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Abstract We present a compositional approach to generate linear hybrid automata timing
models, and Markovian stochastic automata safety models, from an architecture
specification. Formal models declared for components are composed to form
an overall model for the system, where the composition rules depend on the
semantics of the architecture specification. We further allow abstract models to
be specified for a subsystem of components, where the abstract model may be
substituted for the concrete model of that subsystem when composing the overall
system model. We assume both abstract and concrete models are given, we
address the problem of verifying that the abstractions yield safe if approximate
results. An abstract mode! may be viewed as a formal subsystem specification
used for both conformance checking and improving the tractability of system
analysis.
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1. Introduction

Given a specification for the architecture of an embedded computer system,
we want to generate and analyze formal models of system behavior. In this
paper we discuss the generation and analysis of timing and safety models from
specifications written in the SAE standard Architecture Analysis and Design
Language (AADL) and its original research basis, MetaH[AADL 2004, MetaH
2000].

An architecture is often informally described as an assembly of connected
components. Overall system behavior is determined by the interactions be-
tween components according to the way they are connected, which is to say
system behavior is defined as a composition of the behaviors of its components.
We will associate formal models with individual components in a specification.
The formal models for a complete system are defined as compositions of the

*This work was supported by the US Air Force Office of Scientific Research under contract number F49620-
97-C-0008.
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individual component models. In this paper, we use a type of hybrid automaton
to specify real-time component behaviors, and a type of stochastic automaton
to specify component fault and error behaviors.

Architectures are specified hierarchically. Every component may have an
internal implementation that may itself be specified as a set of connected sub-
components. Given a component that has an internal architecture, a formal
model for that component can be generated by composing the models for its
subcomponents. We call this the concrete model for that component. We may
also directly associate an abstract model with a component that is intended to
be a safe approximation for the concrete model. When generating a system
model from an architecture specification, we thus have a choice for each com-
ponent whether to use its concrete model or its abstract model. A different
choice can be made for different components at different levels of the design
hierarchy, so that a fairly large set of mixed-fidelity models is possible. Hi-
erarchical abstraction can both improve understandability and enable tractable
analysis for large and complex specifications.

We assume both concrete and abstract models are given, e.g. hand-developed.
Our focus is on verifying that analyses performed when abstract subsystem
models are substituted for concrete subsystem models are safe in some sense
with respect to analyses of the fully detailed concrete models. In the case of
our timing models, we show how to verify that classical periodic tasks are con-
servative approximations for hybrid automata used in the AADL standard to
define thread semantics, or hybrid automata that model reusable middleware.
In the case of our safety models, we explore the relationship between abstract
and concrete stochastic automata models. We expect the effort required to
develop pairs of abstract and concrete models to be justified by high degrees
of reuse; and that many pairs of abstract and concrete models will be based
on common and easily modified design patterns. An abstract model may be
viewed as a formal specification that is also usable to improve the tractability
of analysis.

2. Related Work

We borrow one of the fundamental ideas of process algebra[Milner 1989]:
show that a large and complicated subsystem model can be replaced by a
smaller and simpler subsystem model when performing overall system anal-
ysis. We permit the smaller simpler model to be an approximate abstraction
rather than requiring some notion of equivalence. We deal with hybrid and
stochastic automata rather than purely discrete models. We use automata rather
than programming language models[Cousot 1977].

CHARON and Hybrid I/O Automata (HIOA) exhibit many of these con-
cepts[Alur et. al. 2001, Lynch et. al. 2003]. The notion of abstraction used
in this paper also involves containment of reachable states or traces. We allow
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looser definitions than the CHARON notion of refinement or the HIOA notion
of implementation, for example we allow the sets of abstract and concrete vari-
ables to differ. We allow fairly arbitrary abstractions to be specified and focus
on verifying that they are adequate for the purpose at hand. CHARON and
HIOA use more traditional ways to compose automata based on shared vari-
ables and/or shared events, whereas we use a scheduler function to compose
models of real-time tasks that interact by contending for shared processors.

