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Abstract. Cyber-Physical Systems (CPS) are software and hardware
systems that interact with the physical environment. Many CPSs have
useful lifetimes measured in decades. This leads to unique concerns re-
garding security and longevity of software designed for CPSs which are
exacerbated by the need for CPSs to adapt to ecosystem changes if they
are to remain functional over extended periods. In particular, the soft-
ware in long-lifetime CPSs must adapt to unanticipated trends in en-
vironmental conditions, aging effects on mechanical systems, and com-
ponent upgrades and modifications. This paper presents the Toolkit for
Evolving Ecosystem Envelopes (TEEE) system created to help address
these challenges in CPSs. TEEE is able to detect environmental changes
which have caused errors within the CPS without directly sensing the
environmental change. TEEE uses dynamic profiling to detect the errors
within the CPS, determine the root cause of the error, alert the user,
and suggest a possible adaption.

Keywords: Cyber-Physical Systems, Resilient Systems, Requirements-
based testing

1 Introduction

Cyber-Physical Systems can interact with the physical environment by sensing
external state, transferring kinetic and potential energy, computing solutions to
affect desired outcomes, and driving electrical, optical, and mechanical actuators
to achieve those outcomes. Unlike software applications, CPSs sense, depend
upon, and actuate physical phenomena. The software in long-lifetime CPS must
adapt to unanticipated changes in environments, mechanical, or use. The CPS,
however, might not directly sense all aspects of its environment, especially those
aspects of the environment which were not considered significant during original
development. For example our System Under Test (SUT) is a specific patient
controlled analgesia (PCA) pump which requires medical tubing with an inner
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diameter of 0.054”. However, residents of less developed countries are often forced
to use whatever equipment is available to them, often without standard safety
procedures or support resources. These users may have access to tubing with a
smaller 0.0033” inner diameter which will affect the rate of flow of medication.

This paper presents the Toolkit for Evolving Ecosystem Envelops (TEEE)
system to detect changes in the environment that are not directly sensible and
semiautomatically adapt to them. Neches et al. [18] described resilient systems
as: “trusted and effective out of the box in a wide range of contexts, easily
adapted to many others through reconfiguration or replacement, with grace-
ful and detectable degradation of function.” TEEE aims to add this sort of
resiliency to CPSs. Further, TEEE adds root cause analysis and adaption to er-
rors, whether they are expected (i.e., degradation due to longevity in the field) or
unexpected. TEEE uses dynamic profiling tools and techniques to explore CPS
performance envelopes, subject to its evolving environment, that will ultimately
allow software to adapt as internal and external conditions change. TEEE lever-
ages model-based development techniques for requirements, design, architecture,
configuration, and automated measurement and stimulus to identify root causes
of anomalies. In contrast, the state of the practice development processes still
largely use trial-and-error test-based software coding.

The remainder of this paper is structured as follows. Section 2 presents the
TEEE system design and architecture. Section 3 describes the background and
related research.f Section 4 describes how TEEE models the CPS system. Section
5 and Section 6 go into detail on the Synthesis of Stimulus and Measurements
algorithms respectively. Section 7 presents a real world use case and the results
of running it through TEEE. Finally, Section 8 concludes the paper.

2 TEEE Overview

When an error in the system is detected, currently by the user, the TEEE system
uses CPS models and design to create and inject profiling code to identify the
root cause of the error. The aim of the Synthesize Stimulus Algorithm (SSA)
and Dynamic Measurements component is to infer the root cause of the error,
especially in cases which the error is not directly sensible by the CPS. When a
root cause is determined alternative system hardware or software components
(i.e., motor or motor controller software) are suggested to the user.

