Constraint-Based Allocation of Cloud Resources to
Maximize Mission Effectiveness

Mark Boddy*
Adventium Labs
111 Third Avenue South, Suite 100
Minneapolis, MN 55401 USA
mark.boddy @adventiumlabs.com

Abstract

We are concerned with the problem of optimizing network re-
source allocations to mission tasks. The model includes un-
reliable network assets, multiple mission tasks and phases,
and the possibility of over-provisioning one or more tasks
as a means of increasing the likelihood of task success. In
this paper, we describe an implemented approach to optimiz-
ing network resources so as to optimize the expected util-
ity of the mission. This differs significantly from previous
work on cloud and network management, where the objec-
tive was to optimize some operational measure of the network
itself, rather than the effect of network failures on a specific
task. The work described here is preliminary: we describe the
problem and the approach, define an architecture, and present
the current state of the implementation.

Introduction

We are concerned with the problem of optimizing net-
work resource allocations to mission tasks. The model in-
cludes unreliable network assets, multiple mission tasks and
phases, and the possibility of over-provisioning one or more
tasks as a means of increasing the likelihood of task success.
In this paper, we describe an implemented approach to op-
timizing network resources so as to optimize the expected
utility of the mission. This differs significantly from pre-
vious work on cloud and network management, where the
objective was to optimize some operational measure of the
network itself, rather than the effect of network failures on
a specific task. The work described here is preliminary: we
describe the problem and the approach, define an architec-
ture, and present the current state of the implementation.
Optimizing cloud resource allocations to mission tasks
with unreliable network assets and over-provisioning re-
quires active management of cloud resources, using an ex-
plicit model of the effect of resource failures on the suc-
cess of mission tasks, and of the dependence of the overall

*This work was supported by the United States Air Force and
the Defense Advanced Research Projects Agency (DARPA), under
contract from AFRL, contract # FA8750-11-C-0265. The views ex-
pressed are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
Approved for Public Release, Distribution Unlimited
Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mission on those tasks. The Allocation of Missions Built
on Resource Optimization (AMBORO) system' provides a
flexible, adaptable, and effective means of optimizing the
expected utility of cloud resource allocations to mission
tasks, given estimates of the reliability of those resources.
AMBORO provides a stable, extensible, scalable platform
for modeling and solving cloud management problems in-
volving uncertain information.

Using a uniform, constraint-based representation for
modeling mission tasks, cloud resources and the current set
of assignments of resources to tasks provides several ben-
efits, including easy extension of the model to reflect new
types of missions, tasks, network components, and opera-
tional requirements such as Quality of Service (QoS) guar-
antees, as well as providing access to a very wide variety
of implemented solvers. Other advantages to a constraint-
based approach include the ability to define partial solu-
tions, culprit identification in the case of infeasibilities or
other conflicts, incremental solutions as additional tasks are
added, and the use of local search methods.

In this paper, we describe AMBORO, including its archi-
tecture, previous work on which it builds, the form of the in-
put models, and the optimization problem formulation and
solution process. We then conclude by reviewing the cur-
rent state of the system and some planned, near-term future
work.

Related Work

In some sense, there is little or no current work in the area
being addressed here, because the problem as defined in-
volves modeling and optimization of brand new capabili-
ties. For example, trading off the costs versus the benefits
of various forms of Moving Target Defense (MTD) would
requires the existence of models (and the experience to pop-
ulate those models), describing their costs and effectiveness
against specific forms of network attack. This is very much
an emerging area of research. Mapping from specific mea-
sures of system and network performance such as latency
or throughput to their effect on overall mission success is
another area in which there is not much work to compare to.

However, there is a extensive body of current and recent
work on mapping tasks onto the resources available in a

' Amboro is a cloud forest in Bolivia.

distributed system, whether it is called a cloud, a grid, or
just a network. Some of this work employs control-theoretic
approaches to adaptive load-balancing for virtual machines
across physical servers, in the presence of other resource
constraints (Hyser et al. 2007; Wood et al. 2007), or opti-
mizing the use of resources such as power, again under con-
straints derived from the tasks being supported (Wang and
Wang 2010; Padal et al. 2007). Other research makes use of
game theory and other methods for decision-making under
uncertainty to allocate unreliable network assets to compu-
tational tasks (Sarmenta 2002; Sonnek, Chandra, and Weiss-
man 2007), for example using statistics on past behavior to
balance task throughput and reliability. Singh, Korupolu
and Mohapatra (Singh, Korupolu, and Mohapatra 2008)
describe a sophisticated online algorithm for hierarchical,
multi-dimensional load-balancing across a distributed sys-
tem, based on an algorithm for the multi-dimensional knap-
sack problem. In their conclusion, they discuss extending
this work based on statistical information similar to that in
the work cited just above.