Markov (and more general stochastic) processes are well known to exhibit
the state space explosion when trying to solve large models of complex sys-
tems. This served to motivate the desire to use more computationally tractable
abstractions. Early work established necessary and sufficient conditions for
when abstractions of Markov chains were again Markov [Kemeny and Snell
1976]. Considerable effort has been spent in developing efficient algorithms
to find tractable Markov abstractions (e.g. [Derisavi et al. 2003a]). Other re-
searchers have sought abstractions for which the solution is exact when the
concrete model is a semi-Markov processes, which is more expressive than a
Markov process[Bradley et al. 2003]. When a Markov process has no tractable
abstraction that is again Markov, techniques for finding approximate abstrac-
tions might be useful [Lefebvre 2002].

From a computer science perspective, process specifications typically be-
gin with models of concurrent automata, to which various stochastic semantics
have been applied. Considerable work has gone into linking conditions for
when variants of stochastic automata are analyzable as Markov chains (e.g
[Brinksma and Hermanns 2001, Desharnais et al. 2003]). Software tools have
been developed to support specification of numerous modeling formalisms and
abstractions coupled with a collection of optimized solution techniques for
evaluating them (e.g. [Derisavi et al. 2003b]).

3. Timing Models

Classical real-time scheduling theory deals with the scheduling and analysis
of repetitively dispatched tasks[Liu and Deitel 2000]. The time between dis-
patches is fixed (periodic tasks) or has a lower bound (sporadic tasks). There is
an upper bound on the compute time at each dispatch (often called the worst-
case execution time). The theory provides algorithms for optimal (in some
sense) uni-processor scheduling and for tractable schedulability analysis of
large sets of tasks. However, classical real-time scheduling theory deals with
only very restricted forms of internal task behaviors or interactions between
tasks (beyond contention for a shared processor resource). For example, tasks
in an actual system may exist in a number of discrete states, e.g. halted, initial-
izing, suspended, computing, recovering.

Hybrid automata can model more complex dynamical systems[Alur et. al.
1994]. A hybrid automaton is a classical finite state automaton plus a set of
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real-valued variables. The variable values may change continuously in a fixed
location (a fixed discrete state), and may change discontinuously (may be as-
signed) at discrete transitions between locations. The allowed transitions may
depend on the variable values (edge guards may be predicates over variables).
These additional behaviors are specified by annotating the edges and locations
of the classical finite state automaton with various kinds of constraints. In this
paper we limit our attention to linear hybrid automata, where constraints are
expressed using linear functions. A state of a hybrid automaton consists of a
location together with a real value for each variable. We use polyhedron to
refer to a set of possible real values for the variables (e.g. specified as a system
of linear inequalities), and use region to refer to a location plus a polyhedron.
Composition rules exist to define semantics for sets of concurrent hybrid au-
tomata.

assert 1200000

Stopped
des=(), bt=1
200000

Initializing
fe={0,1}, ot=1
€290000

: Starting
Abstract de={0,1}, t=1
Failed €<90000

Computing
de={0,1}, ér=0, ot=1
¢<90000

Awaiting_Dispatch
de=0, or=0, dt=1
200000

Recovering
de=0, dr={0,1}, dt=1
r<10000

Abstract
assert 1200000 Awaiting

Abstract Diispaich

Computing

Figure 1. Concrete Hybrid Automata Model T" for a MetaH Periodic Task

Certain AADL thread semantics are defined in the standard using a hybrid
automata notation[AADL 2004]. We have automatically generated linear hy-
brid automata models for the portions of the MetaH middleware that perform
preemptive scheduling and enforce time partitioning[Vestal 2000]. Figure 1
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shows a hybrid automata model T" for a periodic task. This model was automat-
ically generated from the MetaH middleware code, i.e. it shows task behavior
actually implemented by the middleware (excluding stopping and restarting
at dynamic architecture reconfigurations). We use dx as an abbreviation for
dz/6t. The choice for ¢ = {0, 1} is made as follows.

