

Eliciting Planning Information from Subject Matter Experts

Pete Bonasso* , Mark Boddy*

*Traclabs, Inc, 1012 Hercules, Houston, TX 77059, bonasso@traclabs.cov
**Adventium Enterprises, 111 3rd Ave South, Suite 100, Minneanapolis, MN 55401, mark.boddy@adventiumlabs.org

Abstract
Over the past several months, we have been engaged in
layering planning information onto execution procedures for
supporting NASA operations personnel in planning and
executing activities on the International Space Station (ISS).
The procedures are captured in the Procedural
Representation Language (PRL). The planning information
is to be integrated with the procedural information using a
PRL authoring system. This paper describes an initial
design for eliciting planning information by the domain
experts who created the procedures. The goal is to generate
actions in standard planning languages that automated
planners can use to generate executable plans. Of particular
note is that the resulting action representations support both
goal and action HTN decompositions.

 Introduction and Motivation
There have been a number of recent efforts, most notably
the Automation for Operations (A4O) initiative (Frank
2009), to provide NASA flight controllers with activity
planning and execution aids by leveraging maturing
execution (Vera et al 2006) and planning technology (e.g.,
Chien et al, 2003, and Bedrax-Weiss et al 2005). One of
those technologies is the development of a procedure
representation language (PRL) that both captures the form
of traditional procedures and allows for automatic
translation into code that can be executed by NASA-
developed autonomous executives. PRL provides for
access to spacecraft and habitat telemetry, includes
constructs for human-centered displays, allows for the full
range of human interaction, and allows for automatic
methods of verification and validation. As well, PRL is
being developed with a graphical authoring system, known
as PRIDE, that enables non-computer specialists to write
automated procedures (Kortenkamp et al 2007).
 Given a set of procedures cast in PRL, one of our current
research goals has been to enhance the PRL language to
include planning information related to each procedure,

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

i.e., 1) Time for both task duration and for temporal
constraints among procedures, b) Resources that are
required, produced or consumed by a procedure, c) pre-
conditions, post-conditions and other constraints for both a
given procedure and among concurrently executing
procedures, and d) The decomposition of large procedures
into the fundamental actions used to build up a mission
plan. Our target flight disciplines have been
Extravehicular Activity (EVA) and Power, Heat and Light
Control (PHALCON). The two disciplines often work
together because spacewalks entail the installation or
removal of power equipment around the International
Space Station (ISS). (Bonasso & Boddy 2009) details the
results of our first year efforts in both "chunking" large
EVA and PHALCON procedures into primitives for
planning as well as developing PRL representations for
time, resources, preconditions and effects that can easily
translate into standard planning languages, our target being
ANML (Smith & Cushing 2008).
 A second major research goal is to design an interaction
scheme as an addition to PRIDE that will elicit these
planning data from the EVA and PHALCON flight
controllers, the same experts who developed the PRL
procedures. These subject matter experts have little or no
understanding of automated planning technology. This
paper describes our initial approach to obtaining from these
experts planning information sufficient to be used by
automated planners.

Goal versus Action Decomposition
Much of the activity planning done by PHALCONs and
virtually all done by EVA flight controllers lends itself to
Hierarchical Task Net (HTN) planning. Standard HTN
decomposes a task into actions, but some planners, e.g.,
SIPE (Wilkins & Myers 1998) and AP (Applegate et al
1990), a planner we’ve used for several NASA
applications, use goal decomposition. To illustrate,
consider an EVA task to retrieve an external light known
as a Crew and Equipment Translation Aid light, or CETA-
light. A stripped down action description would be:

 2

Define-action: retrieve-light
 Parameters: ev – crew, light – CETA-light
 Variables: bag – ORU-bag, light-loc – location
 Expansion:
 Sequence
 Pick-up (ev, bag)
 Translate-by-handrail (ev, light-loc)
 Extract-item-to-bag (ev, light, bag)

Basically, the crewmember gets the orbital replacement
unit (ORU) bag, travels to the light location and unbolts
and stores the light in the bag.
 A plan using the above definition will always have three
sub-actions. So the first action will still be planned even if
the conditions of the initial situation include the fact that
the crewmember already possesses the bag.
 A goal-decomposition of the above expansion might be:

Expansion:
 Sequence
 Possessed-by (bag, ev)
 Located (ev, light-loc)
 Extracted-into-bag (ev, light, bag)

This form asks the planner to find actions that will bring
about the goals (states) in the order specified. However, if
any goal already holds, no action need be planned. So if
the crewmember already possesses the bag at the outset,
only actions for locating the crewmember and getting the
light in the bag will appear in the plan. Additionally, a
goal decomposition does not specify what action to take to
bring about a desired goal, so, in the above example, any
action that will position the crew member at the light
location can be used, like traveling on a CETA cart or on
the space station robotic arm. In essence, an expansion of
goals is a template for many action decompositions. In
practice there are always actions whose goal/state/intent is
just that the action be successfully completed, which is the
case for extract-item-to-bag.
 While our design favors goal decomposition, our
approach to building an interactive aid to elicit planning
information will produce a representation from which
either or both action and goal decompositions can be
derived.

The Interactive Paradigm
We now describe a query-response flow of interaction in
PRIDE to obtain the planning information needed to
construct complete action descriptions, including actions
with decompositions. We assume in this design that all the
executable level actions – called procedures – have been
defined in files with PRL representations. We also assume
a domain ontology is available to the PRIDE system.
Obtaining those is a non-trivial effort – we spent a year
constructing these for our domain. The examples below
are taken from our models of the EVA domain.

Goal Representation
First we analyzed the primitive actions/procedures to
develop a set of domain relations that can serve as goals or
actions (this set will need to be expanded as users
determine there are other relations that should be
modeled). Here are examples of a goal and an action
relation:

Relation:
 Name: located
 Type: fluent
 Function?: yes
 Args:
 object – thing
 location – geographicarea
 Verb-form: "locate object at location"
 Prefix-form: "object is at location"

Relation:
 Name: extract-item-to-bag
 Type: action
 Function?: no
 Args:
 crew - agent
 object - station-object
 bag - oru-bag
 Verb-form: "crew extract object to bag"
 Prefix-form: "crew has extracted object to bag"

 The type field is used to distinguish goals that can have
a fluent form and those that are purely actions, that is, there
is no corresponding state condition that could be used as a
goal. The function field allows planners to take advantage
of single-value fluents. For example, rather than

Variables: loc1 – location, crew1 crew 2 - agent
Conditions: located(crew1, loc1)
 located(crew2, loc1)

one can write:

Variables: crew1 crew 2 - agent
Conditions: located(crew1) = located(crew2)

 The prefix forms are used to display the relation to the
user as either effects or conditions; the verb form, as
actions in a decomposition (see Building Decompositions
below).

Obtain the Action
A subset of the relations described above corresponds to
the PRL procedures assumed to exist for this endeavor.
PRIDE will derive the action name as well as the intent of
the action from this set. For this example we'll be using the
procedures known as pick-up, travel-by-
handrail, travel-by-SSRMS, and extract-
item-to-bag.

 3

So PRIDE will first direct the user to select the procedure
to which planning information is to be added. Our user
selects extract-item-to-bag and the template
shown in Figure 1 appears.

Figure 1 Action Template
 This is a two-step procedure, written in PRL, wherein
the crewmember unbolts the item with a power grip tool
and stows it in an ORU bag.

Obtain the Intent
Next PRIDE asks the user: Select a goal that is the intent
of this action? The user selects from the list of relations
described in the section on goal representation above and
presented to the user in their prefix form. Our user selects
"crew has extracted object to bag" and the template updates
as in Figure 2:

Figure 2 Action Template with Intent

 When the relation is selected, PRIDE uses the type
information for the relation’s arguments to fill in the
Agents and Parameters fields. Instances of parameters are
constructed from the argument names. The agents are
called out separately from the parameters so that other non-

planning applications can use that information from the
final result.

Determine Needed Tools
Another source of parameters will involve tools used in the
procedure. So the user is now asked: Are any tools needed
for this procedure? A taxonomy of the tools in the EVA
domain are presented to the user as shown in Figure

Figure 3 Tool Taxonomy (with instances in lower case)

3. The user selects a power grip tool with a precision
ratchet, which shows up as pgt1 in the parameters

Obtain the Decomposition
If this were a new action, the user would be asked at this
point to define the decomposition. Since the current action
is a primitive, PRIDE will not query for a decomposition
(but see Building Decompositions below).