What distinguishes our work is the need to represent and
reason about expectations, trade offs involving risk and re-
source cost for deploying monitoring and active defenses,
and the effect of network asset compromises on measures of
mission effectiveness.

Finally, there are simulation-based tools that can be used
to configure network resources, such as Opnet’s IT Guru
Network Planner 2. Simulation and sampling approaches
can be used to evaluate alternative network configurations,
including the behavior of those configurations under adverse
conditions such as network outages. These tools also pro-
vide or support static analysis tools, such as Opnet’s “Sur-
vivability Report,” and evaluation against regulatory policies
and vendor “best practices.” What they do not do is provide
a means to find a good configuration in the first place, or to
modify the current configuration as the situation changes.

CARINAE

The departure point for AMBORO is a system called Cyber
Architecture Reasoner Inferring Network and Application
Environments™ (CARINAE), described in (Michalowski,
Boddy, and Carpenter 2010). As shown in Figure 1,
CARINAE is a model-based, trust-driven tool for config-
uring defensive cyber operations. Given a network model
and information regarding current and planned network op-
erations in support of both missions and network defense,
CARINAE provides network operators with the means to
detect and resolve resource conflicts in network cyber-
defense operations.

With CARINAE, network architects and operators can
predict and resolve multiple scalability issues, including
physical and logical network topologies, defended appli-
cation resource loads, and defensive application architec-
ture and resource requirements. Focused on large, service-
oriented net-centric enterprise systems, CARINAE lever-
ages constraint-based reasoning and open source, industry
standard tools to create a robust analytical architecture that

“http://www.opnet.com/solutions/network_performance/index.html

Mission Requirements
PO o

Computer
Network
Operations

Domain-specific
Solution Heuristics

Components

COTS Constraint Solvers

Evaluation of
large-scale
network

Network Capabilities

Figure 1: Cyber Architecture Reasoner Inferring Network
and Application Environments™ (CARINAE)

can analyze the interactions between network configura-
tions and mission requirements for large-scale defensive cy-
ber applications (Michalowski, Boddy, and Carpenter 2010),
(Haigh, Harp, and Payne 2010). CARINAE provides band-
width, memory, and computational performance guarantees
for large networks supporting diverse operational missions
and defensive applications. Based on a collection of inno-
vative modeling and algorithmic optimizations, CARINAE
has been employed to analyze networks consisting of up to
1,000,000 nodes, with solution times typically well under a
minute.

CARINAE’s constraint-based model supports easy exten-
sion to a wide diversity of network topologies, node config-
urations, and mission requirements. The model supports the
representation of hierarchies of processing nodes and hier-
archical resource usage, supporting server-based virtualiza-
tion and a hierarchy of network services, as well as network
links tagged with various attributes, supporting requirements
such as encrypted links. However, CARINAE does not sup-
port an explicit mapping from tasks to resource demands:
the demands are provided directly. Nor does CARINAE’s
model or solution engines support reasoning about uncer-
tainties such as the trustworthiness of a given node, or the
likelihood of task or mission success.

In CARINAE, we employed the Coin-OR Linear Pro-
gramming solver, as well as the Minizinc CSP solver. For
AMBORO, we are currently using either the Minizinc de-
fault solver or the ECLiPse CSP solver. The AMBORO ar-
chitecture is deliberately structured to make it easy to swap
different solvers in and out as the computational and expres-
sive needs of the system change.

AMBORO Architecture and Implementation

The process supported by AMBORO starts with the provi-
sion of a problem instance defined in the network and mis-
sion models. The mission model describes the tasks in-
volved in the mission, including subtasks and any order-
ing or other temporal constraints, as well as computational

Mission model
(ANML)

External —
Data Network
Sources model (OWL)

Mission object
model

Generator

S—
Temporal
model

CSP generator

CSP AST

Figure 2: AMBORO Architecture

and communication requirements, which we will refer to as
demands. The network model describes the computational
and communication assets available, including their capac-
ity limits and current configuration. Both models have tex-
tual representations in AMBORO, the mission model in the
Action Notation Modeling Language (ANML), the network
model in the Web Ontology Language (OWL). Both models
are then parsed into internal Java data-structures, which are
the primary representations operated on within AMBORO.
The mission model is then analyzed by a separate module
which extracts information about the temporal relationships
between different activities, which is used to construct the
multi-period schedule representing the progression of mis-
sion phases and activities.

