation of the estimated output interval are presented. The outer approxima-
tions of the estimated output interval are obtained solving the following consistency 
problem considering as it has been stated in (23) and (24) that uncertain parameters 
are time-invariant: 

’
−

=

−−+==
1k

0j
2121

j1k
211 ),(B),(A)0(x),(A)k(x)k(ŷ θθθθθθ  

θ1 ∈ [0.1032, 0.3372] 
 
θ2 ∈ [0.0155, 0.0923]  
 

( )+∞∞−∈ ,)k(y  
 
where: 
 

 1

1

0.7572 0.2298 0.35

1
A

θ
θ
− −! "

= % &
# $

 and 2

2

0.2248 0.2298
B

θ
θ

− −! "
= % &

# $
. 

 
using the Proj2D Solver [9] selecting different values for precision parameter ε . This 
precision parameter measures the number of bisections. Decreasing the precision 
parameter, the consistency problem solution tends to be global consistent, however 
the computation time increases a lot. 
    In order to obtain a non divergent outer solution the precision parameter must  
be decreased as it can be observed in Figure 4. For outer solution computation, the 
computational time is very big. For instance, selecting as the value for the precision 
degree 0.02ε = , the computational time is 180 s at time instant t=10 s, 297 s at time 
instant t=11 s, and 798 s at time instant t=13 s. These results allow to show the high 
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computational complexity required to compute a non-divergent outer solution as it has 
been stated in Section 3.1. This is the main motivation to introduce an alternative way to 
obtain the same fault detection results than the ones provided by the outer forward test. 

 
Fig. 4. Exact, inner and  outer approximations of the estimated output interval with different 
degree of precision 

5.3   Forward- ackward est 

In the Figure 5 (a), it is illustrated the situation when a measurement falls outside the 
inner solution. Because of its incompleteness, the backward test is activated, as a 
complementary test, in order to check the consistency between the measurement and 
the output interval estimation provided by the interval observer. In case of a solution 
is found (Figure 5(b)), the algorithm will be in the undecided situation according to 
Algorithm 1, because an outer approximation of consistent"" ∩  is obtained by solving 
the ICSP (18). 

 

 
         (a)        (b) 

 
Fig. 5. (a) Forward and (b) backward test in case that backward test is undetermined 

B  T
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In the next time step, the measurement continues to be outside the inner solution, 
then again the backward test is activated (Figure 6(a)). However, in this case accord-
ing to Figure 6(b) the backward test will provide an inconsistency, i.e., the measure-
ment invalidates the interval model. Then, a fault occurrence can be assured. From 
Figure 6(a), it can be observed that at this time step the measurement also is out of the 
exact solution and it would be detected if it could be computed. 

 

 
         (a)               (b) 

 
Fig. 6. Forward and backward test in case that backward test is determined 

  
As it can be observed from this case study, the forward-backward algorithm is a 

powerful tool for fault detection. The advantage of this algorithm is that the very hard 
computational and possible more conservative outer solution is not needed. Only a 
cheaper computational inner solution computed on line with the real process is re-
quired. When a measurement falls outside the inner solution, the backward test will be 
activated. This test is not so computationally intensive as the outer approximation is, 
because it makes uses of local consistency algorithms based on contractors avoiding 
the use of bisections. However, there is still an undecided zone bigger than the dis-
tance between the inner and exact solution.  This undecided zone exceeds the exact 
solution because of the local consistency used. It can only be reduced using bisections 
in the backward test or more measurements taken at different time instants. 

   6   Conclusions 

Considering the problems that appear in interval observation using regions or real 
trajectories [15], a new algorithm for fault detection is proposed. This algorithm uses 
a vertex simulation (forward test) to compute an inner approximation of the estimated 
output interval because of its lower computational complexity. However, because of 
the incompleteness of such test, a backward test based on interval constraint satisfac-
tion is used when a measurement coming from the sensor falls outside the inner solu-
tion. When this measurement belongs to the region between the inner solution and the 
exact solution (unknown), the backward test solving the ICSP using local consistency 
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provides an nonempty outer approximation of consistent"" ∩  and we cannot decide 
that this measurement represents a faulty or a normal situation. However, when the 
measurement is outside the undecided zone, the consistency test provides very 
quickly that the outer approximation of consistent"" ∩ is empty assuring that a fault 
occurred. Finally, this new fault detection algorithm has successfully been applied to 
detect faults in a nozzle servosystem of gas turbine.  
    In conclusion, this forward-backward algorithm is developed in order to be applied 
in fault detection applications where real-time operation is needed.  
    As a future work we want to minimise as much is possible this undecided zone, and 
to combine the forward-backward algorithm with another tests in order to decide 
about the measurements that belong to the undecided zone.  
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Abstract. Model-based fault detection is based on generating a difference, 
known as a residual, between the predicted output value from the system model 
and the real output value measured by the sensors. If this residual is bigger than 
a threshold, then it is determined that there is a fault in the system. Otherwise, it 
is considered that the system is working properly.  However, it is very impor-
tant to analyse how the effect of model uncertainty is taken into account when 
determining the optimal threshold to be used in residual evaluation. In case that 
uncertainty is located in parameters (interval model), an interval observer has 
been shown to be a suitable strategy to generate such threshold. However, in-
terval observers can present several problems that in order to be solved, existing 
approaches require computational demanding algorithms. The aim of this paper 
is to study the viability of using region based approaches coming from the  
interval analysis community to solve the interval observation problem. Region 
based approaches are appealing because of its low computational complexity 
but they suffer from the wrapping effect. On the other hand, trajectory based 
approaches are immune to this problem but their computational complexity is 
higher. In this paper, these two interval observation philosophies will be pre-
sented, analysed and compared using in two examples. 