We do not use shared variables or shared edge labels (synchronized transi-
tions) to compose multiple automata. Instead, we use a scheduling function
that defines the rates at which compute times accumulate as a function of the
current set of task locations (e.g. as a function of which tasks are in ready
states)[ Vestal 2000]. Let [ =< ly;, l3j,... > be a location vector for a system
of automata, i.e. [;; is a location from automaton 71, [2; is a location from au-
tomaton T3, etc. A scheduler function < dvy, dvg, ... >= S(< li;,lay,... >)
(also written §5 = S(I)) defines the variable rate vector as a function of the
system location vector. In our example, the scheduler function always sets
&t = 1 for timers ¢, and sets d¢c; = 1 if task 4 is executing and ¢; = 0 if task ¢
is preempted for that system location (for that set of contending ready tasks).

Unfortunately, analyzing schedulability by model-checking systems of hy-
brid automata is not currently very tractable. We have done this for pairs of
different kinds of tasks during the MetaH middleware verification exercise, but
revolutionary advances in hybrid automata model-checking are needed to con-
sistently analyze even a dozen non-trivial concurrent task models. We instead
explore how to verify that a complex hybrid automaton task model (such as
one defined in the AADL standard) can be safely approximated by a classical
real-time task model for the purpose of schedulability analysis.

Failed
ac’'=0, ot’=1

assert t'<200000

Awaiting_Dispatch
oc’=0, or'=1
'<200000

Computing
oc’'={0,1}, ot’=1
¢’<100000

2 ¢'=200000
0, c’'—0

Figure 2. Abstract Hybrid Automata Model T" for a MetaH Periodic Task

Figure 2 shows an abstract hybrid automaton specification T” for a periodic
task having a period of 200000 time units and a worst-case compute time of
100000 units. We assert this formally specifies a classical periodic real-time
task, slightly extended by the addition of a Failed state. We define a mapping
between this abstract automaton and the concrete automaton of Figure 1 as
follows.

We define a many-to-one mapping of concrete to abstract locations, I’ =
a(l) for abstract location I’ and concrete location [. Every initial concrete lo-
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cation must map to an initial abstract location. Our example mapping is il-
lustrated in Figure 1 using shaded ovals to represent the abstract locations to
which the concrete locations are mapped. We define the value of each abstract
variable as a linear function of the concrete variables, vj = fi(vy,v2,...) for
each abstract variable v} and concrete variables v; (also written o' = f(?)) .
For our example, ¢’ = ¢ and ¢’ = ¢ + r. Each initial valuation for the concrete
variables must map to an initial valuation for the abstract variables.

Assume we are given a system of abstract tasks 77, ..., T}, ... having an ab-
stract scheduler function 6%’ = S’(I’). We can view this as an abstract specifi-
cation for scheduling a system of tasks. We can modify this system by replac-
ing some particular 77 with a concrete T}, with suitable changes to the domain
and range of the scheduler function.

We constrain the modified scheduler function S obtained from the abstract
S’ so that all concrete locations that map to the same abstract location are
equivalently scheduled, and concrete scheduler rates are consistent with ab-
stract scheduler rates. Assume that, due to the replacement of T} by T;, abstract
variable v] is removed from the range of S and concrete variables v;1, ... where
v; = fi(v, ...) are added. For unreplaced abstract variables v/, §v; = Sj(<
el >) = Sj(< ..,1,... >) whenever a(l) = I’. For substituted vari-
ables, (51); = S{(< ...,li,... >) = 6f1(1)11,) with (51)1']' = Sij(< vy by >)
whenever a(l) = I'.

We assert that the original abstract system can be analyzed using a classical
schedulability analysis algorithm appropriate to the abstract scheduling func-
tion S’. If the reachable regions of the modified system are contained in those
of the original abstract system (after applying the variable abstraction function)
for all feasibly scheduled abstract systems, we assert that the abstract system is
a safe approximation for the modified system for the purpose of schedulability
analysis.