The processing module labeled “CSP generator” then uses
information from the network model, the mission model,
and the temporal model to define an abstract syntax tree rep-
resented the desired configuration problem as a constrained
optimization problem. This problem is then translated into
the appropriate input language for one or more solving en-
gines. At the current time, the solver output is being in-
terpreted by hand. Integration with other Mission-oriented
Resilient Clouds (MRC) capabilities will require that the so-
Iution format of whatever solver(s) are being employed be
mapped back into the entities described in the configuration
problem, as represented in the network and mission models.

At this point, we have a fully-functional, end-to-end im-
plementation of AMBORO. Starting from a mission model
and a network model, the system will extract the necessary
constraints and formulate a multi-period CSP model cover-
ing multiple mission phases. This model is then automat-
ically translated into minizinc and submitted to the solver,
resulting in a feasible assignment or a notification of infea-
sibility.

The mission model includes assignable resources, multi-
ple resources required for a given activity, and inter-activity
resource constraints (e.g., you must use the same asset for

two different activities). The mission model also supports
the assignment of subsets of network assets, for example
only allowing certain services to run on network nodes
with a specified set of capabilities. The network model
supports explicit representation of asset reliability, which
is carried through the constraint model, all the way to an
automatically-generated solution. Over-provisioning (the
assignment of redundant resources to increase reliability) is
currently modeled, but not yet part of the optimization prob-
lem.

AMBORO’s optimization model has several additional
capabilities, including optimizing for minimum distance
from a previous assignment to processors (supporting in-
cremental solutions), and a choice of network communi-
cation models, encompassing ignoring network liinks, re-
quiring simple connectivity, or feasibility within specified
throughput limits on links. Additionally, we are contemplat-
ing adding a term to the objective function that would en-
courage distributing processing demands across processors,
as opposed to the natural aggregation that occurs if there is a
finite probability of asset failure (because the probability of
mission failure rises with the number of unreliable network
assets being used).

Network Model

The AMBORO network model is very simple. Shown in
Figure 3, the model includes a hierarchical network of pro-
cessing elements, as well as a set of links among them. These
are the elements that can be allocated as resources, which is
all that is required.

There are certainly other aspects to the allocation prob-
lem involving the network, such as what demands are al-
lowed on certain links or what services can be allocated to
which processing elements. That information is kept in the
mission model, which is where the demands are represented.
There are additional constraints that represent the “physics”

AmboroOntology
-objectModel: AmboroObjectModel

AmboroObjectModel

-onto: AmboroOntology
-links: Map<String, Link>

-processingElements: Map<String, ProcessingElement> 1

? 1
AmboroObject

#id: String
#objectModel: AmboroObjectModel

7

AmboroNetworkObject
#probabilityOfFailure: Double

T

* *

-source: ProcessingElement

1 -subElements: List<ProcessingElement> |,
-destination: ProcessingElement

-memCapacity: Double

-cpuCapacity: Double

-throughputCapacity: Double
1

Figure 3: AMBORO Network model

2

of the network, for example how data flows from one node
to another over the available links, or how computational
resources used in a sub-element are aggregated into the con-
taining element hierarchy (providing support for virtualiza-
tion). These constraints are presented in the full constraint
model, which space precludes including here.

As previously described, network model instances are
stored and exchanged in OWL, which is inter-translated with
the in-memory java object model for which Figure 3 pro-
vides the class model. The “Generator” function shown
in Figure 2 can be used to automatically generate network
model instances, which can then be used in the solution pro-
cess, or back-translated into OWL for export to other tools,
or for manual browsing.

Mission Model

Our mission models are represented in the Action Notation
Modeling Language (ANML) (Smith, Frank, and Cushing
2008). As a domain modeling language for planning and
scheduling applications, ANML provides support for build-
ing parameterized task models incorporating temporal con-
straints such as execution windows and minimum or max-
imum durations, resource requirements such as necessary
tools or equipment, or capacity such as memory usage or
network bandwidth. ANML provides a uniform semantics
for both precondition/effect models of planning and task de-
composition. A further advantage to ANML is that it is
specifically designed to facilitate translation into constraint
models, indeed has a semantics that is defined in terms of
relationships represented as constraints. In this section, we
present both the ANML representation of mission plans, and
the ontology in which mission plans are represented inter-
nally.