1   Introduction 

Fault detection methods based on the mathematical model of the system use the dif-
ference between the predicted value from the model and the real value measured by 
the sensors to detect faults. This difference known as residual will be compared with 
a threshold value. If the residual is bigger than the threshold, then it is determined that 
there is a fault in the system. Otherwise, it is considered that the system is working 
properly. However, when modelling a physical dynamic system with a mathematical 
model, there is always some uncertainty that will interfere in the detection process. In 
the case of uncertainty in the parameters, a model whose parameter values are 
bounded by intervals, known as an interval model, is usually considered. The robust-
ness of a fault detection system means that it must be only sensitive to faults, even in 
the presence of model-reality differences [2]. Robustness can be achieved at residual 
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generation or evaluation phase. Most of the robust residual evaluation methods are 
based on an adaptive threshold changing in time according to the plant input signal 
and taking into account model uncertainty. These last years the research of adaptive 
thresholding algorithms that use interval models for fault detection has been a very 
active research area [20]. In [22] interval observers applied to robust fault detection 
have been introduced and an algorithm based on optimisation based interval simula-
tion is proposed [23]. However, the computational complexity of this approach is 
high, so less computational demanding algorithms should be devised. This is the aim 
of this paper. To achieve this goal, region based approaches coming from the interval 
analysis community will be analysed since their low computational complexity.  
However, they can suffer from the wrapping effect.  
    The structure of the rest of the paper is the following: in Section 2, fault detection 
based on interval observers is presented. In Section 3, problems associated to interval 
observation are introduced. In Section 4, region based approaches are presented while 
in Section 5 trajectory based approaches are considered. Finally, in Section 6, two test 
examples will be used to compare their performance with trajectory based approaches 
that are immune to this problem but whose computational complexity is higher.  

2   Robust Fault Detection 

2.1   Residual Generation and Robustness Issues  

Considering a non-linear dynamic system in discrete-time with disturbances (or 
noises) d(k),  faults f(k) and the modeling uncertainty located in parameters θ that 
affect the behaviour of the system, the state-space relationship can be written as 

                                   

                      
)),k(),k(),k(),k(()k(

)),k(),k(),k(),k(x()1k(

θfduxhy

θfdugx

=
=+

                            (1) 

where: 

-  x∈ ℜnx, u∈ ℜ nu and y∈ ℜny are state, input and output vectors of dimension nx, 
nu and ny respectively; 

- d∈ ℜnd, n∈ ℜnn and f∈ ℜnf are process disturbances, measurement noise and 
faults of dimension nd, nn and nf respectively; 

- g and h are the state space and measurement non-linear function ; 
- θ is the vector of uncertain parameters of dimension p with their values bounded 

by a compact set Θθ∈ of box type, i.e., }|{ p θθθθΘ ≤≤ℜ∈= . This type 

of model is known as an interval model. 
 
    Model-based fault detection algorithms generally consist of two stages [2]: 

- Residual generation: The model and the input/output measurements are used 
to determine residuals, which describe the degree of consistency between the 
plant and the model behaviour. 
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Fig. 1. Model based fault detection 

- Residual evaluation: The residual is evaluated in order to detect and isolate 
faults. 

    A residual generator can be constructed by 

                                              )k(ˆ)k()k( yyr −=                                                  (2) 

where: r(k) is the vector of residuals, y(k) and )k(ŷ  are vectors of real and  estimated  

measurements. Ideally, the residuals should only be affected by the faults. However, 
the presence of disturbances, noise and modeling errors causes the residuals to be-
come nonzero interfering with the detection of faults. Therefore, the fault detection 
procedure must be robust in the face of these undesired effects.  Robustness can be 
achieved in the residual generation (active robustness) or in the decision making 
stage (passive robustness) [2]. The passive approach is based not in avoiding the 
effect of uncertainty in the residual, but  in  propagating  the  effect  of  uncertainty  to  

the residual. Let [ ])k(ˆ),k(ˆ yy be the interval for predicted output using model (1) 

considering parameter model uncertainty, then no fault can be indicated while the 
residual satisfies 

[ ] [ ])k(),k()k(ˆ),k(ˆ)k(ˆ)k()k( c rryyyyr =−∈−= ∆∆                                        (3) 

where: ))k(ˆ)k(ˆ(
2

1
)k(ˆ c yyy +=  is the predicted output interval centre and 

))k(ˆ)k(ˆ(
2

1
)k(ˆ yyy −=∆  its radius. Otherwise, a fault should be indicated. 

Of course this approach has the drawback that faults that produce a residual devia-
tion smaller than the residual uncertainty because of parameter uncertainty will be  
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missed. Test (3) is equivalent to check if the measured  output belongs to  the  interval  

of predicted outputs, i.e., to check if [ ])k(ˆ),k(ˆ)k( yyy ∈ . 

2.2   Passive Robustness Based on Interval Observers 

Instead of using directly the model of the monitored system to estimate the interval of 

estimated outputs [ ])k(ˆ),k(ˆ yy , an observer  for this system will be considered.  

    A non-linear interval observer equation with a Luenberger-like structure for the 
system (1) can be introduced as a generalisation of a linear interval observer [22]: 

               
ˆ ˆ ˆ( 1) ( ( ), ( ), ) ( ( ) ( ))

ˆ ˆ( ) ( ( ), ( ), )

k k k k k

k k k

+ = + −
=

x g x u θ K y y

y h x u θ
                                            (4) 

where: 

- x̂ ∈ ℜnx and ŷ ∈ ℜny are estimated state and output vectors of dimension nx and 

ny respectively; 
- K is the gain of the observer designed to guarantee observer stability for all 

Θθ∈ . 
 