To formalize the notion of containment in the presence of variable abstrac-
tion, let P"* be the system of linear inequalities obtained from an abstract
P’ by substituting for each abstract variable v/ its linear abstraction function
fi(v1,v2,...). Only concrete variables appear in P’*. We say that concrete P
is contained in abstract P’ if P C P’}

We verify by model-checking that a modified S derived as explained above
from a feasible abstract scheduler S’ will always feasibly schedule T;. First, for
our example pair of abstract and concrete models we restrict our attention to
schedulers that are functionally equivalent to the set of constant rate schedulers
S'(...,Computing!,...) > 1/2, i.e. an abstract scheduling function is feasible
for this example if it allocates at least 50% of the processor to T between its
release time and deadline while 77 is in its compute state. Second, we construct
a specific S that satisfies the conditions above, one that sets §¢ = 1/2 and ér =
0 in all concrete states that map to the abstract computing, except ér = 1/2
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d éc = 0 in the recovering state. For our MetaH example, both abstract and
concrete scheduler functions are preemptive fixed priority schedulers. (Note
that, as one might expect, a number of concrete schedulers could be defined
that satisfy the above conditions on the relation between abstract and concrete
scheduler functions.)

Using these abstract and concrete scheduler functions, we applied a region
enumeration tool to both an abstract and a concrete task model. Then, for
each reachable concrete region (I, P) where [ is a concrete location and P a
polyhedron in the concrete variable space, the tool verified that there was some
reachable abstract region (I/, P') such that I’ = a(l) and P C P'\. Note
this is a conservative containment test, sufficient but not necessary, because in
principle P might be contained in a union of abstract polyhedra but not in any
single abstract polyhedron.

The condition that S is indistinguishable from S’ for all concrete locations
that map to the same abstract location means the scheduling of a given task
model is the same regardless of whether it is being composed with abstract
or with concrete models. We can thus make this substitution for any arbitrary
subset of tasks to produce mixed-fidelity models that range from all abstract to
all concrete.

This worked for our example concrete MetaH task model by design, in the
sense that the task scheduling implementation was designed to present a clas-
sical real-time workload. This enabled accurate schedulability analysis for
implemented systems, at least to the degree we could verify the implementa-
tion satisfied the abstraction (subsequent hybrid system model generation and
checking revealed some implementation defects[Vestal 2000]). The advent of
hybrid automata methods (largely occuring after the original MetaH design)
and abstraction methods (such as those presented here) can hopefully enable
more rigorous and defect-free development in the future.

Abstraction methods such as that presented here might be used to produce
mixed-fidelity hybrid automata models that are more tractable to model-check.
Our earlier experience suggests that expanding only two or three out of a dozen
abstract tasks into their fully detailed concrete models might yield a tractably
analyzeable model[Vestal 2000]. This might be useful, for example, to verify
some complex interaction protocol between a pair of tasks.

Our use of model-checking to verify containment of concrete behavior within
abstract behavior required us to constrain the class of abstract and concrete
schedulers and the mapping between them. It would be useful to verify that
the abstraction is a safe approximation for the concrete for broad classes of ab-
stract and concrete schedulers and mappings. For example, it might be possible
to permit a (mapped) concrete scheduler rate to exceed the abstract rate under
certain circumstances. This might make it easier to deal with things like differ-
ent scheduling priorities for different concrete locations, or bounded blocking
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times, which would be of significant practical utility. It might also be pos-
sible to prove more complex cases of containment using an explicit detailed
abstraction mapping between concrete and abstract invariants and edges (in-
cluding guards and assignments), rather than model-checking with constrained
scheduler functions.