Link él_ ProcessingElement e
-throughputCapacity: Double 1 -links: List<Link>

Tactical Recovery of Aircraft and
Personnel (TRAP) Planning Model

Figure 4 shows a simple TRAP mission task model, con-
sisting of two main phases, corresponding to mission plan-
ning and execution. Arrows indicate precedence relation-
ships on time points, showing, for example, that three differ-
ent organizations must be involved in mission planning, all
within the mission planning phase. Not shown graphically,
but modeled in the ANML mission model presented below,
is the requirement that all three of these planning activities
happen at the same time. In the second phase, the relation-
ships are different. Air support (AWACS and longer-range
air cover provided by fighters) must be in place before close
air support (provided by Apaches or other helicopters) can
deploy, which must in turn be in place before any ground op-
erations commence. Similarly for the mission return: each
level of support must be withdrawn in order.

Additionally, these tasks all come with resource require-
ments. As shown in Figure 5, the planning phase requires
local computing, storage, and network capabilities for each
organization involved in the planning process, as well as a
router that supports communication among them and back to
the Global Information Grid (GIG) or other backend, large-
scale data storage and processing resource. If any of these
resources fail, then the planning phase cannot be completed,
at least not until new resources are allocated. In Figure 5,
the network has been configured such that there are redun-
dant network paths among all the nodes. At least one of
the routers must remain functional in order to maintain the
required network connectivity.

Ground ops cmd

Local
computing

Close air support cmd

Local
computing

Air support cmd

Local
computing

Figure 5: Network resources required for the planning
phase.

Figure 6 shows a similar picture of network resources re-
quired for the operational phase of the mission. In this pic-
ture, all operational communication is routed through the
Airborne Warning and Control System (AWACS) aircraft.
Those communications include back to the various organi-
zational commands, as well as to the various support aircraft
involved. There is no communication link to the retrieval
team, the assumption being that they are under some kind of
communications restriction. One resource directly related to

TRAP Mission

Plan

\ 4

Execute

Plan ground ops

Execute air support

Plan air support

Execute close air support (suppression)

Plan close air support

Execute ground ops

<

Insert

Exit

Pickup

Figure 4: A simple TRAP mission plan

the retrieval team is their on-board computing resources. In
particular, they will have pre-loaded map information and
probably other data, in preference to have it sent during op-
erational phase. Again, all of these resources must be func-
tional, in order for the mission to succeed. This model can
be complicated by adding the possibility of redundancy, by
modeling decreased effectiveness rather than outright failure
(e.g., do the mission anyway, but with potentially out-of-date
imagery), and by modeling Byzantine failures.

Ground ops cmd

Local
computing

Close air support cmd

Local
computing

Air support cmd

Local
computing

Retrieval Team

Local
computing

Local

computing .

(Apachel) (Apache2) (Aircraft]) Aircraft2)

Figure 6: Network resources required for the operational
phase.

ANML is a very expressive domain modeling language
and could be used to represent a much more complex
planning model, including for example alternative task de-
compositions, more complex constraints on resource as-
signments, or more general task parameters. The current
AMBORO implementation supports more general resource

assignments, but does not support alternative task break-
downs.

ANML Mission Planning Model

Here we present an ANML version of the planning model
shown in Figure 4. First is the definition of the top-level
action:

define action TRAP_mission ()

{

[duration]

duration <= 360;
[all]

// 6-hour time limit
contains ordered (TRAP_plan(),
TRAP_execute ()) ;

This defines the top-level action as taking at most 6
hours, and requiring two subactions, TRAP plan and
TRAP_execute.

Next we define the planning action:

define action TRAP_plan()
{

[duration]

[all] contains {pl: TRAP_plan_ground();
p2: TRAP_plan_air();
p3: TRAP_plan_close();};
start (pl) == start (p2) == start (p3);
end (pl) == end(p2) == end(p3);
[all] (status(Routerl) == OK) |
(status (Router2) == OK);

The planning action has three subactions, which are all
constrained to start and end at the same times. In addition,
it must be the case that either Routerl or Router? is
operational over the entire duration of TRAP _plan.

Here is one of the planning subactions:

define action TRAP_plan_ground ()
{

[all] status(ground_cmd_computing) == OK;

}

This very simple action contains a single condition, which
is that the computing environment local to ground command
is operational. We could also specify starting and ending
times or a duration, but need not at this point: this model
defines a sufficient set of constraints for a mission plan to
be correct, rather than all of the constraints. The other three
planning subactions are similar.

