
Safety Annex for the
Architecture Analysis and Design Language

Danielle Stewart∗, Jing (Janet) Liu†, Darren Cofer†, Mats Heimdahl∗, Michael W. Whalen∗, Michael Peterson†
∗University of Minnesota, Department of Computer Science

{dkstewar, heimdahl, mwwhalen}@umn.edu
†Collins Aerospace

{jing.liu, darren.cofer, michael.peterson}@collins.com

Abstract—Model-based development tools are increasingly be-
ing used for system-level development of safety-critical systems.
Architectural and behavioral models provide important infor-
mation that can be leveraged to improve the system safety
analysis process. Model-based design artifacts produced in early
stage development activities can be used to perform system
safety analysis, reducing costs, and providing accurate results
throughout the system life-cycle. In this paper we describe an
extension to the Architecture Analysis and Design Language
(AADL) that supports modeling of system behavior under
failure conditions. This Safety Annex enables the independent
modeling of component failures and allows safety engineers to
weave various types of fault behavior into the nominal system
model. The accompanying tool support uses model checking to
propagate errors from their source to their effect on top-level
safety properties without the need to add separate propagation
specifications. Our tools are also able to compute minimal cutsets
for these errors to produce faults trees familiar to safety engineers
and certification authorities. We describe the Safety Annex,
illustrate its use with a representative example, and discuss and
demonstrate the tool support enabling an analyst to investigate
the system behavior under failure conditions.

I. INTRODUCTION

System safety analysis is crucial in the development life
cycle of critical systems to ensure adequate safety as well as
demonstrate compliance with applicable standards. A prereq-
uisite for any safety analysis is a thorough understanding of
the system architecture and the behavior of its components;
safety engineers use this understanding to explore the system
behavior to ensure safe operation, assess the effect of failures
on the overall safety objectives, and construct the accompa-
nying safety analysis artifacts. Developing adequate under-
standing, especially for software components, is a difficult and
time consuming endeavor. Given the increase in model-based
development in critical systems [10], [26], [28], [32], [35],
leveraging the resultant models in the safety analysis process
holds great promise in terms of analysis accuracy as well as
efficiency.

In this paper we describe the Safety Annex for the sys-
tem engineering language AADL (Architecture Analysis and
Design Language), a SAE Standard modeling language for
Model-Based Systems Engineering (MBSE) [2]. The Safety
Annex allows an analyst to model the failure modes of
components and then “weave” these failure modes together
with the original models developed as part of MBSE. The

safety analyst can then leverage the merged behavioral models
to propagate errors through the system to investigate their
effect on the safety requirements.

In previous work, we have extended AADL to include
formal assume-guarantee contracts describing the behavior of
systems and components [21]. These contracts describe the
nominal behavior of the system, and can be used to formally
verify system requirements through compositional reasoning
applied to the each hierarchical layer in the AADL model.
The Safety Annex builds on this approach by adding language
constructs for specifying the possible behaviors of systems
and components in the presence of faults. When a fault is
triggered in the model, its nominal contract is replaced by
the specified failure contract and the resulting impact on the
system can be analyzed using a model checker. This focus
on the behavior of the system in the presence of failures is
fundamentally different from the capabilities provided by the
existing AADL Error Model Annex [23], and enables powerful
new approaches to system safety analysis.

Determining how errors propagate through software com-
ponents is currently a costly and time-consuming element of
the safety analysis process. The use of behavioral contracts
to capture the error propagation characteristics of software
component without the need to add separate propagation spec-
ifications (implicit error propagation) is a significant benefit
for safety analysts. In addition, the annex allows modeling of
dependent faults that are not captured through the behavioral
models (explicit error propagation), for example, the effect of
a single electrical failure on multiple software components or
the effect hardware failure (e.g., an explosion) on multiple
behaviorally unrelated components. Furthermore, we will de-
scribe the tool support enabling engineers to investigate the
correctness of the nominal system behavior (where no failures
have occurred) as well as the system’s resilience to component
failures. We illustrate the work with an example drawn from
the civil aviation domain.

Our work can be viewed as a continuation of work con-
ducted by Joshi et al. where they explored model-based safety
analysis techniques defined over Simulink/Stateflow [36] mod-
els [15], [30]–[32]. Our current work extends this work to
provide new modeling and analysis capabilities. For example,
the Safety Annex supports compositional verification and
exploration of the nominal system behavior as well as the sys-



tem’s behavior under failure conditions. Related work includes
the AADL Error Annex (EMV2) [23], COMPASS [11], and
AltaRica [7], [39]. Our approach differs from AADL EMV2
in that we leverage the behavioral modeling for implicit error
propagation. We provide compositional analysis capabilities
that are not available in COMPASS. The Safety Annex is
fully integrated in a model-based development process and
environment unlike a stand alone language like AltaRica.

The main contributions of the AADL Safety Annex are:
• close integration of behavioral fault analysis into the Ar-

chitecture Analysis and Design Language AADL, which
allows close connection between system and safety anal-
ysis and system generation from the model,

• support for behavioral specification of faults and their
implicit propagation (both symmetric and asymmetric)
through behavioral relationships in the model, in con-
trast to existing AADL-based annexes (HiP-HOPS [18],
EMV2 [23]) and other related toolsets (COMPASS [11],
Cecilia [6], etc.),

• additional support to capture binding relationships be-
tween hardware and software and logical and physical
communications,

• computation of all minimal fault combinations that can
cause violation of the safety properties to be compared
to qualitative and quantitative objectives as part of the
safety assessment process, and

• guidance on integration into a traditional safety analysis
process.

II. PRELIMINARIES

One of our goals is to transition the tools we have developed
into use by the safety engineers who perform safety assessment
of avionics products. Therefore, we need to understand how
the tools and the models will fit into the existing safety
assessment and certification process.