The interval for estimated outputs provided by the interval observer (4), that will 

allow to evaluate the interval for residuals: ( ), ( )k k⎡ ⎤⎣ ⎦r r , will be computed by means 

of an interval (or worst-case) observation. This consists in approximating at each 

time iteration  the  set of estimated system states )k(X̂  and outputs )k(Ŷ  by its inter- 

val hull (the least interval box that contain this region), based on the set of uncertain 
parameters Θ,  the previous approximations of the sets of estimated states 

)0(ˆ),...,1k(ˆ XX −  and the measurements available y(k-1)… y(0).  

    The observer equation (4) can be reorganised as a system with one output and two 
inputs, according to  

                                          ( )
oˆ ˆ( k 1) ( ( k ), ( k ), )

ˆ ˆ( k ) ( ( k ), k , )

+ =
=

ox g x u θ
y h x u θ

                                   (5) 

 

where: [ ]t
o )k()k()k( yuu = and

)),k(),k(ˆ()k()),k(),k(ˆ()),k(),k(ˆ( oo θuxKhKyθuxgθuxg −+=  is the  observer  

non-linear function. Then, worst-case observation can be formulated as a worst-case 
(or interval) simulation. Existing algorithms can be classified according to if they 
compute the output interval using: one step-ahead iteration based on previous  
approximations of the set  of  estimated  states  (region  based  approaches),  or  a  set  
of point-wise trajectories  generated  by  selecting  particular  values  of  Θθ∈   using  
heuristics or optimisation (trajectory based approaches). In this paper, these two 
groups of approaches will be compared. 
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3   Problems in Worst-Case Observation  

Since the problem of worst-case observation can be reformulated as a problem of 
worst-case simulation, all the problems affecting worst-case simulation using inter-
vals should be taken into account when dealing with worst-case observation [21]. 
These problems are described in the following. 

3.1   The Wrapping Effect 

The problem of wrapping is related to the use of a crude approximation (the interval 
hull) of the interval observer solution set and its iteration using one-step ahead recur-
sion of the state space observer function. This problem does not appear if instead the 
estimated trajectory function ),,,k(ˆ θyux  is used. On the other hand, when using the 

one-step ahead recursion approach, at each iteration, the true solution set )k(X̂  is 

wrapped into a superset feasible to construct and to represent the real region on a 
computer (in this paper,  its interval hull □ )k(X̂ ).  Since the overestimation of the 

wrapped set is proportional to its radius, an spurious growth of the enclosures can result 
if the composition of wrapping and mapping is iterated [10]. This wrapping effect can 
be completely unrelated to the stability properties of the observer, and even stable ob-
servers are shown to exhibit exponentially fast growing enclosures that are useless for 
practical purposes. Not all the interval observers exhibit this problem. It has been shown 
that those that are monotone with respect to states do not present this problem. This kind 
of observers (systems) are known as isotonic [4] or cooperative [7].  

3.2   The Interval Function Range Evaluation 

Many approaches to interval observation need to evaluate the range of an interval 
function at each iteration in order to determine the interval for systems states. One 
possibility for evaluating the range of the function is to use interval arithmetic 
[12][13]. But, although the ranges of basic interval arithmetic operations are exactly 
the ranges of the corresponding real operations, this is not the case if the operations 
are composed. This phenomenon is termed as interval dependence or multi-incidence 
problem [12][13]. 

3.3   The Uncertain Parameter Time Dependency  

An additional issue should be taken into account when an interval observer, as (4), is 
used: uncertain parameter time-invariance is not naturally preserved using one-step 
ahead recursion algorithms. If one-step recursion scheme is used, the set for system 
states X(k+1) is approximated by a set computed using previous sets approximating 
system state region X(k) and the set for uncertain parameters Θ. Then, the relation 
between parameters and states is not preserved since every parameter contained in the 
parameter uncertainty region Θ is combined with every state in the set approximating 
state region X(k) when determining the new set approximating state region X(k+1).  
Thus, recursive schemes based on one-step are intrinsically time varying. Time-
invariance in parameters can only be guaranteed if the relation between parameters 



176 A. Stancu et al. 

 

and states could be preserved at every iteration. One possibility to preserve this  
dependence is to derive a functional relation between states and parameters at every 
iteration that will transport the system from the initial state to the present state. Then, 
two approaches about the assumption of the time-variance of the uncertain parameters 
are possible: 
 
• The time-varying approach which assumes that uncertain parameters are un-

known but bounded in their confidence intervals and can vary at each time step 
[6][19]. 

• The time-invariant approach which assumes that uncertain parameters are un-
known but bounded in their confidence intervals and they can not vary at each 
time step [8], [18]. 

4   Approaches Using Regions 

All the algorithms described in this section produce only an outer (conservative) solu-
tion for worst-case observation.  The propagation mechanism used in these algorithms 
produces an approximating region that includes all possible states in the exact solu-
tion region of estimated states based on previous approximating regions, but also 
includes spurious states. Therefore, the introduction of spurious states will inflate the 
uncertainty region, resulting in a superset of solutions that provides therefore an outer 
solution and producing in many cases an unstable simulation/observation. In this 
section algorithms that propagate regions developed by Moore [12][13], Lohner [11], 
Neumaier [15] and Kühn [10] will be presented and analysed regarding the problems 
presented in Section 4. 