The primary components of the TEEE architecture are AADL models of the
SUT and dynamic profiling components to synthesize measurements and stimu-
lus of the SUT. The current prototype, developed in JAVA and Coq [4], has all
of the components built with manual data transfers. TEEE interfaces with the
developer (or trained user) before the SUT is deployed. During this step (shown
by the circled 1, in Figure 1) the developer indicates which AADL model will
be deployed as the SUT. For example the user would indicate the specific imple-
mentation of the system motor controller. The SUT is constantly monitored by
the user for errors, a process we intend to automate in the future. If a variable in
the system has different values than the requirements specify (for example flow
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rate on the medical tubing does not fall within a specified range in the require-
ment) the user indicates to TEEE that an error occurred. Dynamic profiling
code is injected into the system using the TEEE CPS Synthesized Stimulus and
Dynamic Measurement synthesis tools (circled 2). TEEE generates synthesized
stimuli, driven by requirements in the model of the SUT, using the Synthesize
Stimulus component. The stimuli drives exploration of the overall operational
envelopes of the SUT. Operational envelopes are regions in which the CPS is
intended to correctly operate as per its requirements. For the PCA pump SUT,
an example envelope might include a space defined by flow rate, environmental
temperature, and fluid viscosity. The stimuli can also be used to focus on specific
cyberphysical characteristics to evaluate, with input from the user. For exam-
ple, the user may specify prioritization of stimuli on a certain component (i.e.,
tubing, motor, sensors etc...). The Synthesize Stimulus component explores op-
erational envelopes by creating a test case suite from requirements. A potential
drawback of the current TEEE implementation is the manual process of creating
requirements for the SUT; If a requirement is missing in the model there will
be no test case created. The user of the SUT is tasked to test the SUT accord-
ing to the test cases within the suite. Information on the operational envelopes
is sent to the Dynamic Measurement component. The Dynamic Measurement
component synthesizes measurements, consists of properties about the SUT, and
reasons with the architecture models to infer system behaviors. The results of
the Dynamic Measurement system is a set of components from which the error
may have originated. In Section 7 we will dive into an example of TEEE doing
exactly this in a real world scenario.

3 Related Work

Typical design-for-test and unit-test approaches evaluate the SUT against re-
quirements, but these methods only address a small fraction of issues, with the
majority of defects actually arising from requirements [16]. As such, several ap-
proaches use a SUT model and/or requirements to detect errors and prioritize
test cases.

Rodriguez et. al. [22], model the security and specifically the resilience of
systems in Unified Modeling Language (UML) models. Their analysis and mod-
eling of security requirements exposes the underlying relationship between secu-
rity and dependability. Similarly, TEEE uses the dynamic profiling components
(Sections 5 and 6) to uncover constraints in the system including security require-
ments. Rugina et. al. [23], present a framework for modeling dependability using
the Architecture Analysis and Design Language (AADL) [8], [7] and Generalized
Stochastic Petri Nets (GSPNs). In their framework an error model is added to
the AADL architecture model to present a full picture of the dependability for
the user. Their framework is used to determine the reliability, availability, and
safety prior to system deployment. TEEE focuses on determining if the require-
ments, including these dependability properties, are satisfied in the event of an
environment change or off-specification use when the system has been deployed.
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Fig. 1. The TEEE system architecture.

Arafeen and Do [2] use requirements to prioritize test cases and more quickly
determine faults. Their prioritization scheme clusters the requirements and pri-
oritizes the cluster based on the priority of the requirements within. TEEE’s test
case prioritization scheme (Section 5) also takes uses system requirements to cre-
ate and prioritize test cases. However, TEEE also takes into account whether
the test case (and subsequently requirement) has previously exposed an error.
The merging of these prioritization techniques may prove interesting and will
be explored in further work. Dreossi et. el. [6] detect errors in machine learning
components of CPS systems, such as in Lane Keeping Assist Systems in cars, by
formulating it as a falsification problem for the model. TEEE similarly uses the
model requirements to create test cases and determine errors within the CPS.