A. Safety Assessment Process

ARP4754A, the Guidelines for Development of Civil Air-
craft and Systems [42], provides guidance on applying de-
velopment assurance at each hierarchical level throughout the
development life cycle of highly-integrated/complex aircraft
systems. It has been recognized by the Federal Aviation
Administration (FAA) as an acceptable method to establish
the assurance process. The safety assessment process is a
starting point at each hierarchical level of the development
life cycle and is tightly coupled with the system development
and verification processes. It is used to show compliance
with certification requirements and for meeting a company’s
internal safety standards.

ARP4761, the Guidelines and Methods for Conducting
Safety Assessment Process on Civil Airborne Systems and
Equipment [41], identifies a systematic means to show com-
pliance. Among the industry accepted safety assessment pro-
cesses are Preliminary System Safety Assessment (PSSA) and
System Safety Assessment (SSA). PSSA evaluates the system
design and defines safety requirements. SSA evaluates the

implemented system to show that safety requirements defined
in the PSSA are in fact satisfied.

AADL provides a unifying framework for describing the
system architecture for “performance-critical, embedded, real-
time systems” [2]. From its conception, AADL has been
designed for the design and construction of avionics systems.
Rather than being merely descriptive, AADL models can be
made specific enough to support system-level code generation.
Thus, results from analyses conducted, including the new
safety analysis proposed here, correspond to the system that
will be built from the model.

An AADL model describes a system in terms of a hierarchy
of components and their interconnections, where each com-
ponent can either represent a logical entity (e.g., application
software functions, data) or a physical entity (e.g., buses,
processors). An AADL model can be extended with language
annexes to provide a richer set of modeling elements for
various system design and analysis needs (e.g., performance-
related characteristics, configuration settings, dynamic behav-
iors). The language definition is sufficiently rigorous to support
formal analysis tools that allow for early phase error/fault
detection.

The Assume Guarantee Reasoning Environment
(AGREE) [21] is a tool for formal analysis of behaviors
in AADL models. It is implemented as an AADL
annex and annotates AADL components with formal
behavioral contracts. Each component’s contracts can include
assumptions and guarantees about the component’s inputs
and outputs respectively, as well as predicates describing
how the state of the component evolves over time. AGREE
translates an AADL model and the behavioral contracts into
Lustre [27] and then queries a user-selected model checker to
conduct the back-end analysis. The analysis can be performed
compositionally following the architecture hierarchy such that
analysis at a higher level is based on the components at the
next lower level. When compared to monolithic analysis (i.e.,
analysis of the flattened model composed of all components),
the compositional approach allows the analysis to scale to
much larger systems [21].

In our prior work [45], we added an initial failure effect
modeling capability to the AADL/AGREE language and tool
set. We are continuing this work so that our tools and
methodology can be used to satisfy system safety objectives
of ARP4754A and ARP4761.

B. Model-Based Safety Assessment Process Supported by For-
mal Methods

We propose a model-based safety assessment process
backed by formal methods to help safety engineers with
early detection of the design issues. This process uses a
single unified model to support both system design and safety
analysis. It is based on the following steps:

1) System engineers capture the critical information in a
shared AADL/AGREE model: high-level hardware and
software architecture, nominal behavior at the component
level, and safety requirements at the system level.



2) System engineers use the backend model checker to
verify that the safety requirements are satisfied by the
nominal design model.

3) Safety engineers use the Safety Annex to augment the
nominal model with the component failure modes. In
addition, safety engineers specify the fault hypothesis for
the analysis which corresponds to how many simultane-
ous faults the system must be able to tolerate.

4) Safety engineers use the backend model checker to
analyze if the safety requirements and fault tolerance
objectives are satisfied by the design in the presence of
faults. If the design does not tolerate the specified number
of faults (or probability threshold of fault occurrence),
then the tool produces counterexamples leading to safety
requirement violation in the presence of faults, as well as
all minimal set of fault combinations that can cause the
safety requirement to be violated.

5) The safety engineers examine the results to assess the
validity of the fault combinations and the fault tolerance
level of the system design. If a design change is war-
ranted, the model will be updated with the latest design
change and the above process is repeated.

There are other tools purpose-built for safety analysis,
including AltaRica [39], smartIFlow [29] and xSAP [8]. These
tools and their accompanying notations are separate from the
system development model. Other tools extend existing system
models, such as HiP-HOPS [18] and the AADL Error Model
Annex, Version 2 (EMV2) [23]. EMV2 uses enumeration of
faults in each component and explicit propagation of faulty
behavior to perform error analysis. The required propagation
relationships must be manually added to the system model and
can become complex and lead to mistakes in the analysis.

In contrast, the Safety Annex supports model checking
and quantitative reasoning by attaching behavioral faults to
components and then using the normal behavioral propagation
and proof mechanisms built into the AGREE AADL annex.
This allows users to reason about the evolution of faults
over time, and produce counterexamples demonstrating how
component faults lead to failures. Our approach adapts the
work of Joshi et. al [32] to the AADL modeling language.
Stewart, et. al provide more information on the approach [45],
and the tool and relevant documentation can be found at:
https://github.com/loonwerks/AMASE/.

III. FAULT MODELING WITH THE SAFETY ANNEX

To demonstrate the fault modeling capabilities of the Safety
Annex we will use the Wheel Brake System (WBS) described
in AIR6110 [1]. This system is a well-known example that
has been used as a case study for safety analysis, formal
verification, and contract based design [10], [14], [15], [30].
The preliminary work for the safety annex was based on
a simple model of the WBS [45]. To demonstrate a more
complex fault modeling process, we constructed a functionally
and structurally equivalent AADL version of the more complex
WBS NuSMV/xSAP models [15], as illustrated in Figure 2.