4.1   Moore’s Algorithm [12][13] 

The absolute Moore’s algorithm is based on computing and propagating the interval 
hull of set of possible estimated states )k(X̂ , i.e., the smallest interval vector contain-

ing it: 

    ˆ ˆ ˆ( k ) ( k ), ( k )⎡ ⎤= ⎣ ⎦X x x!                    (6) 

 
where !  is used to denote the interval hull of )k(X̂  and it can be computed deter-

mining for each component )k(x̂i  the maximum and the minimum according to 

i i

ii

ˆˆˆ ˆx ( k ) max { x ( k ) : ( k ) ( k )}

ˆˆˆ ˆx ( k ) min { x ( k ) : ( k ) ( k )}

= ∈

= ∈

x X

x X
                (7) 

    When the wrapping effect is present, the absolute Moore’s algorithm diverges very 
quickly. In order to improve the absolute algorithm, Moore has proposed a relative 
algorithm based on the interval mean-value theorem1. The advantage of the relative 

                                                           
1 Mean Value Theorem: if f: Rn → R is continuously differentiable on D ⊆ Rn and [a] ⊆ D, then, for any x 

and b ∈[a], f(x)=f(b)+f’(ξ)(x-b) for some ξ∈[a]. 
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algorithm at reducing the wrapping effect is that the region of system states is  
enclosed at each iteration in a moving co-ordinate system that matches the solution 

set. Associated with the set ˆ ( k )X!  is the central estimate cˆ ( k )x  defined as follows:  

 

))k()k((
2

1
)k(ˆ c xxx +=                         (8) 

    Then, state equations of interval observer (4), formulated as (5) can be linearised 

about the central estimate )k(ˆ cx  of  ˆ ( k )X!  as: 
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θ θ
θ         (9) 

as in the Extended Kalman Filter (EKF) [24]. Introducing: 

0

ˆ ( )

( , , )
( ( ), )

c k

k
=

∂
=

∂
0

c
x x

g x u
A x

x

θθ                (10) 

then (9) can be rewritten as: 

0 c c
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c
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A x x x

θ θ
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         (11) 

    The relative Moore’s algorithm is presented in the following. 
 

Algorithm 1. Relative Moore algorithm 
 
Assuming that 0)0( Xx ∈ : 

- compute the central estimate )k(ˆ cx  of ˆ ( k )X!  

- propagate ˆ ( k )X!  using the interval mean-value theorem:  

 

0 c c
ˆ ˆ ˆˆ ˆ( k 1) ( ( k ), ( k )) ( ( k ))( ( k ) ( k ))+ ∈ + −X g x u A X X x! ! !                        (12) 

 

where: 0 cˆ( ( k ), ( k ))g x u  is ( ) ( )( )0ˆ , ,k kg x u0 θ  computed in the linearisation point 

and ˆ( ( k ))A X!  represents the interval Jacobian function. 

 

    However, this method still suffers from the wrapping effect for non isotonic and in 
some ill-conditioned systems, as for example, systems with eigenvalues with very 
different magnitudes [14]. 

Because the Moore’s algorithm was developed only for state uncertainty, when the 
systems parameters are allowed to contain intervals too, these parameters can be con-
sidered as an additional time-invariant uncertainty states according to Puig [19]. 

 
 



178 A. Stancu et al. 

 

4.2   Lohner’s Algorithm [11] 

In those cases where Moore’s algorithm is ill-conditioned, the algorithm should be 
modified according to Lohner [11]: 

ˆ ( k 1) ( k 1) ( k 1)+ = + +X S Z! !  

1

1
0 c

ˆ( k 1) ( k 1) ( ( k )) ( k ) ( k )

ˆ( k 1) ( ( k ), ( k ))

−

−

+ = +

+ +

Z S A X S Z

S g x u

! ! !
 (13) 

where S(k) is determined using a QR-factorisation method according to: 
 

ˆ(0 )= (0 )Z X! !   and  (0) =S I  

ˆ ˆ( k ) m( ( ( k ))) ( k )=S A X S!  

                  
ˆ ( k ) ( k ) ( k )

( k 1) ( k )

=
+ =

S Q R

S Q
                   (14) 

 
    It is advisable to apply a pivoting strategy prior to the QR-factorization by sorting 

the columns of ˆ ( k )S  appropriately. The columns of this matrix span a good ap-

proximation of the exact solution set according to Lohner [11]. 
    In case of a system including the uncertainty in the parameters, it must be used 
again the extended system (parameters as time-invariant states) [19]. 
    One explanation why this method is successful at reducing the wrapping effect is 
that the region of system states is enclosed at each iteration in a moving orthogonal 
co-ordinate system that matches the solution set. Lohner has proposed the orthogonal 

transformation in order to obtain the matrix product 1 ˆ( k 1) ( ( k )) ( k )− +S A X S  upper 

triangular and in this case the condition for avoiding the wrapping effect 

( ) ( )ρ ρ=A A  is satisfied [14]. If the parameters are allowed to contain intervals 

too, then the upper triangularity will be satisfied only for the nominal value for the 

interval ˆ( ( k ))A X! . If for the interval matrix A: ( ) ( ) 1ρ ρ< <A A , then the 

Lohner’s algorithm will produce an outer solution. And, if ( ) 1ρ <A  and ( ) 1ρ >A  

the Lohner’s algorithm will produce an unstable simulation/observation. 