4, Safety Models

We now revisit the same general problem addressed in the previous section,
but rather for safety models than for timing models. The AADL Error Mod-
eling Annex defines language features to specify stochastic models for fault,
error and failure behaviors in embedded computer architectures] AADL 2004].
A stochastic automaton approach is used[Brinksma and Hermanns 2001] for
specification. The rules for composing individual component stochastic au-
tomata depend on the specified architectural structure, i.e. depend on the pos-
sible error propagation paths between components that interface to or depend
on each other. Propagation modifiers can be specified to make propagation
conditional, which allows consensus and voting protocols to be modeled.

An error model for a system specified as a nested hierarchy of components
can be obtained by composing the error models for its subcomponents accord-
ing to the rules of the language. However, another option is made available:
the user can specify a subsystem error model that may optionally be substituted
as an abstraction for the concrete compositional model. Propagation modifiers
can also map one error into another. This makes it easier to compose legacy
models or models developed at different levels of abstraction. (Legality rules
are included in the annex to enable automatic verification of error model com-
patibility within an overall architecture specification, or identify places where
such mappings are needed.)

The remainder of this section is organized as follows. We introduce Markov
processes, the modeling language to which stochastic automata specifications
are translated before solving the system. We suggest rules to preserve safety
properties when going from concrete (larger) steady state Markov models to
abstract (smaller) steady state stochastic models. Abstractions of several steady
state Markov models are presented. Steady state analyses are computationally
much simpler to find than transient analyses.

We show that the transition rate assignment in the abstract model is uniquely
determined by the transition rates of the concrete model when the abstraction
is “lumpable”. When the abstraction is not lumpable, rate assignments in an
abstract model need not be uniquely determined. We discuss selection criteria
for “reasonable” assignments from an engineering perspective when possibly
infinite (beyond a constant rescaling of all transition rates) assignments will
satisfy the constraints of the abstract model. For safety analyses, transient
solutions are generally required. We discuss conditions for preserving safety
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in transient models. We close with an illustration of how Markov chains are
composed at the (AADL) specification level.
4.1 Brief Markov Process Introduction

The reader is assumed to be familiar with Continuous Time Markov Chains
(CTMCs) at an introductory text level (e.g. [Hoel et. al. 1972]). We use stan-
dard notation for describing CTMCs, which unfortunately has some overlap
with hybrid systems notation. Hopefully the context will make clear the use.
The notation we use to specify and solve CTMCs is compactly defined in Ta-

[ Notation | Description ]
é A finite discrete set of systen states. Typically, § = {1,2,...,m}.
z,Yy Elements in 6. =,y € 6.
X(t) System state at time ¢ > 0. X (t) € & forall¢ > 0.
Goy Instantaneous rate of change from state z to y for  # y. The set {qzy} de-
scribes the infinitesimal generators of the CTMC. For z = ¥, Qge = —¢z =

— Zye 5—{z} Tov- In practice, ¢zy is known or must be approximated (e.g. the
failure rate of a component, perhaps given by a vendor specification).

A The infinitesimal generator matrix, Denote (A);; = g;.

Qs The transition rate out of state z. For a CTMC, this means the probability that
a process in state = will remain in state z for a time greater than ¢ is e~ %", If
is a death state (with no transitions leaving x), then ¢, = 0.

D A diagonal matrix, with Dz = ¢ and Dy = 0 for z # y.

Qzy The probability of transition from state x directly to state y given the system is
about to transition out of T # Y. Qzy = uy/qx for z # y.

Py (t) The probability that X (¢) = y given that X (0) = z. Or, the probability that a
process X in state x will be in state y after ¢ time has elapsed.

n The steady state distribution. That is # = (mw1,72,...,Tm), where 7, =
lim¢ o P(X(t) = z). For a CTMC,  satisfies TA = 0. For a Discrete
Time MC (DTMC), 7 satisfies 7Q) = . Also require Z;';l m; = 1, to fully
constrain the model.