Obtain the Preconditions
Rather than asking the user an open-ended question like,

Figure 4 Action Template with Tools and Conditions

What conditions must be true for this procedure to be
applicable?, we use a series of "wizard" questions keyed
on common conditions such as location, possession and
containment. For possession, PRIDE assumes the crew

 4

will be the default possessor and so asks, Should crew1
possess any items?, and the user selects from a pop-up
menu of the parameters. In this case, user selects bag1 and
the pgt1. PRIDE then uses the relational form of
possessed-by to construct the appropriate preconditions.
 Similarly, PRIDE will ask if any of the crew and/or
parameters need to be co-located. In this case, crew1
needs to be at the same place as object1. The same process
is used for containment, but we will illustrate that in the
effects query below. The resulting template is shown in
Figure 4.
 As this is a work in progress, we are for now assuming

Figure 5 Focusing parameters with a type pull-down menu

all conditions are pre-conditions until we work out how to
elicit temporal information from the user or develop some
reasonable intelligent "wizard" questions to obtain it.

Focus the Parameters
PRIDE then tells the user, Use the type drop-down menus
to adjust the type of any parameter to be more specific. A
drop-down list under each parameter's type in the template
contains all the subtypes for that parameter. The user
activates the drop-down for station-object and selects the
subtype CETA-light, as in Figure 5.

Obtain Side Effects
Again, rather than asking the user an open-ended question
like, What other effects will be true at the end of this
procedure?, we'll again use a the wizard approach and ask
a series of questions keyed on common conditions such as
location, possession and containment.
 In this example, PRIDE uses the fact that there is a
container and an object to ask the question, At the
conclusion of this action will bag1 contain an item?, and
gives a list of parameters less any containers. The user
knows that the extracted item will be put in the bag so she
checks object1. PRIDE uses the containment relation and
the selected parameters to construct the effect as in Figure
6.

Figure 6 Action Template with Side Effect

Establish Duration
The user is now asked: How long in minutes will this
procedure take? The user can specify an integer amount of
minutes, in this case, 12, or he can specify a computation
(see the translate-by-handrail action below).

Provide a Text Description
Finally, the user will be asked to provide a description of

Figure 7 Completed Action Template

the action in free-form English text. Our user enters,
"Unbolt the CETA light and place in bag." The final action
is shown in Figure 7.

Internal Representation
The main objective of this interactive exercise is to
construct an internal representation that can be translated
into standard planning languages, such as PDDL and

 5

ANML. Our proposed representation, the instance
resulting from the template above, is show below.

Action: extract-item-to-bag
Agents: crew1
Duration: 12
Parameters: crew1 – agent
 object1 - CETA-light
 bag1 - ORU-bag
Variables: loc1 - geographicarea
 pgt1 - power-grip-tool
Preconditions: operator: "=="
 var: loc1
 relation: located
 args: object1
 relation: located
 args: crew1
 operator: predicate
 relation: possessed-by
 args: bag1, crew1
 operator: predicate
 relation: possessed-by
 args: pgt1, crew1
Effects: relation: extract-item-to-bag
 args: crew1, object1, bag1
 relation: contained-by
 args: object1, bag1
Comment: "unbolt ceta-light and put in bag"

 Note that any parameters not in the effects are moved to
the variables slot. Also, the operator slot allows the
definition of functional fluents. This internal
representation, along with the set of relations defined
earlier, holds sufficient information to generate the
following PDDL and ANML actions.

(define-durative-action extract-item-to-bag
 :parameters (?crew1 – crew
 ?object1 – ceta-light
 ?bag1 – oru-bag)
 :vars (?loc1 – geographicarea
 ?pgt1 – power-grip-tool)
 :duration 12.0
 :condition
 (and
 (at start (located ?crew1 ?loc1))
 (at start (located ?object1 ?loc1))
 (at start (possessed-by ?bag1 ?crew1))
 (at start (possessed-by ?pgt1 ?crew1)))
 :effect
 (and
 (at end
 (extract-item-to-bag
 ?crew1 ?object1 ?bag1))
 (at end (contained-by ?object1 ?bag1)))
 :comment "unbolt ceta-light and put in
bag"

 PDDL 2.1 can’t take advantage of functional fluents. As
well, our current planner, AP, uses only goal

decomposition, so a goal form of the action, constructed by
the action name and parameters is included in the effects.

action Extract_item_to_bag
 (agent crew1, CETA_light object1,
 ORU_bag bag1)
{
 duration := 12
 [start]{located(object1) == located(crew1);
 possessed_by(bag1) == crew1;
 exists (power_grip_tool pgt1) {
 possessed_by(pgt1) ==
 crew1}
 };
 [end] contained_by(object1) := bag1
}

 ANML on the other hand, takes full advantage of
functional predicates and can use both goal and action
decompositions (e.g., see Building Decompositions
below).