4.3   Neumaier’s Algorithm [15] 

Instead of using an interval hull of the set of possible estimated state )k(X̂ , Neumaier 

[15] proposes to use ellipsoids as enclosure sets and a new method for reducing the 
wrapping effect based on an interval ellipsoid arithmetic. In this paper, only the algo-
rithm for the linear case will be presented. The extension for the non-linear case is a 
very simple task, since the non-linear system will be again linearised around the  
estimated trajectory [15].  
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    An ellipsoid is the set of the form:  

{ }0r,r,),,( n >≤ℜ∈+= ξξLξzrLzE                                  (15) 

where nℜ∈z  is the centre, nn×ℜ∈L  is the axis matrix and ℜ∈r is the radius. 
    The algorithm consists in propagating separately the center and the radius of the 
ellipsoid, being implicitly relative. Briefly it can be resumed as follows: 
    At each iteration, the radius of the new ellipsoid that enclose the uncertain domain 
with the relation is computed: 

 
1 1r r q− −≤ +# L B L D ,          (16) 

where: L is the ellipsoid shape, ( )mid≈B AL , 

( )' '
1 1 ,..., n nDiag d d r d d r≈ + +D ,        (17) 

( )mid≥ + − +d Az b Az b , A is the interval system matrix, and z represent the  

ellipsoid centre, 

( )' mid≥ −d AL AL  , 1 1 'q r− −≥ +D d D d .     (18) 

    The smallest box containing the ellipsoid ( ), , rE z L  is 

( ) [ ]: , , , ir r r •= = + −!x E z L z L ,       (19) 

where i•  represent the i-th row of the matrix L. 
    Using this algorithm, the parameters uncertainty can be managed without consider-
ing the extended system (including parameters as extra states) as in the case of 
Moore’s and Lohner’s algorithms. 
    The advantage of using ellipsoids instead of parallelepipeds is that the rotation of 
the state space of the interval system is implicitly in the case of ellipses propagation 
being not necessary to make additionally computations.  
    The disadvantage is that the algorithm for computing with ellipsoids is more com-
plicated than computing with parallelepipeds, as in Moore and Lohner algorithms. 
Another drawback is that using the ellipsoids as enclosure sets there are some initial 
states, if the initial region of uncertainty is given by a box, that are not taken into 
account in case of taking the minimum volume ellipsoid fitting inside the box, obtain-
ing  then, a reduced space of possible states.  

4.4   Kühn’s Algorithm [10] 

Kühn’s algorithm is based on approximating the region of system states using  
zonotopes. 
    A zonotope Z of order m is the Minkowski sum 

m1 PP ++= $Z        (20) 
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of m parallelepipeds iP  (Figure 2). The order m is a measure for the geometrical 
complexity of the zonotopes. It can be chosen freely and is a performance parameter 
for the Kuhn’s algorithm.  
    Given the zonotope 1k−Z  enclosing the set of estimated states   )1k(X̂ −  by sys-

tem observer (3), then the set of estimated states )k(X̂ is enclosed by the following 

zonotope 
                                        )( 1kkkk −+= ZRZ TE                        (21) 

 
where kT are square matrices and kE are intervals such that 

1kkk1k )( −− +⊆ ZZ TEf          (22) 

 

 

Fig. 2. A zonotope of order m=14 
 

 
and the reduction operator R is defined in the following way: let 

m1 PPP 0 +++= $Z be a m+1 zonotope and m1 ≤≤ % be the largest integer such 
that the following relation between diameters holds: 

                         )(diam)diam( 11 %%$ PPPP 0 ≥+++ −          (23) 

or 1=% otherwise, then: 

=:)(ZR □ m11 ) PPPP(P 0 ++++++ + $$ %%           (24) 

    For the uncertainty in the parameters, the extended system (parameters as  
time-invariant states) must be used [19] as in the case of Lohner’s and Moore’s  
algorithms. 
    Kühn’s algorithm can manage a uncertainty propagation better that the Lohner’s 
and Neumaier’s algorithms because it uses zonotopes for enclosing the uncertainty 
instead of using a naive box enclosure. However,  if the system is non isotonic  
and non contractive, the zonotope that includes the family of zonotopes at each time 
instant still will include spurious states that can derive in an unstable simula-
tion/observation, especially in the case of parameter uncertainty. 
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5   Approaches Using Real Trajectories  

In this section, algorithms based on propagating real trajectories instead of regions, 
developed by Kolev [9] and Stancu [25], will be presented.  

5.1   Kolev’s Algorithm [9] 

According to Kolev [9], the following approximate solution to the interval simulation 
problem that provide an inner solution can be obtained by determining the interval 

vector [ ] [ ])k(),k()k( xxx
&&& =  by solving the following global optimisation problems: 

),,k(min)k(

and

),,,k(max)k( o

uθxxx

uθxxx

o,=

=

&

&

 

subject to:      

)(V Θθ∈   

)X(V oo ∈x             (25) 

where )(V Θ and )X(V o denotes the set of vertices of the uncertain parameters and 

initial states sets, respectively.  This interval simulation algorithm is known as a  
vertices algorithm. 
    According to Nickel [16], the inner solution provided by the vertices algorithm 
coincides with the exact interval hull of the solution set for some systems, those  
without the wrapping effect that verify that their state function is isotonic with respect 
to all state variables [4]. Moreover, for such systems, region based approaches and  
trajectory based approaches will provide the same results.  