The WBS is composed of two main parts: the Line Replace-
able Unit control system and the electro-mechanical physical
system. The control system electronically controls the physical
system and contains a redundant channel of the Braking
System Control Unit (BSCU) in case a detectable fault occurs
in the active channel. It also commands antiskid braking. The
physical system consists of the hydraulic circuits running from
hydraulic pumps to wheel brakes as well as valves that control
the hydraulic fluid flow. This system provides braking force
to each of the eight wheels of the aircraft. The wheels are all
mechanically braked in pairs (one pair per landing gear). For
simplicity, Figure 1 displays only two of the eight wheels.

There are three operating modes in the WBS model:
• In normal mode, the system is composed of a green

hydraulic pump and one meter valve per each of the eight
wheels. Each of the meter valves are controlled through
electronic commands coming from the active channel of
the BSCU. These signals provide braking and antiskid
commands for each wheel. The braking command is
determined through a sensor on the pedal and the antiskid
command is determined by the Wheel Sensors.

• In alternate mode, the system is composed of a blue
hydraulic pump, four meter valves, and four antiskid
shutoff valves, one for each landing gear. The meter
valves are mechanically commanded through the pilot
pedal corresponding to each landing gear. There are two
ways the system can change into alternate mode. The
selector can choose the blue circuit when the BSCU sends
a system invalid signal, or the system can switch to the
blue circuit when the selector detects lack of pressure in
the green circuit.

• In emergency mode, the system mode is entered if the
blue hydraulic pump fails. The accumulator pump has a
reserve of pressurized hydraulic fluid and will supply this
to the blue circuit in emergency mode.

The WBS architecture model in AADL contains 30 different
kinds of components, 169 component instances, and a model
depth of 5 hierarchical levels.

The behavioral model is encoded using the AGREE annex
and the behavior is based on descriptions found in AIR6110.
The top level system properties are given by the requirements
and safety objectives in AIR6110. All of the subcomponent
contracts support these system safety objectives through the
use of assumptions on component input and guarantees on the
output. The WBS behavioral model in AGREE annex includes
one top-level assumption and 11 top-level system properties,
with 113 guarantees allocated to subsystems.

An example system safety property is to ensure that there
is no inadvertent braking of any of the wheels. This is based
on a failure condition described in AIR6110 is Inadvertent
wheel braking on one wheel during takeoff shall be less than
1.0×10−9 per takeoff. Inadvertent braking means that braking
force is applied at the wheel but the pilot has not pressed the
brake pedal. In addition, the inadvertent braking requires that
power and hydraulic pressure are both present, the plane is not
stopped, and the wheel is rolling (not skidding). The property



Fig. 1. Wheel Brake System

is stated in AGREE such that inadvertent braking does not
occur, as shown in Figure 2.

Fig. 2. AGREE Contract for Top Level Property: Inadvertent Braking

A. Component Fault Modeling

The usage of the terms error, failure, and fault are defined in
ARP4754A and are described here for clarity [42]. An error is
a mistake made in implementation, design, or requirements. A
fault is the manifestation of an error and a failure is an event
that occurs when the delivered service of a system deviates
from correct behavior. If a fault is activated under the right
circumstances, that fault can lead to a failure. The terminology
used in EMV2 differs slightly for an error: an error is a
corrupted state caused by a fault. The error propagates through
a system and can manifest as a failure. In this paper we use
the ARP4754A terminology with the added definition of error
propagation as used in EMV2. An error is a mistake made in
design or code and an error propagation is the propagation of
the corrupted state caused by an active fault.

The Safety Annex is used to add possible faulty behaviors
to a component model. Within the AADL component instance
model, an annex is added which contain the fault definitions
for the given component. The flexibility of the fault definitions
allows the user to define numerous types of fault nodes by
utilizing the AGREE node syntax. A library of common fault
nodes has been written and is available in the project GitHub
repository [43]. Examples of such faults include valves being
stuck open or closed, output of a software component being
nondeterministic, or power being cut off. When the fault
analysis requires fault definitions that are more complex, these
nodes can easily be created and used in the model.

When a fault is activated by its specified triggering con-
ditions, it modifies the output of the component. This faulty

behavior may lead to the violation of the contracts of other
components in the system, including assumptions of down-
stream components. The impact of a fault is computed by the
AGREE model checker when the safety analysis is run on the
fault model.

The majority of faults that are connected to outputs of
components are known as symmetric. That is, whatever com-
ponents receive this faulty output will receive the same faulty
output value. Thus, this output is seen symmetrically. An
alternative fault type is asymmetric. This pertains to a com-
ponent with a 1-n output: one output which is sent to many
receiving components. This fault can present itself differently
to the receiving components. For instance, in a boolean setting,
one component might see a true value and the rest may
see false. This type of fault is modeled using the keyword
asymmetric. For more information on fault definitions and
modeling possibilities, we refer readers to the Safety Annex
Users Guide [43].

As an illustration of fault modeling using the Safety Annex,
we look at one of the components relevant to the inadvertent
braking property: the brake pedal. When the mechanical pedal
is pressed, a sensor reads this information and passes an
electronic signal to the BSCU that then commands hydraulic
pressure to the wheels.

One possible failure for this sensor is inversion of its output
value. This fault can be triggered with probability 5.0× 10−6

as described in AIR6110 (in reality, the component failure
probability is collected from hardware specification sheets).
The Safety Annex definition for this fault is shown in Figure 3.
Fault behavior is defined through the use of a fault node called
inverted fail. When the fault is triggered, the nominal output
of the component (elec pedal position) is replaced with its
failure value (val out).

The WBS fault model expressed in the Safety Annex
contains a total of 33 different fault types and 141 fault
instances. The large number of fault instances is due to the
redundancy in the system design and its replication to control
8 wheels.



Fig. 3. The Safety Annex for the Pedal Sensor

B. Implicit Error Propagation

In the Safety Annex approach, faults are captured as
faulty behaviors that augment the system behavioral model
in AGREE contracts. Unlike AADL EMV2, no explicit er-
ror propagation is necessary since the faulty behavior itself
propagates through the nominal behavior contracts of the non-
failed system components. The effects of any triggered fault
are manifested through analysis of the AGREE contracts.