Add More Actions
We continue the example by building three more
primitives, but we show only the final results (parameters
are in italics). The next action is pick-up, whose intent is
based on the possessed-by relation.

Action: pick-up
Agents: crew1
Duration: 5
Parameters: object1 is a station object,
 loc1 is a geographicarea
Conditions: crew1 is at loc1
 object1 is at loc1
Effects: crew1 has object1
Comment: "Crew untethers item and attaches
to suit."

 Next we develop a translation action based on the
located relation.

Action: travel-by-handrail
Duration: function: distance, path1
Agents: crew1
Parameters: loc1 is a geographicarea
 path1 is a path
 loc2 is a geographicarea
Conditions:
 the start location of path1 is loc2
 the end location of path1 is loc1
 crew1 is at loc2
Effects: crew1 is at loc1
Comment: "Crew uses handrails to go to
loc1."

 6

 Here the duration is computed from the path using a
distance function. A list of such available domain
functions will reside in the PRIDE system.
 Next we develop a similar action based on the
crewmember being mounted on the space station remote
manipulator system (SSRMS).

Action: travel-by-SSRMS
Agents: crew1
Duration: function: GCA, loc2, loc1
Parameters: loc1 is a geographicarea
 arm1 is a robotic-arm
 loc2 is a geographicarea
Conditions: arm1 is located at loc2
 crew1 is on arm1
Effects: crew1 is at loc1
Comment: "Crew GCAs arm to loc1"

Here the duration is computed using the Ground Controlled
Approach (GCA) function with the start and end locations
as arguments.

Building Decompositions
There is no existing PRL procedure for a complex action;
by definition they are composed of an ordered set of other
complex actions or primitives. Our user wishes to build a
retrieve action wherein a crewmember obtains a bag,
travels to a worksite and extracts a CETA-light to the bag.
She will go through the steps as before, with certain
differences alluded to earlier because this is a new action
with a decomposition.
Action Name and Intent. The user will create an action
name for the new action and PRIDE will generate a
relation based on an assumption that at least one
crewmember is involved and at least one object. If there is
no object involved in the preconditions, effects or
decomposition, PRIDE will excise it from the final internal
representation. In this case the user types in "retrieve item"
and PRIDE generates

Relation:
 Name: retrieve-item
 Type: action
 Function?: no
 Args:
 crew - agent
 object - station-object
 Verb-form: "crew retrieve item object"
 Prefix-form: ""

and the action template that appears is:

Action: retrieve-item
Agents: crew1
Parameters: object1 is a station-object
Effects: crew1 retrieve item object1

Decompositions. As mentioned earlier, a new planning
action may include a decomposition, so PRIDE asks, Does
this action have a decomposition? In this case, the user
answers in the affirmative and PRIDE presents a list of
verb forms for existing relations. A subset of that list is
shown below:

1) "locate object at geographicarea "
2) "object possess another object"
3) "object contain another object"
4) "crew extract CETA-light to bag"

The user selects 2) and 1), focusing object to crew, and 4),
which results in the following template:

Action: retrieve-item
Agents: crew1
Duration: derived
Parameters: object1 is a CETA-light
 loc1 is a geographicarea
 bag1 is an ORU-bag
Expansion: sequential
 crew1 possess bag1
 locate crew1 loc1
 crew1 extract object1 to bag1
Effects: crew1 retrieve item object1