Adaption in systems (CPS or software) research is focused primarily on auto-
matically creating patches for software. The GenProg system, Le Goues et. al.,
[14], uses genetic programming to automatically repair software defects given
a set of test cases. The ClearView system [19] automatically patches errors in
deployed software without access to source code or debugging info. ClearView
learns normal execution, detects failures while monitoring execution, and gen-
erates a patch. While ClearView works on deployed systems, as TEEE does, it
discovers errors by learning ‘normal’ execution and would be unable to discover
error if the ‘normal’ execution changes (such as a system use case change). Con-
verse to these software only approaches TEEE is able to find and repair issues
stemming from the underlying architecture (with a human in the loop) as well
as software errors. TEEE models alternate components in the CPS architec-
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ture and, when an issue arises, is able to suggest possible alternate architecture
configurations.

The TEEE project is a seedling effort to augment the DARPA Building Re-
source Adaptive Software Systems (BRASS) program [10], which is tasked with
creating resilient systems that have robust and functional 100+ year software.
This program has roots in autonomic computing [12] in which systems manage
themselves given high-level objectives. TEEE only tries to monitor the system
for errors in order to determine error causes and possible adaptations however,
rather than the larger task of managing goals and objectives of the system ad-
ministrator. Part of ensuring resilient long lifetime software includes accounting
for unanticipated uses of systems as well as unintended environmental changes.
The TEEE approach uses dynamic profiling components to determine whether
environmental changes and/or changes to the SUT use cases are the cause of cur-
rent errors. Stoicescu et. al. [24] expanded upon Neches description of resilient
systems to be “expected to continuously provide trustworthy services despite
changes in the environment or in the requirements they must comply with.”
The authors outlined an overall approach to defining fault tolerant applications
that automatically adapt during the systems lifetime. Their approach monitors
the system and analyzes the observations to determine if adaptation is necessary.
Stoicescu et. al. and TEEE share the goal of adapting to changes in requirements
and/or the environment. Adjepon-Yamoah [1] modeled fault tolerant methods
via petri nets in systems interfacing with unpredictable environments (i.e., the
cloud). Similarly, TEEE interfaces with the highly unpredictable physical world
to evaluate the cause of errors in the SUT.

4 Modeling Cyber-Physical Systems

The SUT used with the TEEE prototype is a PCA pump. The PCA pump’s
components and requirements are modeled in AADL. While our current SUT is
a PCA pump there is no reason TEEE cannot be generalized to other CPSs, as
long as the models are given to the system.AADL was chosen due to it’s focus on
architecture rather than the functional/behavior emphasis that underlies other
modeling languages. In particular, it better enables modeling and trading-off
what components comprise a system and the relationships between the compo-
nents, rather than how the system works. AADL has been shown beneficial to
risk management activities using medical devices [13]. One of the salient features
of AADL is the ability to model design alternatives coherently within a single
AADL model. AADL defines component types that include all externally visible
features, separately from implementations, which model component internals.
Component implementations, an instantiation of a component, may have sub-
components which themselves may be component types or implementations. A
component type may have any number of implementations, all of which look
identical from outside. By having multiple implementations for a component,
different design alternatives can be modeled. This allows many alternatives for
fault management to be captured in a single model so they may be evaluated
and compared. We anticipate over the lifetime of the CPS additional alternative
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implementations and components will be added to the model as technology ad-
vances. Lastly AADL is a rich enough language and does not require extensions
to model CPSs. Requirements are scraped from the AADL model of the CPS
system by a custom OSATE [11] plugin. The requirements are consumed (via
XML) by the Stimulus Synthesis Algorithm (SSA) (Section 5) and Dynamic
Measurement algorithm (Section 6). Listing 1.1 shows a snippet of one imple-
mentation of the motor component in the PCA pump. In this snippet the specific
motor modeled is called ‘motor’, its parents are defined under the <Parents>

tag. The criticality of the component is defined by the user and annotated with
the <Criticality> tag. Lastly the requirements of the component are defined
using the <Variable> tag. Each variable may define an allowable and test range
as well as the actual value. Often the actual functioning range of a variable will
be larger than the allowed range indicates, which is why we include the option of
a test range. The requirement on the motor component in Listing 1.1 defines the
variable Operating Temperature as having an allowed range of −10 to 40 degrees
Celsius.