Next we define the execution subaction and one of its sub-
actions:

define action TRAP_execute () [duration]
{
[all] contains {el: TRAP_execute_ground();
e2: TRAP_execute_air();
e3: TRAP_execute_close();};

start (el) <= start (e2) <= start(e3);
end(el) >= end(e2) >= end(e3);

[all] status (AWACS_comms) == OK;
}

define action TRAP_execute_ground ()

{
[all] status (ground_cmd_computing) == OK;

}

The example presented here is simplified for clarity and
brevity. AMBORO is capable of accepting models that in-
clude explicit resource assignments, for example making the
decision to use Routerl, Router?2, or both an explicit
part of the optimization.

Abstract Constraint Model

As described above, the CSP Generator builds an Ab-
stract Syntax Tree (AST) constraint model from informa-
tion contained in the network and mission models. To
the extent practical, this model is abstracted away from
the use of specific solver technologies (e.g., Constraint
Logic Programming (CLP) versus Mixed-Integer Linear
Programming (MILP)) and specific formulations (e.g., lin-
ear versus bilinear versus quadratic versus hybrid dis-
crete/math models).

In this section, we present the current state of the abstract
constraint model, including recent extensions to represent
resource assignment to demands, and probability estimates
for the failure of individual network assets. This is a formal
specification of the model constructed by the “CSP genera-
tor” as shown in Figure 2. We start by defining an instance
of a our CSP problem C as a tuple

¢ =(E,L,D)
comprising
e aset E of processing elements,
e aset L of links, and
e aset D of demands.

In this section, we define each of these elements. Subsequent
sections will discuss their interaction, and the constraints we

add as a result. Constraints to be added to the model are
defined in numbered equations.

All constraints in this model are expressed in time-free
terms. AMBORO constructs a multi-period model by repli-
cating the static model across periods, with inter-period links
as needed for things like allocations to activities that span
multiple periods. CPU demand is expressed as a rate re-
quirement (e.g. MIPS). Communications demand is ex-
pressed as a requirement for a specified data rate. Memory
demand is expressed as an amount of memory that must be
allocated, out of a finite store.

Processing Elements

A processing element e € E has the following attributes:
e acpu capacity’: cpu(e) — R*

e a memory capacity: mem(e) — R

e aset of sub-elements*: sub(e) — 2F

Memory and CPU (and disk, if needed) are all sufficiently
similar as currently modeled that, while we define the re-
quired attributes for all of these capacity resources, we only
present the constraints for CPU. For now, all other capac-
ity constraints local to processing elements look exactly the
same as CPU.

A processing element also functions as a node in a net-
work, defined by links, as described below. In addition to
the throughput capacities defined on links, we also define
a node throughput capacity associated with the processing
element e:

rate(e) — R

Finally, a processing element is susceptible to failure. We
define the probability that the processing element e will
function correctly (i.e., provide the required cpu, memory,
and networking capabilities):

prob(e) — [0.0,1.0]
Links

Communication connectivity between processing elements
is provided by links. Links are directional, with the follow-
ing attributes for a link [€ L:

e a source processing element: src(l) — E
e adestination processing element: dest(l) — E
e throughput capacity: rate(l) — RT

Demands

In this section, we address cpu and communication de-
mands. The model and constraints for memory demands
looks just like that for cpu demands. To differentiate be-
tween the different types of demands, we define subsets

SR* denotes the set of non-negative real numbers. Any at-
tribute denoting a value in R* must be explicitly constrained to
be > 0, unless it’s a constant.

“The symbol 2F denotes the power set of E: the set of all sub-
sets of E, including E and the empty set ().

of D: Dy, and D¢omm, €ach comprising all of the CPU
and communication demands, respectively. CPU demands
d € Dy, have the following attributes:

e ademand level: demand(d) — R+

e a set of processing elements to which the demand may be
assigned: allowedg(d) € 2B

e avariable > orig(d), which will be assigned a value drawn
from allowed g (d)

A communication demand d € D ., has
e ademand level: demand(d) — R*

e a set of processing elements to which the source may be
assigned: allowedg(d) € 2B

e a set of processing elements to which the source may be
assigned: allowedp(d) € 2F

e aset of allowed links®: allowedr,(d) — 2

e a variable src(d), which will be assigned a value drawn
from allowedg (d)

e a variable dest(d), which will be assigned a value drawn
from allowedp (d)

Processing Element Constraints

Processing elements are defined in a part/whole hierarchy of
elements and sub-elements. For processing elements e;, ¢;,
where i #£ j:

e; € SUb(ej) = €; € SUb(ek),Vk 75]

and if we define < as the transitive closure of the sub-
element relation, then

€i<€j:>6j74€i

These “constraints” are much more likely to be enforced
as a property of the network model than to appear explicitly
in the CSP to be solved.