To illustrate key differences between implicit error propaga-
tion in the Safety Annex and explicit propagation in EMV2,
we use a simple example derived from the WBS, shown in
Figure 4. In this simplified WBS system, the physical signal
from the Pedal component is detected by the Sensor and the
pedal position value is passed to the Braking System Control
Unit (BSCU) components. The BSCU generates a pressure
command to the Valve component which applies hydraulic
brake pressure to the Wheels.

In the EMV2 approach (top half of Figure 4), the “NoSer-
vice” fault is explicitly propagated through all of the com-
ponents. These fault types are essentially tokens that do not
capture any analyzable behavior. At the system level, analysis
tools supporting the EMV2 annex can aggregate the propa-
gation information from different components to compose an
overall fault flow diagram or fault tree.

The Safety Annex is used to add failure behaviors to the
Sensor and Valve components and to specify the fault hypoth-
esis (in this case, a single fault). When a fault condition is
triggered in the analysis, the output behavior of that component
is produced by its failure contract instead of its nominal
contract. For our simplified example, if the Sensor component
fault condition is triggered, the result is a “stuck at zero” error.
The contract of the BSCU receives a zero input and proceeds
as if the pedal has not been pressed. This will cause the top
level system contract to fail.

C. Explicit Error Propagation

Failures in hardware (HW) components can trigger behav-
ioral faults in the system components that depend on them.
For example, a CPU Failure may trigger faulty behavior in
the threads bound to that CPU. In addition, a failure in one
HW component may trigger failure in other HW components
located nearby, such as overheating, fire, or explosion in
the containment location. The Safety Annex provides the
capability to explicitly model the impact of hardware failures
on other faults, behavioral or non behavioral. The explicit

propagation to non behavioral faults is similar to that provided
in EMV2.

To better model faults at the system level dependent on HW
failures, a fault model element is introduced called a hardware
fault. Users are not required to specify behavioral effects for
the HW faults, nor are data ports necessary on which to apply
the fault definition. Users specify dependencies between the
HW component faults and faults that are defined in other
components, either HW or SW. The hardware fault then acts as
a trigger for dependent faults. This allows a simple propagation
from the faulty HW component to the SW components that
rely on it, affecting the behavior on the outputs of the affected
SW components.

D. Fault Analysis Statements

The Safety Annex also allows the user to specify constraints
on the occurence of faults in the system.

• The max fault hypothesis specifies the maximum number
of faults that can be active at any point in the analysis.
This is analogous to restricting the cutset to a specified
maximum number of terms in the fault tree analysis in a
traditional safety analysis.

• The probabilistic fault hypothesis specifieds that only
faults whose probability of simultaneous occurrence is
above the given threshold should be onsidered. This is
analogous to restricting the cutsets to only those whose
probability is above the specified value.

In the former case, we assert that the sum of the true
fault trigger variables is at or below some integer threshold.
In the latter, we determine all combinations of faults whose
probabilities are above the specified probability threshold, and
describe this as a proposition over fault trigger variables.

E. Fault Activation

With the introduction of dependent faults, active faults are
divided into two categories: independently active (activated
by its own triggering event) and dependently active (activated
when the faults they depend on become active). The top
level fault hypothesis applies to independently active faults.
Faulty behaviors augment nominal behaviors whenever their
corresponding faults are active (either independently active or
dependently active).

IV. TOOL ARCHITECTURE AND IMPLEMENTATION

The Safety Annex is written in Java as a plug-in for the
OSATE AADL toolset, which is built on Eclipse. It is not
designed as a stand-alone extension of the language, but works
with behavioral contracts specified using the AGREE AADL
annex [21]. The architecture of the Safety Annex is shown in
Figure 5.

AGREE contracts are used to define the nominal behaviors
of system components as guarantees that hold when assump-
tions about the values the component’s environment are met.
When an AADL model is annotated with AGREE contracts
and the fault model is created using the Safety Annex, the
model is transformed through AGREE into a Lustre model [27]



Fig. 4. Differences between Safety Annex and EMV2

Fig. 5. Safety Annex Plug-in Architecture

containing the behavioral extensions defined in the AGREE
contracts for each system component.

When performing fault analysis, the Safety Annex extends
the AGREE contracts to allow faults to modify the behavior
of component inputs and outputs. An example of a portion
of an initial AGREE node and its extended contract is shown
in Figure 6. The left column of the figure shows the nominal
Lustre pump definition is shown with an AGREE contract on
the output; and the right column shows the additional local
variables for the fault (boxes 1 and 2), the assertion binding
the fault value to the nominal value (boxes 3 and 4), and
the fault node definition (box 5). Once augmented with fault
information, the AGREE model (translated into the Lustre
dataflow language [27]) follows the standard translation path to
the model checker JKind [24], an infinite-state model checker
for safety properties.

There are two different types of fault analysis that can be
performed on a fault model. The Safety Annex plugin inter-
cepts the AGREE program and add fault model information to
the model depending on which form of fault analysis is being
run.

Verification in the Presence of Faults: This analysis
returns one counterexample when fault activation per the fault
hypothesis can cause violation of a property. The augmentation
from Safety Annex to the AGREE program includes traceabil-

Fig. 6. Nominal AGREE Node and Extension with Faults

ity information so that when counterexamples are displayed to
users, the active faults for each component are visualized.

Generate Minimal Cut Sets: This analysis returns all
minimal cut sets that lead to the violation of a property,
transformed from a full enumeration of all minimal set of
model elements necessary for the inductive proofs of the
property [4], [25].

V. ANALYSIS OF THE WBS MODEL

In this section we describe the nominal model analysis and
the fault analysis for the WBS example.