The default ordering is sequential, but is associated with a
pull-down menu that includes unordered,
simultaneous and parallel.
 Note that the parameter object1 has been further
specified by the addition of the extract action where the
object type was specified as a CETA-light. As well,
parameters from the actions other than object1 and crew1
are added to the variables list. Finally, the duration is set
to derived, since it will be an accumulation of the
durations of the actions in the decomposition.
Tools. In this first pass at our design we do not query for
tools in a complex actions; the bottom-up approach to
building actions should cover the needed tools at the
primitive level.
Preconditions and Effects. In this first pass at our design
we do not allow side effects for a decomposition; the
bottom-up approach to building actions should cover the
needed effects at the primitive levels.
 For tasks with decompositions, the usual suspects for
preconditions – e.g., crew1 has bag1, are brought about
by the actions in the decomposition. But PRIDE can
reason about some aspects of this action and ask, Is loc1
the location of object1 or bag1? The user selects object1.
 After adding a text description the action is:

Action: retrieve-item
Agents: crew1
Duration: derived
Parameters: object1 is a CETA-light
 loc1 is a geographicarea
 bag1 is an ORU-bag

 7

Conditions: object1 is at loc1
Expansion: sequential
 crew1 possess bag1
 locate crew1 loc1
 crew1 extract object1 to bag1
Effects: crew1 retrieve item object1
Comment: "crew gets bag, goes to loc and
extracts light."

Internal Representation. The internal representation for
the above complex action is:

Action: retrieve-item
Agents: crew1
Duration: derived
Parameters: crew1 – agent
 object1 - ceta-light
Variables: bag1 - oru-bag
 loc1 - geographicarea
Conditions: operator "==“
 var: loc1
 relation: located
 args: object1
Expansion:
 Order: sequential
 Tasks:
 relation: possessed-by
 args: bag1, crew1
 relation: located
 args: crew1, loc1
 relation: extract-item-to-bag
 args: crew1, object1, bag1
Effects: relation: "retrieve-item"
 args: crew1, object1
Comment: "Crew gets bag and goes to loc and
extracts light."

Here are the resulting PDDL and ANML actions.

action Retrieve_item (agent crew1,

ceta_light object1,
oru_bag bag1)

[duration]
{location current_location := located(bag1);

[all]contains
 ordered(ach_possessed_by(bag1,crew1),

 ach_located(crew1,current_location),
extract_item_to_bag(crew1,object1,bag1

))
}

The first two items in the expansion are goals. ANML
uses an achieve action for each goal, e.g.,
Action ach_possessed_by(station_object item,
crew agent)[duration]

{

[start] possessed_by(item, agent) == TRUE ||

{[start] possessed_by(item, agent) == FALSE;

 [end] possessed_by(item, agent) == TRUE}}

}
that can be interpreted as: if the state doesn't hold at the
start, find an action that will bring it about.
 PDDL uses the goal form for all the actions in the
decomposition:

(define-durative-action retrieve-item
 :parameters (?crew1 – crew
 ?object1 – ceta-light))
 :vars (?bag1 – oru-bag
 ?loc1 – geographicarea)
 :condition (at start (located ?object1
 ?loc1))
 :expansion
 (sequential
 (possessed-by ?bag1 ?crew1)
 (located ?crew1 ?loc1)
 (extract-item-to-bag ?crew1 ?object1
 ?bag1)
:effect (at end (retrieve-item ?crew1
 ?object1))
:comment "crew gets bag, goes to loc and
extracts light."

Resulting Plans
For planning, the PDDL or ANML actions are selected as
tasks to be planned. So the user could, for example, ask
the planner to plan bob retrieve ceta-light1 and a
resulting plan might be:

sequence
 bob pick-up medium-oru-bag2
 bob travel-by-handrail to ceta-light1-loc
 bob extract ceta-light1 to medium-oru-bag2

Given an initial situation where Bob already possessed
an ORU-bag, however, the plan would be:

sequence
 bob travel-by-handrail to ceta-light1-loc
 bob extract ceta-light1 to medium-oru-bag1

Given a starting situation where Bob possessed an ORU
bag and was positioned on the SSRMS, the plan would be:

sequence
 bob travel-by-SSRMS to ceta-light1-loc
 bob extract ceta-light1 to medium-oru-bag1

Thus, the decompositions serve as templates of several
different action combinations that could bring about a top-
level goal.