5.2   Optimisation Algorithm [25] 

Finally, another algorithm for simulating/observing an interval linear system coming 
from the fault detection community was proposed in [25]. The algorithm is an  
extension of Puig’s algorithm [23] for the non-linear case.   
    This algorithm is based on a linearisation of the state equations about the current 
state estimate according to (9), as in the Extended Kalman Filter (EKF), combined 
with an optimisation of the possible trajectories from the initial state to avoid the 
wrapping effect and parameter time-invariance problems. The idea of using linearisa-
tion to deal with the problem of interval observers has also been proposed by Shamma 
[24] and Calafiore [3]. Linearisation is required in order to design a stable observer, 
since linearised observer presented in (11) is linear parameter varying (LPV) where 
the scheduling variable is the central estimate ˆ ( )c kx . Then, a stable observer for such 

an LPV observer can be obtained using LMI techniques [5]. 
    Once the linearised observer is introduced, a similar optimisation based algorithm 
as is proposed in Puig [23] will be applied. 
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Algorithm 2. Interval observer based on optimisation 
 
Let )}1k(),...2(),1(),0({ −= yyyyy  be a measurement trajectory of system (1) 

and assuming that uncertainty on initial state is 0)0( Xx ∈ : 

 

- at each time step compute □ )k(X̂ [ ])k(ˆ),k(ˆ xx= ,  solving  the following optimisa-

tion problem for each component of x(k) to determine )k(x̂ : 
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∈
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=

−−−−+
−−=

=

                                                             (26) 

where: )),k(),k(ˆ( 00 θuxg  is the state space observer function and 

[ ]t
o )k()k()k( yuu = is the observer input 

- and solving again the previous optimisation problems substituting min by max to 

determine )k(x̂ . 

    The previous algorithm guarantees that ˆ ( k 1)+!X  includes the real uncertainty  

region since it is implicitly applied the mean-value theorem: 

0 c

c

ˆ ˆ( k 1) ( ( k ), ( k ))

ˆ ˆ ˆ( ( k ), )( ( k ) ( k ))

+ ∈

+ −
0X g x u

A X X x

!
! !θ

       (27) 

    One of the main drawbacks of this approach is the high computational complexity 
of the optimisation algorithm since at each iteration an additional restriction is added. 
So, the amount of computation needed is increasing with time being impossible 
to operate over a large time interval. Then, some kind of approximation should be 
introduced to make the approach more tractable. The length increase problem in the 
previous approach can be solved if the observer (5) is asymptotically stable.  
    Along a particular estimate trajectory )k(ˆ ex  and for a given Θθ∈  using (11) 

again to approximate the non-linear observer, the following linear parameter varying 
system can be introduced 

ˆ ˆ ˆ ˆ( ) ( ( 1), ) ( 1) ( ( 1), ) ( 1)e e nk k k k k= − − + − −x A x θ x B x θ u          (28) 
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with: 

)),1k(ˆ(
~

e θxAA −= , [ ])),1k(ˆ(
~

e θxAIB −=  and  

[ ]teoeon )1k(ˆ)),k(),k(ˆ()k( −= xθuxgu . 

    Substituting  recursively equation (28) in the objective function of (26) the follow-
ing objective function can be obtained 

 
1

0
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e n
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k k k j j j
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=
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where:  

∏
−

=
=

1k

jp
e )),p(ˆ(),j,k( θxAθΦ     (30) 

what allows to reformulate the optimisation problem (26) as it was done in [21] in the 
case of time-invariant linear interval observation algorithm, taking as estimated trajec-
tory the central estimate )k(ˆ cx : 
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   (31) 

    If the interval observer (5) were a linear time-invariant (LTI) system, stable for all 
Θθ∈ , then it would exist a temporal horizon L such that:  

( ) 1L

∞
<θA      (32) 

for all Θθ∈  that can be determined using results presented in [23].  Then, the inter-
val observation produced by (26) using this temporal horizon will avoid the instabili-
sation effects produced by the wrapping effect. However, since the linearised interval 
observer (28) is a linear parameter varying system, in order to apply the same idea, 
the following assumption is proposed: 

 
Assumption 1: 

Condition (32) for a stable linear parameter varying (LPV) observer will imply: 

( ) ( ) ( )1, , , 1k L k L k− − + ∞
<…A x A x A xθ θ θ        (33) 

for all Θθ∈ . 
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    Then using such approximation, the Algorithm 2 can be formulated in a more trac-
table way since, for any time k, the optimisation problem (26) will be approximated 
using a sliding window, starting at time k-L and ending at k, according to 
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    (34) 

where L is the length of this window that satisfies the relation (33). 
    The linearised observer (21), proposed in this section to approximate Algorithm 1, 
allows to solve two stabilisation problems: 

• the first consists in designing of a stable observer (K) using LPV observer theory 
[5],  

• and the second consists in determining a time window (L) using Assumption 1 
such that avoids the instability produced by the wrapping effect and preserve  
uncertain parameter time invariance.  

    If the interval observer satisfies the isotony property, i.e. the variation of the state 
function (4) respect all the states is positive, only the first stabilisation problem should 
be considered since the wrapping effect is not present [24]. 

6   Comparison of the Algorithms 

This section is dedicated to test all the algorithms presented in this paper. Two bench-
mark problems will be used. The first example is based on an interval system used as  
a case study by Neumaier [15] while the second one is a complex non-linear system 
proposed in an European project DAMADICS [1] as a fault detection benchmark.  
    In order to show the effectiveness in propagating state uncertainty previous  
algorithms will be tested when applied to solve the interval observation problem in 
the hardest conditions, i.e., when observer gain L is equal to zero (interval simula-
tion). It is known that selecting the observer gain adequately, the resulting observer 
could satisfy the condition of isotony [7] and all algorithms will provide the same 
results. It is an open problem to be addressed in further papers the design of the ob-
server gain in order to satisfy such condition and at the same time the fault detection 
and stability requirements, among others. 
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6.1   Test Example 1 

First, an example proposed in Neumaier [15] will be used in order to compare  
algorithm’s performance:   

         

( ) ( )

1 1 2 1

2 1 2 2

( ) ( 1) ( 1)

( ) ( 1) ( 1)

1

x k px k px k b

x k px k px k b

p k p k

= − + − +
= − − + − +
= −

                      (35) 

with uncertain initial conditions: [ ]1(0) 1,1x ∈ − , [ ]2 (0) 1,1x ∈ −  

and parameters: [ ]1212
1 10,10b −−∈ , [ ]1212

2 10,10b −−∈ and [ ]0.4,0.5p ∈ . 