There are two possible views of the processing element
hierarchy. In the aggregate model, processing elements at
any level in the hierarchy impose constraints correspond-
ing to usage attributes, interpreted as resource limits to be
compared to their aggregate-utilization attributes. For pro-
cessing elements having no sub-elements, the aggregate-
utilization attributes are set or solved for directly (see
Subsection). For processing elements with sub-elements
the aggregate-utilization attributes are computed from the
aggregate-utilization attributes of their sub-elements. We
define a variable:

e aggregate CPU utilization: aggcpu(e) — RT

3 Arguably, variables should be defined in subsequent sections
that define the optimization problem. We leave some of them as at-
tributes of the different network entities because, depending on the
model, a given attribute may move back and forth between being a
variable and being a constant.

The symbol 2% denotes the power set of L: the set of all sub-
sets of L, including L and the empty set .

and add constraints:

Ve € E, aggcpu(e) < cpu(e) (1)
Ve € E : sub(e) # 0, aggcpu(e) = Z aggcepu(e)
e’ESUb(e)
(2)

This is a good model for aggregated global resources such
as power or comm. bandwidth, where at any level of the
hierarchy the sum of the budgets for the next level down may
be more than the capacity limit imposed (it is assumed that
not everyone will draw their maximum budget at the same
time).

In the budget model, processing element capacities im-
pose constraints both down the hierarchy (resource limits)
and up the hierarchy (resource demands). In this case, we
replace the constraint 2 above with

Ve € E:sub(e) # 0, aggcpu(e)= >
e’esub(e)

cpu(e’)

3)
This is more appropriate for something like weight, or power
budgets for sub-assemblies that don’t get switched on and
off. There is no requirement that either the aggregate or
budget models be uniformly applied in a given processing
element hierarchy; both may be needed, in different places.

CPU Demand Constraints

CPU and memory demands are imposed by constraining the
corresponding aggregate utilization. For CPU”:

Ve € E, aggcpu(e) = Y [orig(d) = ¢] demand(d)
d€Dcpu
“4)
Note that sub(orig(d)) must equal @ (i.e., the process-
ing element to which d is applied may not have any sub-
elements). This can be implicitly enforced via the member-
ship of allowedg(d).

Communication Demand Constraints

We can view the set of processing elements E and any set
of links L C L in a given CSP model as a directed graph
G = (E, L), with vertices E and edges L, where each edge
I € L is labeled with rate(l). Then G fits the definition of
a specialized form of directed graph called a flow network.®
Because different communication demands are represented
as different flows, with distinct sources and sinks, we need
to represent this as a multi-commodity flow problem, with
each demand d € D, corresponding to a different com-
modity. We define the following with respect to a given set
of links L C L, withl € L,d € D.ypm and e € E:

The source and destination of a communication demand
must be distinct:

Vd € Deomm, src(d) # dest(d) (5)
New variables:

"The notation used here is the Iversen bracket which is defined

0 if Sis false
by [S] = { 1 if Sistrue

8http://en.wikipedia.org/wiki/Flow_network

e demand flow on a link: flowy, (I, d) — R™

e demand inflow at a processing element: inflowy, (e, d) —
Rt

e demand outflow at a
outflowy (e, d) — RT

Demand inflow and outflow at a processing element is de-
fined by the flow on the connected links:

processing element:

Vee E, Vd € D.omm,
inflow, (e, d) = >, [dest(l) = e] flow (I, d)

(6)

Vee E, Vd € D.omm,
outflowy, (e, d) =, [src(l) = e]flow (I, d)
(N

Demand can only flow on allowed links:

Vi € L,VYd € Deomm : 1 ¢ allowedr(d), flowy(l,d) =0

(®)
The following constraint enforces conservation of flow at
each node in the network (each processing element) for each
demand:

Vee E, Vd € D.omm
inflow, (e, d) + [src(d) = e]demand(d) =
outflowy, (e, d) + [dest(d) = e¢] demand(d)
©))
Note that according to this definition, there is no requirement
that a given communication flow use a single path from one
processing element to another. The throughput required may
be spread over any or all of the possible paths between the
two processing elements.

Note as well that representing dataflow as a material flow
is a potentially-misleading simplification: data may be en-
crypted, filtered, decoded/expanded, or in other ways made
larger or smaller at a given processing element, thus vio-
lating the conservation defined in this section and the next
one. As long as the change in data size can be mapped to
a change in required throughput, this can be added to the
current model fairly easily.