A. Nominal Model Analysis

Before performing fault analysis, users should first check
that the safety properties are satisfied by the nominal design
model. This analysis can be performed monolithically or
compositionally in AGREE. Using monolithic analysis, the



S18-WBS-R-0321: Loss of all wheel braking during landing or RTO shall be
less than 5.0× 10−7 per flight.
S18-WBS-R/L-0322: Asymmetrical loss of wheel braking (Left/Right) shall
be less than 5.0× 10−7 per flight.
S18-WBS-0323: Inadvertent braking with all wheels locked shall be less
than 1.0× 10−9 per takeoff.
S18-WBS-0324: Inadvertent braking with all wheels shall be less than
1.0× 10−9 per takeoff.
S18-WBS-0325-wheelX: Inadvertent braking of wheel X shall be less
than 1.0× 10−9 per takeoff.

TABLE I
SAFETY PROPERTIES OF WBS

contracts at the lower levels of the architecture are flattened
and used in the proof of the top level safety properties
of the system. Compositional analysis, on the other hand,
will perform the proof layer by layer, starting from the top,
decomposing the larger proof into smaller problems. For a
more comprehensive description of these types of proofs and
analyses, see additional publications related to AGREE [3],
[20]

The WBS has a total of 13 safety properties to be verifed
at the top level. The subcomponents implementing the system
each have their own assumptions and guarantees specified. The
top level properties are shown in Table I. Contract S18-WBS-
0325-wheelX has eight instances, one for each wheel. The
behavioral model in total consists of 36 assumptions and 246
guarantees.

B. Fault Model Analysis

This subsection describes the options for fault model analy-
sis using the Safety Annex and discusses the analytical results
obtained.

1) Verification in the Presence of Faults: Max N Analysis:
Using a max number of faults for the hypothesis, the user
can constrain the number of simultaneously active faults in
the model. The faults are added to the AGREE model for the
verification and the model checker attempts to prove the top
level properties given these constraints. If this cannot be done,
a counterexample in generated showing which of the faults (N
or less) are active and which contracts are violated.

The user can choose to perform either compositional or
monolithic analysis using a max N fault hypothesis. In compo-
sitional analysis, the analysis proceeds in a top down fashion.
To prove upper layer properties, the properties in the layer
directly beneath that level are used to perform the proof. Users
constrain the maximum number of faults within each layer
of the model by specifying the maximum fault hypothesis
statement to that layer. If any lower level property failed due to
activation of faults, the property verification at the higher level
can no longer be trusted because the higher level properties
were proved based on the assumption that the direct sub-level
contracts are valid. This form of analysis is helpful to see
weaknesses in a given layer of the system.

In monolithic analysis the layers of the model are flattened,
which allows a direct correspondence between all faults in the
model and their effects on the top level properties. As with
compositional analysis, a counterexample shows these N or
fewer active faults.

2) Verification in the Presence of Faults: Probabilistic
Analysis: With a probabilistic fault hypothesis, the analysis
is performed with combinations of faults whose probabil-
ity of occurrence is greater than the specified probability
threshold. This is done by inserting assertions that allow
those combinations in the Lustre code. If the model checker
proves that the safety properties can be violated with any
of those combinations, a counterexample will be generated.
Probabilistic analysis done in this way must utilize the AGREE
option for monolithic analysis.

To perform this analysis, it is assumed that the non-hardware
faults occur independently and possible combinations of faults
are computed and passed to the Lustre model to be checked
by the model checker. The computation first removes all faults
from consideration that are too unlikely given the probability
threshold. The remaining faults are arranged in a priority
queue Q from high to low probability of occurrence. Assum-
ing independence in the set of faults, we take a fault with
highest probability from the queue and attempt to combine
the remainder of the faults in R. If this combination is lower
than the threshold, then we do not take into consideration this
set of faults and instead remove the tail of the remaining faults
in R.

In this calculation, we assume independence among the
faults, but in the Safety Annex it is possible to define depen-
dence between faults using a fault propagation statement. After
fault combinations are computed, the triggered dependent
HW faults are added to the combination as appropriate. The
dependencies are implemented in the Verify in the Presence
of Faults options for analysis, but not yet implemented in the
Generate Minimal Cut Sets analysis options.

3) Generate Minimal Cut Sets: Max N Analysis: To per-
form analysis, users specify the max N fault hypothesis
statement in the top level of the system implementation to be
verified, and select the Generate Minimal Cut Sets option to
conduct the analysis. This gives cut sets of cardinality less than
or equal to N. Generate MinCutSet analysis was performed on
the Wheel Brake System and results are shown in Table II.
Notice in Table II, the label across the top row refers to
the cardinality (C) and how many cut sets of that cardinality
were found. For the Never loss of all wheel braking property
(R-0321) in the first row of Table II, there are 6 minimal
cut sets of cardinality 1. These include faults on the selector
and shutoff valves and pumps. These reflect single points of
failure of the system by failure to supply hydraulic fluid to
the wheels. Many of these could be mitigated by defining a
feedback from the wheel to the control system. When braking
is commanded in a certain mode of operation and no pressure
is supplied, the control system could change modes of the
system. This behavior was not incorporated into the WBS
model, but could be considered for future design changes.
There are no combinations of strictly two or three faults that
can violate this property, but for c = 4 there exists a single cut
set. These faults relate to the four meter valves that provide
hydraulic pressure to the pairs of wheels. If all four meter



valves go out at the same time, this will result in a loss of all
wheel braking.

The results from this table could be further explored to see
how the multiple wheels, meter valves per wheel, and wheel
brake subsystems interact to create large numbers of cut sets
per cardinality. For instance, R-0324’s contract references all
8 wheels and every subsystem pertaining to these 8 wheels
contribute in a combinatorial increase in the number of cut
sets.

Due to the increasing number of possible fault combinations
at N = 6, the computational time increases quickly. The WBS
analysis was only run to N = 6 for this reason.

4) Generate Minimal Cut Sets: Probabilistic Analysis: To
perform analysis, users specify the probablistic fault hypothe-
sis statement in the top level of the system implementation to
be verified, and select the Generate Minimal Cut Sets option
to conduct the analysis. This gives cut sets whose probability
of simultaneous occurrence exceed the given threshold in the
probability hypothesis.