Table 1. Continuous Time Markov Chain (CTMC) Notation

ble 1. When considering limiting distributions, we assume there are no death
states and the limiting distribution does not depend on the initial distribution.
That is, we assume the CTMC is ergodic and regular.
4.2 Examples of Concrete Continuous Time Markov Chain Models
We give three Markov models used in subsequent examples. Models are
concrete when no further detail is captured in any of the states or transitions.
The model shown in Figure 3 is the simplest possible Markov process that
can represent a single repairable component (SRC). The right hand side shows
standard notation. The left hand side is an equivalent, yet more compact rep-
resentation that we adopt. In Figure 3, § = {1,2}. When in the operational
state (1), faults occur at rate A\, when the process transitions to the failed state
(2). The failed system returns to operational when the repair event has been
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effected, which occurs at rate ;1. When repairs are not instantaneous, the repair
completion time is equated with the repair event epoch. Table 2 summarizes

oo = 2

Figure 3.  Failure/Repair Transition Notation and SRC Model

these transitions and gives the steady state distribution.

€S | (2,Y) | Guz | uy T
1 @2 | =2 X Tau-(u+tX) T
2 @D | —p | p [ A (p+N]

Table 2.  Single Repairable Component Markov Process Specification

For our second example, we consider an abstraction that aggregates a se-
quence of events, which may be desirable in practice. Figure 4 show a process
consisting of a sequence of four events reduced to three events.

Figure 4. Markov Cycle Models (Right abstracts Left)

The last example is a triple modular redundancy (TMR) system with three
independent and identical components, C, Cs, and C3. Components are either
working or failed, with failure and repair rates A and p, respectively. System
state is defined by the state of all components, with “operational” states as two
or more components are working. Figure 5 and Table 3 show the TMR Markov
process, parameters, and steady state solution.

4.3 Safe Abstractions of Concrete Models

Superscripts a and c are used to distinguish between abstract and concrete
models. For example §* and §° denote abstract and concrete states, respec-
tively. To ensure safety properties, we propose two rules for defining abstract
models in terms of concrete models.

(1) To ensure that concrete states are not split and distributed among multi-
ple abstract states, we recommend that the concrete states are partitioned where
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Figure 5. Markov TMR Model

op comps | state z Q= up? Tx Abs1 | Abs2
{1,2,3} 1 —3X\ yes | uS-(u+A)3 Pl | PP*?
{1,2} 2 [ @A+ [yes | (N -(w+N)2 | BT
{2,3} 30| —(@A+p) | yes | (WA - (u+ )73
{1,3} 4 | —@r+p) | yes | (PN - (u+N)°
{1} 5 —(A+20) [ no [ (uA)-(u+NT ] P PE®
{2} 6 —(A+2p) | no | (uA?) - (u+ )73
{3} 7 | =2 | no | (@A) (u+N)7°
] 8 —3u no X TEDN J

Table 3. TMR Markov process specification for Figure 5

each partition corresponds to a single abstract state. When 6% = {1%,2%, ..., m®}
then a partition on §¢ = U7, P is defined so that j* = {z|z € P¢} and
J*Ni® = { for j* # 1°. For a “safe” steady state abstraction, assign probabil-
ities to the abstract states by:

For z € §%, assign 7y = ij, where j € PN 6°.
J

When error states are aggregated in an abstraction, this assignment ensures that
the probability of the error in the abstraction is not reduced.
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This state aggregation (or partitioning) rule is consistent with the abstraction
model of heirarchical decompositions. It is also intuitive when system states
correspond to the (discrete) operational condition of physical components. For
dependent faults an abstraction that “splits probabilities” across states might
result in a better approximation. Further investigation is needed to determine if
this heirarchical decomposition rule eliminates a number of useful abstractions.

(2) We further suggest that a one step transition from z € §° toy € 6%,
q%, > 0 only if there exists some 2’ € Py C ¢° and some y’ € Py C §° such
that gz,,, > 0. This preserves a notional mapping from the abstract model to
the system through the established mapping from the concrete model to the
system. More importantly, it implies that errors in the abstract model cannot
propagate in ways that were not specified in the concrete model.