Listing 1.1. A XML requirement on the motor component of the PCA pump that has
been extracted from the AADL model.

<Component type=” dev i ce ” implementation=”motor”>
<Parents>

<SystemRef type=”system” implementation=”motorSystem”/>
<SystemRef type=”system” implementation=”pump”/>
<SystemRef type=”system” implementation=” F u l l s y s i n s t ”/>

</ Parents>
<C r i t i c a l i t y>0</ C r i t i c a l i t y>
<Var iab le name=” OperatingTemperature ” un i t s=”c”>

<al lowed>
<r e a l min=”−10.0” max=” 40 .0 ”/>

</ al lowed>
</ Var iab le>

</Component>

5 Stimulus Synthesis Algorithm

The Stimulus Synthesis Algorithm (SSA) probes the SUT operating envelope by
creating a set of test cases from the model requirements. The SSA is a combi-
nation of state of the art approaches which are described further in this section.
The SSA consists of two sub-algorithms 1) Create all test cases from the system
specifications and requirements, 2) Reduce test cases to N -wise subsets where
possible, and prioritize the test cases. The results are sent to the Dynamic Mea-
surements component.

5.1 Create test cases from requirements

For each component in the model, the SSA creates a test case that corresponds to
each variable’s allowable range and test range. Our algorithm to create test cases
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from requirements is derived from Ranganathan’s [21] work using the Rosetta
modeling language. A test case is defined in our work as a test scenario, a boolean
condition to be applied to a variable; and a test vector, a set of inputs to be
substituted for the variable in the boolean condition. The system requirements
for the motor component (Listing 1.1) only define one variable with an allowable
range, therefore, one test case will be created. The test scenario is the boolean
condition: −10 ≤ temp ∧ temp ≤ 40. This example test case will test if a
particular component in the CPSs, the motor, is operating under the temperature
range it for which it was designed. The test vector for each test case is created
using the step value in the requirement. If there is no step value present in
the model, a step value of the nearest 1 at the lowest non-zero decimal place
is used (i.e., 200 has a step = 100, 0.34 has a step = 0.01). We expect the
AADL model to be hand created by system designers and therefore, have all of
the necessary information such as step value. However, in the case of a legacy
model or if a designer does not know the step value we have implemented a rest
step creation algorithm. A test vector is created by the SSA for the operating
temperature variable by enumerating each value between −10 and 40 with a step
of 10 (−10, 0...30, 40). Boundary values have been implicated in faults within the
SUT [17], therefore an additional n, where n = 2 in the current prototype, vector
values are added on each boundary. The SSA also adds test vector values for
the actual variable value, if available. The resulting test case suite has sufficient
coverage over the specified requirements.

5.2 Combine and Prioritize

To reduce the number of test cases and subsequently the time it takes to test
the SUT, the SSA combines test cases using the method by Lott et. al. [15]. As
previously mentioned a test case is created for each variables allowable range and
test range. The large number of test cases is not scalable to large CPSs which
is why we combine the test cases. The combination algorithm is a simple greedy
algorithm described by Cohen et. el. [5], which combines test cases into pairwise
randomly until there are none (or only one) left to combine. The SSA does
not pair test cases which test the same variable (i.e., temperature) in the test
scenario. We found, as Lott et. al. did, that a higher order combination yields
greater test pattern savings. Though currently the SSA algorithm uses pair-
wise combination to reduce the risk of combining differently named variables
which are actually the same (i.e., operating temperature vs temperature). With
pairwise combination, assuming independence, growth of the test space increases
log2(x) where x is the number of independent requirements. Increasing the order
of combination of test cases, changes it to logn(x).