The probabilistic analysis for the WBS was given a top
level threshold of 1.0×10−9 as stated in AIR6110. The faults
associated with various components were all given probability
of occurrence compatible with the discussion in this same
document.

As shown in Table III, the number of allowable combina-
tions drops considerably when given probabilistic threshold as
compared to just fault combinations of certain cardinalities.
For example, one contract (inadvertent wheel braking of all
wheels) had over a million minimal cut sets produced when
looking at it in terms of max N analysis, but after taking
probabilities into account, it is seen that only one combination
of faults can violate this property.

C. Use of Analysis Results to Drive Design Change

We use a single top level requirement of the WBS:
S18-WBS-0323 (Never indadvertent braking with all wheels
locked) to illustrate how Safety Annex can be used to detect
design flaws and how faults can affect the behavior of the
system. This safety property description can be found in detail
in Section III. Upon running max N fault analysis with N = 1,
the pedal sensor fault (output inverted) was shown to be a
single point of failure for this safety property.

Various strategies are possible to mitigate the problem, de-
pending on the goals of the system, the architecture currently
modeled, and the mitigation strategies that are desired. In the
case of the pedal sensor in the WBS, redundant pedal sensors
were added. Subsequent runs of the analysis demonstrated
resilience to the failure of a single pedal sensor.

As can be seen through this single example, a system as
large as the WBS would benefit from many iterations of this
process. Furthermore, if the model is changed even slightly
on the system development side, it would automatically be
seen from the safety analysis perspective and any negative
outcomes would be shown upon subsequent analysis runs.
This effectively eliminates any miscommunications between

the system development and analysis teams and creates a new
safeguard regarding model changes.

For more information on types of fault models that can be
created as well as details on analysis results, see the users
guide located in the GitHub repository [43]. This repository
also contains all models used in this project.

VI. RELATED WORK

A model-based approach for safety analysis was proposed
by Joshi et. al in [30]–[32]. In this approach, a safety analysis
system model (SASM) is the central artifact in the safety
analysis process, and traditional safety analysis artifacts, such
as fault trees, are automatically generated by tools that analyze
the SASM.

The contents and structure of the SASM differ significantly
across different conceptions of MBSA. We can draw distinc-
tions between approaches along several different axes. The
first is whether they propagate faults explicitly through user-
defined propagations, which we call failure logic modeling
(FLM) or through existing behavioral modeling, which we call
failure effect modeling (FEM). The next is whether models
and notations are purpose-built for safety analysis vs. those
that extend existing system models (ESM).

For FEM approaches, there are several additional dimen-
sions. One dimension involves whether causal or non-causal
models are allowed. Non-causal models allow simultaneous
(in time) bi-directional error propagations, which allow more
natural expression of some failure types (e.g. reverse flow
within segments of a pipe), but are more difficult to analyze.
A final dimension involves whether analysis is compositional
across layers of hierarchically-composed systems or mono-
lithic. Our approach is an extension of AADL (ESM), causal,
compositional, mixed FLM/FEM approach.

Tools such as the AADL Error Model Annex, Version
2 (EMV2) [23] and HiP-HOPS for EAST-ADL [18] are
FLM-based ESM approaches. As previously discussed, given
many possible faults, these propagation relationships require
substantial user effort and become more complex. In addition,
it becomes the analyst’s responsibility to determine whether
faults can propagate; missing propagations lead to unsound
analyses. In our Safety Annex, propagations occur through
system behaviors (defined by the nominal contracts) with no
additional user effort.

The model-based safety assessment toolset COMPASS
(Correctness, Modeling project and Performance of Aerospace
Systems) [11] is closely related to our work. COMPASS is
a mixed FLM/FEM-based, causal compositional tool suite
that uses the SLIM language, which is based on a subset of
AADL, for its input models [12], [16]. In SLIM, a nominal
system model and the error model are developed separately
and then transformed into an extended system model. This
extended model is automatically translated into input models
for the NuSMV model checker [19], [38], MRMC (Markov
Reward Model Checker) [33], [37], and RAT (Requirements
Analysis Tool) [40]. The safety analysis tool xSAP [8] can be
invoked in order to generate safety analysis artifacts such as



Property c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7+

R-0321 6 0 0 1 144 7776 -
R-0322 32 0 0 0 0 0 -
L-0322 32 0 0 0 0 0 -
0323 90 0 0 0 0 0 -
0324 8 3,401 6,800 66,472 435,358 1,892,832 -
0325-WX 20 0 0 0 0 0 -

TABLE II
WBS MINCUTSET ANALYSIS RESULTS FOR CARDINALITY c

Property c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8

R-0321 0 0 0 0 0 0 0 0
R-0322 32 0 0 0 0 0 0 0
L-0322 32 0 0 0 0 0 0 0
0323 90 0 0 0 0 0 0 0
0324 0 1 0 0 0 0 0 0
0325-WX 20 0 0 0 0 0 0 0

TABLE III
WBS MINCUTSET RESULTS FOR PROBABILISTIC ANALYSIS

fault trees and FMEA tables [9]. COMPASS is an impressive
tool suite, but some of the features that make AADL suitable
for SW/HW architecture specification: event and event-data
ports, properties, threads, and processes, appear to be missing,
which means that the SLIM language may not be suitable as
a general system design notation (ESM). A SLIM nominal
model is extended by creating an error model. This is defined
by type, implementation, and effect. Furthermore, the error
model specifies outgoing and incoming propagations similar
to the EMV2 error annex for AADL [23]. Outgoing error
propagations report the error state to other components. If
their error states are affected, the other components will have
a corresponding incoming propagation [9], [11], [22]. This
differs from our approach in that error propagations do not
need to be specified and the propagations are performed
behaviorally through the violation of contracts on connected
components.