4.4 Transition Rate Assignments for Safe Abstractions

We give three examples of safe steady state probability assignments for ab-
stractions using the two step process in Section 4.3. We investigate the rela-
tionship between safe probabilities and rate assignments.

The right side of Figure 4 shows an abstraction of a four cycle model which
merely collapses two states into one. Equation 1 gives the steady state solution
of the concrete cyclic model in Figure 4.

€ AEAE ACACAC AEAEAC ACAE A
7¢ = (nf,n§, n§,7§) = ,\(g/\,\;,\f:\+,\/\g,\/\g,\/\g+}:\{\,\g/\,\g:\n\/\g,\/\g,\)g M
For the reduced model on the right of Figure 4, a similar computation gives
7n® = (n{y, 7§, m$) in terms of transition rates Afy, A3 and A§. A solution that
preserves exiting transition rates in non-aggregated states of A% is

Ay = (M)A + 287 Af =g and A = Ag. @

The solution in Equation 2 is not unique (four concrete parameters define three
abstract parameters).

For the TMR example of Figure 5 we consider two abstractions. The two
right most columns of Table 3 define the abstraction partitions. Abstraction
1, which defines abstract states by the number of operational components is
shown in Figure 6. Section 4.5 shows this is a lumpable abstraction with unique

DD (D2

Figure 6. Number of Operational Components TMR Abstraction

(relative to the concrete model) transition rates, and how to compute them.

A courser abstraction of the TMR model is simply the two state model,
6% = {1,2} = {up,down}. This abstraction is shown with shading in Fig-
ure 5 and also in the right most column of Table 3. When approximated by a
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Markov process, this abstraction is represented in Figure 3. Equation 3 is the
result of equating the two formulations for 7%, which does not have a unique
assignment. The abstract model parameters must sastisfy

A/t = (/) - (X 4 3°)/(3X° + 1) €)

In general, partitioned (abstract) processes are not Markovian, in which case
the rate assignment need not be uniquely determined. The question is which
assignment of values produces the best results from an engineering perspec-
tive. Is it preferable to hold constant the flow in, the flow out, the ratio of the
flow in to the flow out, or some other property? One can envision practical
circumstances which would favor each of these decisions.

4.5 Lumpability, Safe Abstractions and Rate Assignments

We define necessary and sufficient conditions for when the partitioned ab-
straction is again Markovian. Our discussion of strong lumpability for DTMCs
follows the presentation in [Kemeny and Snell 1976].

Consider a partition P on § with & < m elements. Define Uy, and V,,,
according to P as follows. The j*" row of U puts a probability distribution
on the elements in P;. For example, if P; contains b; states over which the
uniform distribution is to be placed, then

- _ [ 1/b; forse P
Uis = { 0 otherwisej @

The rows of a matrix V' define the partition to which the state belongs. Le.

_ [ 1 forseP;
Vei = { 0 otherwise )

Theorem 1 gives conditions for strong lumpability with respect to partition
P of a Discrete Time Markov Chain (DTMC).

THEOREM 1 (DTMC STRONG LUMPABILITY) Let P be a partition for
the DTMC with state space 6 and transition matrix (). Let U and V' be matrices
defined by Equations 4 and 5 with respect to P. The DTMC is said to be
strongly lumpable with respect to P if and only if

VUQV = QV.

For a proof, see Theorems 6.3.4 and 6.3.5 of [Kemeny and Snell 1976].

Theorem 2 is an easily obtained analog for conditions of strong lumpability
in a Continuous Time Markov Chain (CTMC).

THEOREM 2 (CTMC STRONG LUMPABILITY) Let P be a partition for
the CTMC with finite state space § and infinitesimal generator matrix A. Let
U and V' be matrices defined by Equations 4 and 5 with respect to P. The
CTMC is said to be strongly lumpable with respect to P if
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VUD YAV = DAV

where D = —diag(A). That is, D is a diagonal matrix with (D);; = —(A)s.
To show this result, note that the DTMC transition matrix Q = D™1A + 1.
An application of Theorem 1 gives

VUMD A+ DV =(D'A+ V.
Since UV = I, the result follows.

