

Basswood
BALSA in Real-time

Army FACE™ TIM Paper by:

Tyler Smith*, Dr. Rob Edman*, and Joe Seibel+
Adventium Labs*

Carnegie Mellon Software Engineering Institute+

September, 2018

This material is based upon work supported by the U.S. Army Research Development and Engineering Command (RDECOM),
Aviation Missile Research Development and Engineering Center (AMRDEC), Aviation Development Directorate (ADD) under
contract no. W911W6-17-D-0003. Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the U.S. Army RDECOM or AMRDEC.

Distribution Statement A: Approved for public release; distribution unlimited. AMRDEC ADD – Eustis Contract Number W911W6-
17-D-0003 Delivery Order 3

Basswood: BALSA in Real-time Copyright 2018 Adventium Labs

www.opengroup.org An Arm y F ACE T M T IM Pa p er 2

Executive Summary

Real-time performance is a critical aspect of avionics computing. The Basic Avionics
Lightweight Source Archetype (BALSA) exemplar provides a collection of Units of
Conformance (UoCs) backed by a Future Airborne Capability EnvironmentTM
(FACE) Unit of Portability (UoP) Supplied Model (USM) running in a Linux desktop
environment. This gives an easy-to-run example for users of the FACE Technical
Standard and effectively illustrates the conformance aspects of the FACE Technical
Standard, but is not intended to run with hard real-time constraints. To address this
limitation, we developed Basswood, a BALSA-based exemplar using components
aligned to the FACE Technical Standard running in a real-time environment.
Basswood runs on Real-Time Executive for Multiprocessor Systems (RTEMS), an
open source Real-time Operating System (RTOS). Further, Basswood facilitates a
practical demonstration of model-based systems engineering using the Architecture
Analysis and Design Language (AADL). Basswood helps demonstrate how
combined use of the FACE Technical Standard and AADL allows application of
virtual integration analysis methods to FACE UoCs. This paper describes the lessons
we learned adapting BALSA to a real-time environment and introduces readers to
virtual integration analysis with the FACE Technical Standard and AADL.

Basswood: BALSA in Real-time Copyright 2018 Adventium Labs

www.opengroup.org An Arm y F ACE T M T IM Pa p er 3

Table of Contents

Executive	Summary	...	2	

Table	of	Contents	...	3	

Introduction	..	4	
Basswood Objective .. 4	
Motivating Example ... 4	

Architecture...	5	
FACE Technical Standard Version ... 5	
C Language Bindings ... 5	
Operating System .. 5	

The	FACE	Technical	Standard	and	AADL	7	
What is AADL? .. 7	
Why AADL? ... 7	
How does AADL Relate to the FACE Technical Standard? 8	
The AADL Annex for the FACE Technical Standard 8	
Using AADL with Basswood ... 8	

Motivating	Example	Revisited	..	9	

Lessons	Learned	...	10	
The C++ BALSA Build is Difficult to Port .. 10	
Sharing Rules for BALSA are Complex .. 10	

References..	11	

About	the	Authors	..	12	
Tyler Smith – Adventium Labs ... 12	
Dr. Rob Edman – Adventium Labs ... 12	
Joe Seibel – Carnegie Mellon Software Engineering Institute 12	

About	The	Open	Group	FACE	Consortium	13	

About	The	Open	Group	...	13	

Deleted: 7

Basswood: BALSA in Real-time Copyright 2018 Adventium Labs

www.opengroup.org An Arm y F ACE T M T IM Pa p er 4

Introduction
Hard real-time timing requirements are commonplace in avionics. Indeed, the ARINC653 Operating System (OS)
profile supported by the FACE Technical Standard is designed specifically to provide deterministic timing
properties using time partitioning.

The BALSA exemplar has become a touchstone in the FACE community, serving as a means for introducing new
members to FACE concepts and as a reference point for discussion. This paper assumes reader familiarity with
BALSA. BALSA demonstrates the separation of concerns and data model driven design processes that are central
to the FACE Technical Standard. However, BALSA was developed to run in a Linux environment. The Linux
kernel does not provide real-time scheduling, increasing the effort required for users who wish to build upon
BALSA towards airworthy FACE UoCs.

Basswood’s design is derived from BALSA and will compliment BALSA in the FACE community. Basswood
will be available at no cost to FACE Consortium members through the CAMET1 library. This paper describes the
design and application of Basswood, focusing on our objectives of demonstrating real-time behavior, exercising
the C language bindings, and providing tools and examples with a low cost of entry.

Basswood Objective

The objective of Basswood is to accentuate BALSA; Basswood is primarily a teaching tool. Basswood will
provide a reference point for FACE stakeholders wishing to explore real-time applications of the FACE Technical
Standard.

Adventium Labs is a proponent of both the FACE Technical Standard and Architecture Analysis and Design
Language (AADL). We develop tools that work with both standards and are contributing Basswood to bolster
community awareness of issues surrounding real-time scheduling

Motivating Example

In BALSA the dispatch rates of the UoC threads are managed via calls to sleep and a nondeterministic Linux
scheduler. Consider a scenario in which a hard real-time requirement demands that the Air Traffic Controller UoC
respond to a configuration change within 100 milliseconds (ms).