The test suite is prioritized to find failure quickly using a the fault-recorded
test prioritization (FRTP) technique [20]. At this stage the user may request pri-
oritization on a specific component. Each time a test case is marked as failed, its
Failure Detection Number (FDN) is incremented. This indicates a fault has been
found at the component(s) being tested within the test case. The FRTP method
iteratively extracts information from the testing process and does not need to be
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bootstrapped with information from prior test executions. The FRTP method
prioritizes test cases based on previously found faults (FDN). Some components
are necessarily ‘more important’ than others. For example, if the motor in the
PCA pump fails then the PCA pump will not work. If instead a sensor on the
motor fails then the PCA pump will error but may continue to work. To encode
this we added the criticality of the component to the prioritization algorithm
by using an equation derived from the Risk Exposure metric [3] to prioritize the
test suite.

RiskExposure(TS) =

∑
tc∈TC P (f) ∗ C(f)

|f |
(1)

Chen et. al., defines the risk exposure metric (Eq. 1) as the probability of
failure (P (f)) of a component in the current test case tc multiplied by the cost of
failure of the components in the current test case (C(f)) and then divided by the
total number of components in the current test case. In place of determining the
probability of failure for each component in the test case we redefined P (f) in
TEEE to represent the number of times the components in the current test case
previously failed any test case. Equation 2 shows the TEEE definition of P (f)
which is a novel extension of the Chen Risk Exposure metric. In TEEE the P (f)
is defined by the sum of the FDN for each component in the current test case over
the entire test suite (denoted by TS). The cost of failure (C(f)), or criticality of a
component, is annotated by the user in the AADL model (<Criticality> tag).
The default criticality is to zero, which means not critical. In future iterations
we plan to explore ways of automatically inferring criticality to give the SSA
more meaningful and complete information to reason on.

P (f) =
∑

tc∈TS

(∑
c∈tc

FDN(c)

)
(2)

Finally Grindal et. al. [9] looked at the effectiveness of test case combination
and found better results when pair-wise test cases are combined with a single
variable test strategy. The SSA’s final step is to randomly add k one-wise test
cases to the test suite from the pre-combined list of one-wise test cases for the
SUT. We choose a random k between 25% and 75% of the test suite size to test
the prototype.

Figure 5.2 shows the prototype GUI for the SSA algorithm. The requirements
file for the PCA pump has been loaded and the SSA algorithm has been run in
the figure. The left side of the GUI shows statistics on the number of test cases
created and the number of test patterns (the test scenarios from the test case
and one test vector value from each test case) before and after combination. It
is worth noting that combining the test cases into pair-wise test cases creates a
test pattern savings of 24% for the PCA pump. The right side of the GUI shows
a pairwise test case. The test scenarios test the tube component (top) and power
system component (bottom). The user is requested to test the test vector values
highlighted in red by substituting the vector values for their respective variable.
In this example the variables are length for the tube component and power for
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Fig. 2. A GUI of the SSA algorithm showing a combined test case testing a tube and
motor sensor

the power system. The user is expected to record the results using the ‘passed’
or ‘did not pass’ buttons.

6 Dynamic Measurements

Some of the properties in CPSs necessary for engineering design decisions or
operational decisions are not directly sensed by the SUT. To calculate the mea-
surements of these properties TEEE uses dynamic measurements of properties
which can be sensed. By synthesizing these measurements TEEE alleviates the
need to measure properties directly in the environment (i.e., the user may not
need to buy new sensors for the SUT in order to determine newly encountered
errors). For example, flow rate is a critical property both the user and designer
need for their respective tasks. The most obvious way to determine flow rate is
to sense it. However, in our working example (PCA pump) flow rate sensors are
not usually built into the system. This forces us to calculate flow rate from other
known quantities. Currently the PCA pump calculates flow rate from system
parameters input by the user. While this has some utility, it is an indication of
what the flow rate should be and not what it actually is. For both engineering
and use case scenarios determining the actual delivered flow rate is critical.