SmartIFlow [29] is a FEM-based, purpose-built, monolithic
non-causal safety analysis tool that describes components
and their interactions using finite state machines and events.
Verification is done through an explicit state model checker
which returns sets of counterexamples for safety requirements
in the presence of failures. SmartIFlow allows non-causal
models containing simultaneous (in time) bi-directional error
propagations. On the other hand, the tools do not yet appear
to scale to industrial-sized problems, as mentioned by the
authors [29]: “As current experience is based on models with
limited size, there is still a long way to go to make this
approach ready for application in an industrial context”.

The Safety Analysis and Modeling Language (SAML) [26]
is a FEM-based, purpose-built, monolithic causal safety anal-
ysis language. System models constructed in SAML can be
used used for both qualitative and quantitative analyses. It
allows for the combination of discrete probability distributions
and non-determinism. The SAML model can be automatically
imported into several analysis tools like NuSMV [19], PRISM
(Probabilistic Symbolic Model Checker) [34], or the MRMC
probabilistic model checker [33].

AltaRica [7], [39] is a FEM-based, purpose-built, monolithic

safety analysis language with several dialects. There is one
dialect of AltaRica which use dataflow (causal) semantics,
while the most recent language update (AltaRica 3.0) uses
non-causal semantics. The dataflow dialect has substantial tool
support, including the commercial Cecilia OCAS tool from
Dassault [6]. For this dialect the Safety assessment, fault tree
generation, and functional verification can be performed with
the aid of NuSMV model checking [13]. Failure states are
defined throughout the system and flow variables are updated
through the use of assertions [5]. AltaRica 3.0 has support
for simulation and Markov model generation through the
OpenAltaRica (www.openaltarica.fr) tool suite.

Formal verification tools based on model checking have
been used to automate the generation of safety artifacts [8],
[13], [17]. This approach has limitations in terms of scalability
and readability of the fault trees generated. Work has been
done towards mitigating these limitations by the scalable
generation of readable fault trees [14].

VII. CONCLUSION

We have developed an extension to the AADL language
with tool support for formal analysis of system safety proper-
ties in the presence of faults. Faulty behavior is specified as
an extension of the nominal model, allowing safety analysis
and system implementation to be driven from a single com-
mon model. Both symmetric and asymmetric faulty behaviors
are supported. This new Safety Annex leverages the AADL
structural model and nominal behavioral specification (using
the AGREE annex) to propagate faulty component behaviors
without the need to add separate propagation specifications to
the model. Implicit error propagation enables safety engineers
to inject failures/faults at component level and assess the
effect of behavioral propagation at the system level. It also
supports explicit error propagation that allows safety engineers
to describe dependent faults that are not easily captured using
implicit error propagation. Generation of minimal cut sets
collects all minimal set of fault combinations that can cause
violation of the top level properties. For more details on the
tool, models, and approach, see the Architectural Modeling



and Analysis for Safety Engineering (AMASE) project final
report for NASA [44]. To access the tool plugin, users manual,
or models, see the repository [43].

Acknowledgments. This research was funded by NASA con-
tract NNL16AB07T and the University of Minnesota College
of Science and Engineering Graduate Fellowship.

REFERENCES

[1] AIR 6110. Contiguous Aircraft/System Development Process Example,
Dec. 2011.

[2] AS5506C. Architecture Analysis & Design Language (AADL), Jan.
2017.

[3] J. Backes, D. Cofer, S. Miller, and M. W. Whalen. Requirements
Analysis of a Quad-Redundant Flight Control System. In NFM, volume
9058 of LNCS, pages 82–96, 2015.

[4] J. Bendı́k, E. Ghassabani, M. Whalen, and I. Černá. Online enumeration
of all minimal inductive validity cores. In International Conference on
Software Engineering and Formal Methods, pages 189–204. Springer,
2018.

[5] P. Bieber, C. Bougnol, C. Castel, J. P. Heckmann, C. Kehren, S. Metge,
and C. Seguin. Safety Assessment with Altarica - Lessons Learnt Based
on Two Aircraft System Studies. In In 18th IFIP World Computer
Congress, 2004.

[6] P. Bieber, C. Bougnol, C. Castel, J.-P. H. C. Kehren, S. Metge, and
C. Seguin. Safety assessment with altarica. In Building the Information
Society, pages 505–510. Springer, 2004.

[7] P. Bieber, J.-L. Farges, X. Pucel, L.-M. Sèjeau, and C. Seguin. Model -
based safety analysis for co-assessment of operation and system safety:
application to specific operations of unmanned aircraft. In ERTS2, 2018.

[8] B. Bittner, M. Bozzano, R. Cavada, A. Cimatti, M. Gario, A. Griggio,
C. Mattarei, A. Micheli, and G. Zampedri. The xSAP Safety Analysis
Platform. In TACAS, 2016.

[9] M. Bozzano, H. Bruintjes, A. Cimatti, J.-P. Katoen, T. Noll, and
S. Tonetta. The compass 3.0 toolset (short paper). In IMBSA 2017,
2017.

[10] M. Bozzano, A. Cimatti, A. Griggio, and C. Mattarei. Efficient Anytime
Techniques for Model-Based Safety Analysis. In Computer Aided
Verification, 2015.

[11] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and
M. Roveri. The COMPASS Approach: Correctness, Modelling and
Performability of Aerospace Systems. In Computer Safety, Reliability,
and Security. Springer Berlin Heidelberg, 2009.

[12] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Yen Nguyen, T. Noll, and
M. Roveri. Model-based codesign of critical embedded systems. 507,
2009.

[13] M. Bozzano, A. Cimatti, O. Lisagor, C. Mattarei, S. Mover, M. Roveri,
and S. Tonetta. Symbolic Model Checking and Safety Assessment of
Altarica Models. In Science of Computer Programming, volume 98,
2011.

[14] M. Bozzano, A. Cimatti, C. Mattarei, and S. Tonetta. Formal safety
assessment via contract-based design. In Automated Technology for
Verification and Analysis, 2014.