    Since the interval system matrix
p p

A
p p

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 do not fulfils the condition of 

isotony, the system suffers from the wrapping effect . 
    For the given interval on the system parameter p, the system will be at limit con-

tractive, i.e. ( ) 1A p
∞

= .In this case, the algorithms which use the region propaga-

tion2, except the naive approach based on the absolute Moore’s algorithm (Section 
5.1), avoid the instability because of the wrapping effect, but only provide an outer 
solution with a certain degree of conservatism depending on the kind of the geometry 
used to approximate the real uncertainty region. Neumaier’s (Section 5.3) and Kühn’s 
(Section 5.4) algorithms provide a better approximation, since the use the ellipsoids 
and zonotopes (of order m=5), respectively, than Lohner’s (Section 5.2) algorithm 
which use parallepipeds. In this example, Kolev (Section 6.1) and optimisation (Sec-
tion 6.2) algorithms provide the same results.  

 

 

Fig. 3. Comparison between the algorithms in the case ( ) 1A p
∞

=  

                                                           
2 The algorithms from Section 4 were implemented using INTLAB V3.1 package and 

MATLAB 6.5, except Kühn’s algorithm which has been adapted to this example from his 
JAVA implementation.  
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    If the parameter uncertainty is changed such that [ ]0.2,0.3p ∈ , then the interval 

system will be contractive, i.e. the infinity norm of the system matrix changes to  

( ) 0.6A p
∞

≤ . In this case the region based methods will compute an outer ap-

proximation of the real region. Kolev’s algorithm (Section 6.1) will provide a better 
inner solution, and optimisation algorithm will provide an outer solution not very far 
from the exact one (Figure 4). 

 

 

Fig. 4. Comparison between the algorithms in the case ( ) 0.6A p
∞

≤  

 

    The conservatism of the solution computed by region propagation approaches de-
pends of the region used by each algorithm to approximate the region of possible 
states and on the uncertainty propagation strategy. Better results are obtained with 
Kuhn (Section 5.4) and Neumaier (Section 5.3) algorithms since they use zonotopes 
and ellipsoids that provide a better approximation that a parallelepiped or a box. In 
case of contractive system, all region based methods give stable interval simula-
tion/observation. If the parameter uncertainty is increased changing the interval on 
parameter p to be [ ]0.4,0.7p ∈ , the infinity norm of the system matrix changes to 

( ) 1.4A p
∞

≤ .   

    Then, the wrapping effect will increase at each time step providing an unstable 
simulation in the case of Moore’s (Section 5.1), Lohner’s (Section 5.2), Neumaier’s 
(Section 5.3) and Kuhn’s (Section 5.4) algorithms (see Table 1). Comparing trajectory 
based algorithms with the region based using Table 1, it can be observed that the first 
avoid the wrapping effect. Kolev’s (Section 6.1) algorithm provides an inner solution, 
while optimisation (Section 6.3) algorithm provides the exact solution with a given 
precision.    
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Table 1. Comparison between the algorithms for test example 1 

Time (in s) 10 20 30 40 
Optimisation 1.6588 0.2683 0.1097 -0.0530 
Kolev 1.5873 0.2624 0.0342 -0.0646 

Neumaier 10.1109 50.6687 267.7928 1.3726e+03 
Kuhn 3.8515 11.5277 52.9601 200.7197 
Lohner 390.3358 4.0736e+10 3.5576e+27 4.5002e+53 
Moore 4.4140e+06 ∞ ∞ ∞ 

(the results present upper bound for the estimated interval corresponding to state variable x1) 

6.2   Test Example 2  

The second test example 2 deals with an industrial smart actuator consisting of a flow 
servo-valve driven by a smart positioner, proposed as a fault detection benchmark in 
the European DAMADICS project. The smart actuator consists of a control valve, a 
pneumatic servomotor and a smart positioner [1]. In this test example, we will focus 
on the pneumatic servomotor and the electro-pneumatic transducer. 
    The non-linear interval model is obtained using interval model identification 
techniques in fault-free scenario, as those proposed in Ploix [17]. The identified non-
linear interval model will be: 
 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 1 1 2 2

2 2 21 1 22 2 23 3 2

3 a 4 4
3 3 32 2 34 3 a

0 e 1 4

4 4 1 z 3 p1 1 3 p2

x k 1 x k x k

x k 1 x k a x k a x k a x k c

x k P x k x k 11
x k 1 x k a x k a x k P

V A x k x k

x k 1 x k k CVP P x k f k CVP x k f

θ θ+ = + ∆ +

+ = + ∆ − − + +

⎛ ⎞+ − −
+ = + ∆ − + +⎜ ⎟⎜ ⎟+ ∆⎝ ⎠

+ = + ∆ − +

                            
where ∆  is the discretisation step size and the uncertain parameters are: 

1 11 ,θ θ θ⎡ ⎤∈ ⎣ ⎦ , 2 22 ,θ θ θ⎡ ⎤∈ ⎣ ⎦ , 21 2121,a a a⎡ ⎤∈ ⎣ ⎦ , and  22 22 22,a a a⎡ ⎤∈ ⎣ ⎦ .   