Link and Node Rate Constraints

For convenience we define total flow on each link and pro-
cessing element with respect to a given set of links L C L,
with! € Land e € E:

e total flow on a link: flow(L)l — R
e total inflow at a processing element: inflowy (e) — R
e total outflow at a processing element: outflowy,(e) — RT

The following constraints total up the flows across all de-
mands for each link and processing element:

> flow(L)l,d (10)

d€Dcomm

Z inflowy (e,d) (11)

d€Dcomm

> outflowy, (e, d) (12)

deDcunwn

VieL, flow(L)=

Ve € E, inflowy(e) =

Ve e E, outflowr(e) =

Now we can specifiy the capacity constraints on links and
processing elements:

Vie L, flow(L)! < rate(l) (13)
Ve € E, inflowy(e) < rate(e) (14)
Ve € E, outflowy(e) < rate(e) (15)

For now we are assuming that flow for a processing element
is constrained independently for in and out flow. But there
is an alternative constraint that we could apply if we need
to model a device that cannot send and recieve at the same
time:

Ve € E, inflowy(e) + outflowy(e) <rate(e) (16)

Translating the Abstract Constraint Model

The final step before actually invoking a solver is to translate
the problem instance into the appropriate input language.
This process is accomplished by walking the Constraint Sat-
isfaction Problem (CSP) AST, emitting the appropriate for-
mulation. In the current implementation, the CSP AST is
translated into MiniZinc, which can be used as input for ei-
ther the default MiniZinc solver, or as input to Eclipse. As
a way of showing the kinds of mappings that are required,
Flgures 7 and 8 provide examples of the current translation
from the formal model into MiniZinc.

There are quite a few more constraints in this model,
including those defining how computational resources are
aggregated within the element/sub-element hierarchy (i.e.,
how virtualization is modeled), and the constraints defining
communication flows over the network, but this will provide
a sense of the kinds of translation required.

This translation needs to be implemented in the inverse di-
rection as well. Output format from many solvers, including
MiniZinc, can be heavily tailored, but the variable assign-
ments and costs must be mapped back into the entities in
the mission and network models. This requires effectively
inverting the two-step translation first from the network and
mission models into the CSP AST, and then from there into
the solver-specific code shown in this section.

Conclusion and Future Work

AMBORQ’s uniform, constraint-based representation for
modeling mission tasks, cloud resources and the current set
of assignments of resources to tasks provides several ben-
efits, including easy extension of the model to reflect new
types of missions, tasks, network components, and opera-
tional requirements such as QoS guarantees, as well as the
presence of a wide variety of implemented solvers. Other
advantages to a constraint-based approach include the ability
to define partial solutions, culprit identification in the case of
infeasibilities or other conflicts, incremental solutions as ad-
ditional tasks are added, and the use of local search methods.

The work reported here is from the first six months of
a planned four-year project. At this point, we have imple-
mented and validated an end-to-end AMBORO system. To
date, the network and mission models on which the sys-
tem has been tested are small, and the probabilities from
the which the likelihood of mission success is computed

% Processing Elements

% FORMAL: function cpu(E) -> R+
array [Elements] of float: cpu;

constraint assert (forall (e in Elements) (cpule] >= 0.0), "cpu must be >= 0.0");

% FORMAL: function sub(E) —-> 27E
array [Elements] of set of int: sub;

% FORMAL: function aggcpu(E) —-> R+
array [Elements] of var float: aggcpu;
constraint forall (e in Elements) (aggcpule] >= 0.0);

% FORMAL: function rate(E) -> R+
array [Elements] of float: elementRate;
constraint assert (forall (e in Elements) (elementRatel[e] >=

0.

0),

"rate must be >= 0.0");

Figure 7: Adding constraints on processing elements and network links

% FORMAL: set D_cpu of CPU demands
int: nCpuDemands;
set of int: CpuDemands = 1..nCpuDemands;

% FORMAL: set D_comm of communication demands
int: nCommDemands;
set of int: CommDemands = 1..nCommDemands;

% FORMAL: function demand(D_cpu) -> R+
array [CpuDemands] of float: cpuDemand;
constraint assert (forall (d in CpuDemands) (cpuDemand([d] >=

% FORMAL: function allowed_E (D_cpu) -> 2°E
array [CpuDemands] of set of int: cpuAllowedElements;

% FORMAL: function orig(D_cpu d) -> allowed_E (d)
% Implemented as an array of zero/one variables.
array [CpuDemands,Elements] of var {0,1}: cpuOrig;
constraint
forall (d in CpuDemands) (
% element to fill this demand.
1 = sum(e in Elements) (cpuOrig(d,e])
)
constraint
forall (d in CpuDemands) (
forall (e in (Elements diff cpuAllowedElements([d])) (

0.