[15] M. Bozzano, A. Cimatti, A. F. Pires, D. Jones, G. Kimberly, T. Petri,
R. Robinson, and S. Tonetta. Formal Design and Safety Analysis of
AIR6110 Wheel Brake System. In CAV 2015, Proceedings, Part I, pages
518–535, 2015.

[16] M. Bozzano, A. Cimatti, M. Roveri, J. P. Katoen, V. Y. Nguyen, and
T. Noll. Codesign of dependable systems: A component-based modeling
language. In 2009 7th IEEE/ACM International Conference on Formal
Methods and Models for Co-Design, 2009.

[17] M. Bozzano, A. Cimatti, and F. Tapparo. Symbolic fault tree analysis
for reactive systems. In ATVA, 2007.

[18] D. Chen, N. Mahmud, M. Walker, L. Feng, H. Lönn, and Y. Papadopou-
los. Systems Modeling with EAST-ADL for Fault Tree Analysis through
HiP-HOPS*. IFAC Proceedings Volumes, 46(22):91 – 96, 2013.

[19] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new
symbolic model checker. International Journal on Software Tools for
Technology Transfer, 2000.

[20] D. Cofer, A. Gacek, S. Miller, M. W. Whalen, B. LaValley, and L. Sha.
Compositional verification of architectural models. In NASA Formal
Methods Symposium, pages 126–140. Springer, 2012.

[21] D. D. Cofer, A. Gacek, S. P. Miller, M. W. Whalen, B. LaValley, and
L. Sha. Compositional Verification of Architectural Models. In NFM
2012, volume 7226, pages 126–140, April 2012.

[22] COMPASS Users Manual. http://www.compass-
toolset.org/docs/compass-manual.pdf.

[23] P. Feiler, J. Hudak, J. Delange, and D. Gluch. Architecture fault model-
ing and analysis with the error model annex, version 2. Technical Report
CMU/SEI-2016-TR-009, Software Engineering Institute, 06 2016.

[24] A. Gacek, J. Backes, M. Whalen, L. Wagner, and E. Ghassabani. The
JKind Model Checker. CAV 2018, 10982, 2018.

[25] E. Ghassabani, M. W. Whalen, and A. Gacek. Efficient generation of
all minimal inductive validity cores. 2017 Formal Methods in Computer
Aided Design (FMCAD), pages 31–38, 2017.

[26] M. Gudemann and F. Ortmeier. A framework for qualitative and
quantitative formal model-based safety analysis. In HASE 2010, 2010.

[27] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous
Dataflow Programming Language Lustre. In IEEE, volume 79(9), pages
1305–1320, 1991.

[28] P. Hönig, R. Lunde, and F. Holzapfel. Model Based Safety Analysis
with smartIflow. Information, 8(1), 2017.

[29] P. Hönig, R. Lunde, and F. Holzapfel. Model Based Safety Analysis
with smartIflow. Information, 8(1), 2017.

[30] A. Joshi and M. P. Heimdahl. Model-Based Safety Analysis of Simulink
Models Using SCADE Design Verifier. In SAFECOMP, volume 3688
of LNCS, page 122, 2005.

[31] A. Joshi and M. P. Heimdahl. Behavioral Fault Modeling for Model-
based Safety Analysis. In Proceedings of the 10th IEEE High Assurance
Systems Engineering Symposium (HASE), 2007.

[32] A. Joshi, S. P. Miller, M. Whalen, and M. P. Heimdahl. A Proposal
for Model-Based Safety Analysis. In In Proceedings of 24th Digital
Avionics Systems Conference, 2005.

[33] J.-P. Katoen, M. Khattri, and I. S. Zapreev. A markov reward model
checker. In Proceedings of the Second International Conference on the
Quantitative Evaluation of Systems, QEST ’05. IEEE Computer Society,
2005.

[34] M. Kwiatkowska, G. Norman, and D. Parker. PRiSM 4.0: Verification
of Probabilistic Real-time Systems. In In Proceedings of the 23rd
International Conference on Computer Aided Verification (CAV ’11),
volume 6806 of LNCS, 2011.

[35] O. Lisagor, T. Kelly, and R. Niu. Model-based safety assessment:
Review of the discipline and its challenges. In The Proceedings of
2011 9th International Conference on Reliability, Maintainability and
Safety, 2011.

[36] MathWorks. The MathWorks Inc. Simulink Product Web Site.
http://www.mathworks.com/products/simulink, 2004.

[37] MRMC: Markov Rewards Model Checker.
http://wwwhome.cs.utwente.nl/ zapreevis/mrmc/.

[38] NuSMV Model Checker. http://nusmv.itc.it.
[39] T. Prosvirnova, M. Batteux, P.-A. Brameret, A. Cherfi, T. Friedlhuber,

J.-M. Roussel, and A. Rauzy. The AltaRica 3.0 Project for Model-Based
Safety Assessment. IFAC, 46(22), 2013.

[40] RAT: Requirements Analysis Tool. http://rat.itc.it.
[41] SAE ARP 4761. Guidelines and Methods for Conducting the Safety As-

sessment Process on Civil Airborne Systems and Equipment, December
1996.

[42] SAE ARP4754A. Guidelines for Development of Civil Aircraft and
Systems, December 2010.

[43] D. Stewart, J. Liu, M. Whalen, D. Cofer, and M. Peterson. Safety annex
for aadl repository. https://github.com/loonwerks/AMASE, 2018.

[44] D. Stewart, J. Liu, M. Whalen, D. Cofer, and M. Peterson. Architectural
Modeling and Analysis for Safety Engineering (AMASE) Final Report.
https://github.com/loonwerks/AMASE/tree/master/doc, September 2019.

[45] D. Stewart, M. Whalen, D. Cofer, and M. P. Heimdahl. Architectural
Modeling and Analysis for Safety Engineering. In IMBSA 2017, pages
97–111, 2017.