    The system suffers again from the wrapping effect because it does not fulfil the 
property of isotony. As we will see in the following, Moore’s (Section 5.1), Lohner’s 
(Section 5.2), Neumaier’s (Section 5.3) and Kuhn’s (Section 5.4) algorithms will pro-
vide an unstable interval simulation. On the other hand, interval simulation obtained 
with the optimisation algorithm (Section 6.2) for 40000 iterations are presented in 
Figure 5. 
    The optimisation algorithm (Section 6.2)  provides the exact solution (using an 
infinite time horizon) and Kolev’s (Section 6.1) algorithm provides an inner solution 
being very close to the exact (Table 1). As it can be observed from Table 1(upper 
bound for the estimated interval corresponding to state x1), Moore’s (Section 5.1), 
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Fig. 5. The envelopes for the pneumatic servomotor 

Lohner’s (Section 5.2) and Neumaier’s (Section 5.3) algorithms will inflate very 
quickly the system state interval. For example in the case of Moore’s algorithm after 
208 iterations ( )z 3P x k−  will be negative being impossible to compute a real value 

for ( )z 3P x k− . However, we can see that Kuhn’s (Section 5.4) algorithm manage 

better the interval system since the use of a more complex uncertainty approximating 
regions (zonotopes). The algorithm fails after 475 iterations. 
 
 

Table 2. Comparison between the algorithms for test example 2 

Time (in s) 200 300 400 25000 30000 
Optimisation - 0.0067 - 0.0062 - 0.0057 0.0651 0.0619 
Kolev - 0.0067 - 0.0062 - 0.0057 0.0642 0.0589 

Neumaier - 0.0049 - 0.0946        ∞ ∞     ∞ 
Kuhn - 0.0041 - 0.0009   0.0080 ∞           ∞ 
Lohner   0.1143       ∞        ∞ ∞     ∞ 
Moore   0.1234       ∞ ∞ ∞     ∞ 

(the results present upper bound for the estimated interval corresponding to state variable x1) 

6.3   Final Comments  

In fault detection applications the real-time operation is needed. Moore’s, Lohner’s, 
Neumaier’s and Kuhn’s algorithms compute the envelopes very efficiently using one 
step ahead iteration suitable to be used in real-time but only for a particular case of 
systems, i.e. isotonic systems, provides the exact solution. When the system is not 
isotonic, and the system parameters are in intervals, in general these algorithms do not 
avoid the wrapping effect. However for isotonic systems Kolev algorithm provides 
the exact solution. 
    As we have seen in the Section 7.1 of this paper, the wrapping effect using region 
based approaches can be avoided for small intervals over model parameters. Also, in 
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the Section 7.2 we have seen that for the interval 
2 3

,
10 10

p
⎡ ⎤∈ ⎢ ⎥⎣ ⎦

 the system proposed 

as example is contractive. On the other hand, optimisation algorithm (Section 6.2)  
avoids the wrapping effect also for non isotonic system, but an exponential computa-
tional time is needed. For the first example presented above for 20 iterations the com-
putational time was greater than 10 hours (Pentium 4, 2.4GHz). However, the Kolev’s 
algorithm (inner solution) provides a good approximation for the exact solution for 
the non isotonic systems. Kolev’s (Section 6.1) algorithm performs in real-time since 
propagations of a limited number of trajectories (corresponding to vertices of parame-
ter region). 

7   Conclusions 

This paper is a first try to benchmarking several existing for interval simula-
tion/observation algorithms developed in the different research areas applied to non-
linear systems with uncertain parameters and its comparison with a new algorithm 
based on optimisation (Section 6.2). Region algorithms are based on propagating the 
uncertainty region for system states using one step-ahead recursion. The main prob-
lem of region based interval observation/simulation is the wrapping effect. This prob-
lem prevents the use of the naive absolute Moore’s algorithm when it is present. In 
this case, more sophisticated approaches should be used as: relative Moore’s, 
Lohner’s, Neumaier’s and Kühn’s algorithms. However, these algorithms fail when 
the system do not fulfil the isotonoy property because of parametric uncertainty. In 
this case, the region that include all possible states at each time instant will contain 
spurious states that will inflate the region and in many cases the interval simula-
tion/observation will be unstable, as it is presented in the proposed test examples. 
These results reinforce the use of algorithms based on the propagation of real trajecto-
ries instead of regions as in the algorithms presented in the Section 6:  Kolev’s (Sec-
tion 6.1), optimisation (Section 6.2) algorithms. However, since Kolev’s algorithm 
provide an inner solution, and since the optimisation algorithm is more time consum-
ing, these algorithms should be improved in order to be applied in fault detection 
applications where real-time operation and completeness of the simulation is needed. 
On possible improvement is presented in Stancu [26] where Kolev’s algorithm is 
combined with a complementary test based on constraint satisfaction algorithms. 
    After analysing the results presented in this paper, we can conclude that although 
region based approaches look appealing because their lower complexity compared 
with trajectory based approaches in many cases they can derive in unstable observa-
tions because of the wrapping effect. This seems to reinforce the use of trajectory 
based approaches, but still in this case the computational complexity limits their ap-
plicability in fault detection where real-time computations are required. Reached this 
point, the need to design the observer gain such that the isotony condition [4][7] be 
satisfied seems a possible solution. In this case region based approaches will not suf-
fer from the wrapping effect and will provide the same results as trajectory based 
approaches. This should be further investigated since not only the isotony condition 
should be satisfied when designing an observer for fault detection since there are 
other requirements to be satisfied. 
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