TEEE constructs measurements which are not directly sensible by the SUT
using dynamic, physical measurements from other properties. The measurement
calculation is performed much as it currently is, but using physical measurements
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rather than exclusively user input. For example, flow rate can be calculated
by taking the following measurements: motor speed, distance (meters) plunger
traveled per motor rotation, and vial diameter and then calculating a flow rate
value:

flowRate := metersPerRevolution ∗ motorSpeed ∗ (π ∗ (tubeDiameter/2)2)

Additionally, we would like mathematical evidence to provide further confi-
dence in the calculated value. While flow rate is a simple calculation, when we
begin to explore more complex properties mathematical assurance is essential.
To achieve these goals we construct and verify a formal model of the calculation
and measurements and synthesize a protocol from the calculation. Verification
assures correctness properties hold and synthesis assures resulting code faith-
fully implements the calculation. We have chosen the proof assistant Coq [4] for
our modeling, verification and synthesis tasks. Coq’s design as a verification and
synthesis language for software and its proof programming capabilities make it
ideal for our purposes.

Coq provides a dependent type checking capability that can establish a di-
verse set of properties well beyond what is traditionally viewed as type checking.
To provide a degree of assurance in our high-level property specifications we used
Coq’s dependent type system to implement units analysis. Similar to techniques
taught in basic math and science classes, this technique ensures that units in-
volved in calculations are compatible. When they are not, expressions will not
type check and thus cannot be used in any computation. Thus, units analysis
provides a simple static analysis that predicts errors prior to processing.

Every measurable quantity in our engineering domain is expressible by some
combination of the seven base units (Ampere, Candela, Kelvin, Kilogram, Me-

ter, Mole, and Second). For example, a Newton is Kgm
s2 , and a Volt is Kgm2

s3A . To
our surprise, we could find no existing Coq library for keeping track of units.
Therefore, we created a Units library and a dependently typed expression lan-
guage implementing Units. With these libraries, we can create a typed expression
where the simplification of the subterms are guaranteed to evaluate to the stated
units of the expression itself. If the units do not match, the statement cannot be
constructed.

We know that the end result of our flow rate calculation has units or type
m3

s . Thus, any calculation of flow rate must result in that type. The following
Coq pseudo-code calculates flow rate using the previous equation with units:

var flowrate :: mˆ3
s := (metersPerRevolution :: m

V oid)

* (motorSpeed :: V oid
s )

* (3.14 * (tubeDiameter :: m / 2)^2)

During type checking Coq examines the types of various quantities with
associated units and determines compatibility. The type of the tube cross section
area is m2 and is calculated by squaring the tubeDiameter variable of type m.
The Meters Per Revolution (MPR) type is m

V oid , meters divided by a unit-less

number. When multiplying the MPR by motor speed of type V oid
s the V oid
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values cancel giving m
s . Finally when multiplying the result by tube cross section

results in m3

s , the unit associated with flow rate. One cannot make a correctness
assertion of the tube diameter based on this result, but it is evidence that the
formula is correct.

In addition to properties which are not directly sensible, but may be calcu-
lated using other other properties measurements, some properties may not be
calculated using properties, or may not be directly measurable from the opera-
tional environment. For example, the distance traveled by the plunger per motor
revolution is not easily measurable in our SUT because the gear train is sealed
preventing counting teeth or relying on them all being the same. The value is
also not likely to change without severe modification and abnormal use of the
system. However, the value may be derivable if we are able to determine flow rate
from more than one method. The differing values are detected, and we can de-
duce what environmental factors may have changed to explain the discrepancy.
Therefore it may be possible to adjust predefined assumption values as needed.
The assumed or given value for distance traveled is identified in the SUT AADL
model.

To reason about the measurement process we must have a model of the
pump’s operational Environment. To model this environment in Coq we create
a class containing measurable quantities. The instance of this class must have
every possible measurement enumerated and defined as either an assumption
or a measurable value. Assumptions and their assumed values are provided in
the AADL model. Measurable values must define how the value is measured.
Additionally, a proof must be provided to confirm every measurement is present
in exactly one of these two categories. When the measurement code is synthesized
from the Coq model, the environment model falls away and is replaced by the
actual environment.