0),

"cpuDemand must be >= 0.0");

% Only one element can be 1 for each demand. This is the chosen

% Exclude elements that are not allowed to be used for this demand

cpuOrigld,e] = 0
)
)i

constraint
forall (d in CpuDemands) (
forall (e in (Elements diff commAllowedSrcs[d])) (

% Exclude elements that are not allowed to be src for this demand

commSrc([d,e] = 0

)i

Figure 8: Adding demand constraints

are largely independent. We are currently in the process of
adding complexity and scale in all three areas: larger net-
works, more complex mission models, and more complex
probability computations. Further along in the project, we
will also be extending from the simple failure probabilities
described here to a more complex (but not yet defined) no-
tion of “compromised” assets, where different kinds of com-
promise have different, possibly stochastic effects on mis-
sion effectiveness.

All of these extensions pose potential computational chal-
lenges. The question of network scale we have already ad-
dressed: our previous work on CARINAE demonstrated an
ability to scale to networks of up to a million nodes, with
only limited optimizations in our formulation. Added com-
plexity in the mission model may affect solving time in any
of several ways. Adding additional mission phases or addi-
tional levels of sub-tasks to the current multi-period model
increases the size of the problem linearly. Given the rel-
atively weak coupling of adjacent periods, this should not
have a great effect on computational effort. Additional inter-
task constraints, unordered subtasks, or permitting alterna-
tive task decompositions are the extensions most likely to
add difficulty to scaling up.

Moving to a more general and more complex stochastic
model has the potential to add significant difficulties. The
overall MRC program is currently in an early stage, thus we
do not know exactly what additional complexities will be re-
quired. Depending on specific details for these extensions,
our approach may range from off-line model simplification
and exploitation of what independencies exist, using an ex-
isting probabilisitic modeling language such as Figaro (Pfef-
fer 2009), to numeric approximations exploiting the fact that
prior failure probabilities tend to be very close to zero, to
hybrid optimization methods involving partitioning a large,
non-convex solution space, as for example in (Lamba et al.
2003).

References

Haigh, J.; Harp, S. A.; and Payne, C. N. 2010. Aimfirst:
Planning for mission assurance. In Proceedings of 5th In-
ternational Conference on Information Warfare and Secu-
rity.

Hyser, C.; McKee, B.; Gardner, R.; and B.J.Watson.
2007. Autonomic virtual machine placement in the
data center. Technical Report HPL-2007-189, HP
Labs. http://www.hpl.hp.com/techreports/
2007/HPL-2007-189.pdf.

Lamba, N.; Dietz, M.; Johnson, D. P.; and Boddy, M.
2003. A method for global optimization of large systems
of quadratic constraints. In 2nd International Workshop on
Global Constrained Optimization and Constraint Satisfac-
tion.

Michalowski, M.; Boddy, M.; and Carpenter, T. 2010. Co-
ordinated management of large-scale networks using con-
straint satisfaction. In Working Notes of the 2010 AAAI
Workshop on Intelligent Security (SecArt).

Padal, P.; Shin, K. G.; Zhu, X.; Uysal, M.; Wang, Z.; Sing-
hal, S.; Merchant, A.; and Salem, K. 2007. Adaptive con-

trol of virtualized resources in utility computing environ-
ments. In EuroSys.

Pfeffer, A. 2009. Figaro: An object-oriented probabilistic
programming language. Technical report, Charles River
Analytics.

Sarmenta, L. 2002. Sabotage-tolerance mechanisms for
volunteer computing systems. In CCGrid.

Singh, A.; Korupolu, M.; and Mohapatra, D. 2008. Server-
storage virtualization: Integration and load balancing in
data centers. In Proceedings of the ACM/IEEE Conference
on Supercomputing.

Smith, D.; Frank, J.; and Cushing, W. 2008. The anml
language. In International Conference on Automated Plan-
ning and Scheduling.

Sonnek, J.; Chandra, A.; and Weissman, J. 2007. Adap-
tive reputation-based scheduling on unreliable distributed
infrastructures. In 7PDS.

Wang, Y., and Wang, X. 2010. Power optimization with
performance assurance for multi-tier applications in virtu-
alized data centers. In IEEE Online Conference on Green
Computing.

Wood, T.; Shenoy, P.; Venkataramani, A.; and Yousif, M.
2007. Black-box and gray-box strategies for virtual ma-
chine migration. In In Proceedings of NSDI.