Relation to Other Work
The bulk of the efforts in knowledge engineering for
planning deal with AI programmers eliciting planning

 8

information from domain experts, and then using KE aids
to model and validate this information. Examples are
(Frenandez et al 2004) and (Simpson 2007). The effort in
this paper is aimed at developing planning actions from an
existing set of executable procedures, by asking the
procedure authors – non-AI-programmers – leading
questions about the procedures. Our hope is that, through a
set of focused questions to these non-AI users, we can
obtain planning actions that can be used to generate valid,
though possibly inefficient plans.
 Like our work here, related KE efforts target standard
planning languages like PDDL, NDDL and OCL. Besides
PDDL, we have selected the ANML planning language,
because it is based on strong notions of action and state,
uses a variable/value model, supports rich temporal
constraints (Smith & Cushing 2008 mention ongoing
development of an ANML to NDDL translator), and
provides simple, convenient idioms for expressing the most
common forms of action conditions, effects, and resource
usage. The language supports both generative and HTN
planning models in a uniform framework and has a clear,
well-defined semantics.
 (Boddy and Bonasso 2010) is a companion paper that
discusses the semantics of ANML including goal versus
action decompositions.

Summary and Future Work
With the interactive paradigm described in this paper, we
believe we can enable non-AI programmers to construct
primitive and complex actions from existing procedures
that can be used by AI planners to generate executable
plans. Our design favors goal-based HTNs as templates
for multiple methods of bringing about top-level goals.
We are in the process of coding an interactive plug-in to
our PRIDE system that will execute this paradigm.
 What we've reported on here is of course the tip of the
iceberg. Our approach using "wizard" questions will
quickly become too restrictive as our domain models
become more complicated. So, allowing the user to break
out of the restricted question set and manage the action
templates directly will involve the development of many
more checks and balances to help the user avoid
inadvertent errors.
 And as with all KE for planning efforts, the planning
models developed by this interactive paradigm must be
validated. We envision running our AP planner endowed
with the PRIDE-developed action set, on a set of situations
to obtain valid plans. We then need to develop schemes
for failure diagnosis and feeding back the results of that
diagnosis to the authoring system when the planner cannot
find valid plans. Initially, we will construct a single thread
of that closed loop, concentrating on one or two types of
authoring errors, using our existing planning aid (Bonasso
et al 2009).

References
Applegate, C., C. Elsaesser, and J. Sanborn. 1990. An
Architecture for Adversarial Planning. IEEE Transactions
on Systems, Man, and Cybernetics, 20(1): p. 186-194.

Bedrax-Weiss, T., et al., 2005. EUROPA2: user and
contributor guide, NASA Ames Research Center.

Bonasso, Pete and Boddy, Mark. 2010. Planning for
Human Execution of Procedures Using ANML. In
submission to ICAPS 2010 Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS).
Toronto, Canada.

Bonasso, Pete, Boddy, Mark, Kortenkamp, D. 2009.
Enhancing NASA's Procedure Representation Language to
Support Planning Operations. In Proceedings of IWPSS09,
Pasadena, CA.

Chien, S., et al. Autonomous Science on the Earth
Observer One Mission. In i-SAIRAS 2003. 2003. Nara,
Japan.

Frank, Jeremy. 2009. Automaton for Operations.
http://ti.arc.nasa.gov/news/a4o-demo-for-hdu/

Simpson, R. M. 2007. Structural Domain Definition using
GIPO IV. The Knowledge Engineering Review, 22, 117-
134. Cambridge University Press

Susana Fern´andez, Daniel Borrajo, Raquel Fuentetaja,
Juan D. Arias and Manuela Veloso. 2004. PLTOOL: A
Knowledge Engineering Tool for Planning and Learning.
The Knowledge Engineering Review, Vol. 00:0, 1–24.
Cambridge University Press

Kortenkamp, D., R.P. Bonasso, and D. Schreckenghost.
2007. Developing and Executing Goal-Based, Adjustably
Autonomous Procedures,. in AIAA InfoTech@Aerospace
Conference.

Smith, D.E. and W. Cushing. 2008. The ANML Language,
in iSAIRAS. Los Angeles, CA.

V. Verma, A. Jónsson, C. Pasareanu, and M. Iatauro,
Universal Executive and PLEXIL: Engine and Language
for Robust Spacecraft Control and Operations, American
Institute of Aeronautics and Astronautics Space 2006
Conference.

Wilkins, D. and Myers, K. 1998. A Multi-agent Planning
Architecture, in Artificial Intelligence Planning Systems,
Pittsburg, PA.