7 Scenario Walkthrough

CPSs developed for first world countries are retired to developing countries af-
ter their service life expires in the first world countries. In these situations re-
sources are not always available to run these systems in the environment they
are designed for. We will validate two scenarios which came from real world
observations of PCA pumps being used in developing countries. Then we will
walk through one of the scenarios, showing the output of each of the TEEE
components, and demonstrate TEEE is able to determine possible root causes
and suggestion an adaption. As this is a unique system a full system evaluation
was not able to be run, however, we show through the scenario walkthrough the
validity of the system. First we will look at the viscosity of the material being
pumped. Untrained or overworked users may put the wrong medication into the
pump. While there is a bar code reader on the PCA pump, it is easily bypassed.
Additionally, temperature has an affect on the viscosity of liquids. Egg whites are
similar in viscosity to blood plasma, which is commonly used to treat patients
with shock. If, for example, the PCA pump is used in an area which is very hot
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and without air conditioning the medication could be more viscous. In the walk
through we will show that TEEE is able to determine the root cause of this error
is the viscosity of the medication in the pump. A second common issue found is
how a brown out may affect the SUT. Brown outs can cause the motor to run
slower and subsequently the amount of medication expelled is less. To continue
regular functionality, many medical devices contain a battery. However, very few
working batteries last or even arrive in the developing world, and black/brown
outs can have a significant effect on the device that the programmers thought
would never occur3. The motor, in this particular PCA pump, does not have a
sensor to determine the motor rate nor does it have a sensor to determine the
flow of the material being pumped. If a brown out occurs there could be no way
for the CPS software to determine the cause of the problem.

We ran experiments to confirm the validity of these scenarios. Water and egg
whites were run through the PCA pump for 5 minutes and varied the speed of
the motor (100Hz, 50Hz, and 25Hz). We ran 5 experiments for each variant. The
experiments showed a significant difference, using a paired t Test with p < .005,
between uL expelled per tick of the motor between 100Hz and 25Hz as well as
50Hz and 25Hz when using egg whites. Water showed a significant difference be-
tween 100Hz and 50Hz as well as 100Hz and 25Hz. The t Test resulted in a value
of p = 0.007 when comparing 50Hz and 25Hz using water. The results of this
experiment can be seen in Figure 3. The test results also indicated a significant
difference in uL expelled per tick of water versus egg whites at 100Hz and 25Hz
(p < .005). These experiments confirm the validity of the brownout scenario by
showing the rate of the motor affects the amount of material dispensed. They
also confirm the validity of the viscosity scenario showing materials at different
viscosities affect the amount of material dispensed.

Confirmation of adaptation within TEEE The data from the PCA pump
experiments shows that there is a difference in amount of material expelled when
using materials of difference viscosities. Viscosity of the medication in the PCA
pump, however, is a change within the environment that cannot be known via
it’s sensors. To confirm that TEEE is able to determine the root cause of this
scenario (material is of a different viscosity than is expected) and adapt to such
changes we will dive into the output of each component. The first step is to
model the PCA pump in AADL.

Listing 1.2. A snippet showing requirements in the viscosity scenario.

<Component type=” dev i ce ” implementation=” tube ”>
<Var iab le name=”FlowRate” un i t s=” ulps ” varType=” r e a l ”>

3 In one of the authors person experience, we once came across some donated defib-
rillators none of which had batteries. While the defibrillators are designed to still
function without a battery (slightly slower charge build up), they were clearly never
intended to be used this way as one of steps in the daily self test required the pres-
ence of a battery despite the battery itself not being present in the test. Luckily, we
were able to find an alternate method of ensuring proper functionality.
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Fig. 3. Comparison of the uL of material (egg whites or water) expelled from the PCA
pump when the motor was running at 100Hz, 50Hz, and 25Hz.