The rates for the abstract model are found by computing A? = UAV. An
algorithm for finding the coursest (i.e. the most abstract) strongly lumpable
model is given in [Derisavi et al. 2003a]. This algorithm has computational
complexity O(]Q¢| - logy(]6¢])) and space O(|Q°| + |6¢|), where |Q°| is the
number of positive transitions in the concrete model.

Weak lumpability occurs when the lumped process is Markov when starting
from some (but not all) initial distributions ([Kemeny and Snell 1976]). Work
has been done linking both strong and weak lumpability MP results to the same
properties in stochastic automata(e.g. [Brinksma and Hermanns 2001]).

Investigation as to whether lumpable partitions create natural and useful
abstractions for system models is needed. When an abstraction is not lumpable,
a measure of “near lumpability” has been proposed as a measure of the quality
of the approximation.

4.6 Time Dependent or Transient Solutions

For a time dependent analysis, we define safety for an abstract model with
partition P as follows. Let x € Ps; C ¢ be a non-fault or safe set of states and
y € Py C 6° be a “fault occurence” set of states. The abstraction is said to be
safe in the time interval [0, T

Py (X(t) = f*) > Po(X(t) € P)Vz € PyandV ¢ € [0,T].  (6)

In words, we require for all ¢ € [0, 7] that when starting in safe abstract state
5%, the probability of reaching abstract fault state f® is at least as great as the
probability of reaching any state in partition P; when starting from in any state
in partition P in the concrete model.

When the concrete Markov process is started in steady state 7€, then for ev-
ery time ¢ > 0 and for all z € §°, the P (X (¢) = ) = m,. When the abstrac-
tion is strongly lumpable (hence Markovian), the requirements of Equation 6
are satisfied because probabilities sum within partitions and the distribution of
time to transition from all states in a partition to another partition is the same.

We are not sufficiently familiar with the literature to be able to report whether
a transition assignment that can satisfy the requirements of Equation 6 exists
for an arbitrary complex fault model with a non-lumpable abstraction. Perhaps
an equally important question is how those conditions might be applicable for
guiding the development of practical fault models.
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Figure 7.  Error Propagation Between Markov Models

4.7 Composing Concurrent Models

Figure 7 illustrates the basic idea behind composing multiple Markov chain
component models, one Markov Chain per component. The user may distin-
guish selected states as error propagating states, which is modeled as a self-
transition with a given error propagation rate. For an error that may propagate
from one component to another (determined by the architecture specification),
the rate of a transition in the receiving model is determined by the rate of the
propagating transition rather than a rate specified in the receiving model. A
fundamental result of stochastic process algebras is that, under suitable restric-
tions, such rendezvous between concurrent stochastic processes have Poisson
rates. Once this rate has been determined it can be used for the rate within the
receiving model, and the methods of the preceeding sections applied to verify
an abstraction. Similarly, self-transitions can be added to an abstract model to
define propagation rates to be used in other receiving models.

The AADL Error Model Annex includes a way to define guards on error
transitions to model things like voting and consensus protocols. In other words,
additional language features and semantics are included to compactly spec-
ify complex event propagation conditions. More research is needed to deter-
mine when high level abstractions are closely approximated by the generated
Markov abstractions.

S. Future Work

We have given only two examples of techniques that can be used to demon-
strate that an abstract model can safetly (in some sense) be substituted for
a more complex concrete model when generating hybrid and stochastic au-
tomata models from architecture specifications. Preliminary approaches for
linking MetaH/AADL safety specifications with concrete and abstract Markov
models with solvers have been reported [Binns et al. 2000]. A more complete
toolbox is needed. Also, more complex notions of abstraction may be useful,
for example conformance relations[Krichen and Tripakis 2004].
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