<al lowed> <r e a l min=” 0.141 ” max=” 0.147 ”/> </ al lowed>
</ Var iab le>

<\Component>

<Component type=” dev i ce ” implementation=” medicat ion ”>
<Var iab le name=” DynamicViscosity ” un i t s=”cP” varType=” r e a l ”>

<al lowed> <r e a l min=”1” max=” 1 .5 ”/> </ al lowed>
</ Var iab le>

<\Component>

A requirement is put on the tube component of the model that the flow
rate of the medication must be between 0.141 and 0.147 and viscosity of the
medication must be between 1 and 1.5. (Listing 1.2). The SSA algorithm created
20 test cases from the requirements within the model which enumerated 3529
test patterns (the test scenarios of the test case and one value from each of the
test vectors). After the SSA pair-wise combination step is run the test case suite
size is reduced to 10 cases and 2674 test patterns, yielding a test pattern savings
of 24% (results shown in the SSA GUI in Figure 2. The test cases in Table 1
corresponds to the requirements.

A randomized user was simulated testing the PCA pump, i.e., running through
the test cases and marking them passed or failed. Each test pattern had a 50%
chance to mark its parent test case as failed, except the test case for the Tube
component, shown in Table 1, which was marked failed each time. The test case
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Component Test Scenario Test Vector Actual Value

Tube 0.141 < FlowRate < 0.147
0.139, 0.140, 0.141, 0.142,
0.143, 0.144, 0.145, 0.146,
0.147, 0.148, 0.149, 0.166

0.166

Medication 1.0 < V iscosity < 1.5
0.8, 0.9, 0.94, 1.0, 1.1, 1.2,

1.3, 1.4, 1.5, 1.6, 1.7
0.94

Table 1. Test cases created for requirements on tube flow rate and medication viscosity

suite was then prioritized on the tube component. The resulting prioritization
along with failure detection number and risk exposure score is found in Table 2.

Case Id Component A Component B FDN Risk Exposure

C5 tube medication 2070 .60
C2 tube power system 144 .35
C8 interface logic system tube 44 .17
C1 motor power system 114 .09
C7 pump power system 120 .08
C9 environment power system 110 .06
C4 pump pump 12 .04
C0 pump interface logic system 46 .02
C3 motor sensor motor controller 18 .01
C6 motor controller motor sensor 30 .01

Table 2. The prioritization of test cases for the tube component based on randomized
user data.

The information on the test case failures was sent to the Dynamic Measure-
ment component to provide more information concerning the cause of the error.
The Dynamic Measurement component models the calculation of mass flow rate
as described previously. Working from measured values back to flow rate provides
an alternative perspective on the failure. The mass flow rate equation is defined
using Coq and verified using units analysis and using an execution semantics for
the protocol description. Using information from testing and measurement, the
user is able to determine the failure is likely that the medication is the incorrect
viscosity rather than the alternative of improper tube diameter. With the root
cause of the failure found a recommendation is presented to the user to change
the viscosity of the medication based on evidence from the SSA and Dynamic
Measurement system. A new test suite is set up and tested to confirm the issue
was solved.
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8 Conclusion

In this paper we presented the Toolkit for Evolving Ecosystem (TEEE) system,
to address challenges in CPSs due to changing environment or use over time.
We presented a real world example of environmental changes affecting the use
of a PCA pump. The scenario was verified valid by a series of experiments using
a Hospira PCA pump. We showed the TEEE prototype is able to determine
the root cause of the issue in the scenario using the Stimulus Synthesis and
Dynamic Measurements algorithms. Further work will focus on automating the
components of TEEE. The SSA creates a bottleneck by requiring a human in
the loop to manually mark test cases as passed/failed. In the future we plan to
create tools using OSATE-based analysis to determine if a test case will pass/fail.
Future work on the Dynamic Measurement algorithm will focus on deducing
more complex or obscured environmental changes, such as vial diameter or faulty
sensors. To do this we will create a number of verified measuring programs
for each property within the AADL model. This will allow the algorithm to
dynamically answer requests like “measure flow rate every possible way and
compare the results”. We are also aiming to create a Dynamic Measurement
algorithm which is able to determine the property measurement without using
assumptions in the current environment.
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