The FACE Technical Standard is not intended to describe such a requirement, nor is BALSA intended to
implement it. However, many safety-critical software systems must address such requirements. Basswood
demonstrates that the FACE Technical Standard supports the implementation of real-time applications.

1 camet-library.com

Basswood: BALSA in Real-time Copyright 2018 Adventium Labs

www.opengroup.org An Arm y F ACE T M T IM Pa p er 5

Architecture
Basswood is a subset of BALSA, consisting of one Portable Components Segment (PCS) UoC, one or two
Platform Specific Services Segment (PSSS) UoCs, and a Transport Services Segment (TSS) library connecting
them (see Figure 1). We adapted the C++ source code for the BALSA Air Traffic Controller (ATC) and
Embedded Global Positioning System (GPS)/Inertial Navigation System (INS) (EGI) to C source code and
replaced the User Datagram Protocol (UDP)-based TSS with one using POSIX message queues. In some
examples, we also use an AirConfig PSSS UoC. Each PCS and PSSS UoC is implemented as a thread (RTEMS
does not provide memory space separation).

Figure 1 Basswood Architecture, Diagram Derived from A BALSA Integration and Test Session
(The Open Group, 2016)

FACE Technical Standard Version

The Basswood USM adheres to the FACE Technical Standard, Edition 3.0 metamodel (The Open Group, 2017).

Due to the limited availability of FACE 3.0 data modeling and conformance checking tools, we implemented
Basswood using the FACE Technical Standard, Edition 2.1 code generation tools. Future versions of Basswood
will be updated to use tools based on the FACE Technical Standard, Edition 3.0.

C Language Bindings

We used the BALSA 2.1 USM and Vanderbilt University’s Generic Modeling Environment2 (GME) FACE tools
to generate C source code for the Basswood TSS.

Operating System

We used Real-Time Executive for Multiprocessor Systems3 (RTEMS) version 5 as the demonstration platform for
Basswood. We used the RTEMS Rate Monotonic Scheduler (RMS) to set deterministic timing properties for the
Basswood threads.

2 http://www.isis.vanderbilt.edu/Projects/gme/
3 https://www.rtems.org/

Deleted: Figure 1

Basswood: BALSA in Real-time Copyright 2018 Adventium Labs

www.opengroup.org An Arm y F ACE T M T IM Pa p er 6

Figure 2 Basswood Threading and Message Passing

We run Basswood in the QEMU (Quick Emulator) virtualization environment. Execution of Basswood on a bare-
metal device running RTEMS is possible, but for practical purposes execution in QEMU is sufficient. Although
QEMU does not guarantee wall-clock relative hard real-time performance, it does provide deterministic timing
characteristics for events occurring inside the scope of a single QEMU instance.

Figure 2 shows a graphical AADL model of Basswood, color-coded in the same manner as Figure 1 to represent
association to particular FACE segments. There is a single process (memory space) called proc, which contains
three threads groups: EGI, AirConfig, and ATCManager. Each thread group corresponds to a single UoC. Each
UoC has a single thread. The TSS layer is abstracted as two transporters per the FACE Integration Model.

Deleted: Figure 2

Deleted: Figure 1

Basswood: BALSA in Real-time Copyright 2018 Adventium Labs

www.opengroup.org An Arm y F ACE T M T IM Pa p er 7

The FACE Technical Standard and AADL
What is AADL?

The Architecture and Analysis Design Language (AADL) is a Society of Automotive Engineers (SAE) Aerospace
Standard (AS) system model specification language (AS5506C) that supports various types of performance and
safety analysis. AADL is a semantically precise modeling language for describing aspects of cyber-physical
systems using standardized textual and graphical representations. AADL focuses on model-based analysis of static
and dynamic embedded computing system properties. AADL supports modeling at various levels of detail
through delayed specification and model refinements and extensions. For example, a high-level system model
might have an abstract Transport Services Segment (TSS) library that is refined in subsequent models to a
Common Object Request Broker Architecture (CORBA)-based TSS library or to a Transport Control Protocol
/Internet Protocol (TCP/IP)-based TSS library. There are analyses for many performance and quality metrics and
there are tools to help integrate systems. For example, AADL analyses allow you to evaluate the costs and
benefits to size weight and power (SWaP), safety, security, timing, scheduling, resource utilization, and
performance of different refinements (SAE International, 2017).

Why AADL?

The FACE Technical Standard and AADL are complementary standards. AADL provides tools for modeling and
analyzing aspects of cyber-physical systems that are outside of the scope of the FACE Technical Standard. AADL
adds hardware representations and hierarchical system compositions to the rich software data structures captured
in the FACE Technical Standard, providing additional capabilities for detection and prevention of hardware
implementation errors. Using the FACE Technical Standard and AADL together provides for early detection of
many classes of integration errors.

Figure 3 Comparison of AADL and the FACE Technical Standard

Basswood: BALSA in Real-time Copyright 2018 Adventium Labs

www.opengroup.org An Arm y F ACE T M T IM Pa p er 8

How does AADL Relate to the FACE Technical Standard?

The FACE Technical Standard provides a means to describe UoCs and the data they exchange, whereas AADL
provides the capability to model a cyber-physical system constructed from FACE UoCs and extended with
hardware and operational properties. AADL supports modeling software structures such as data types and threads,
hardware bindings, and environmental context to facilitate analysis of the interactions between system
components in both the hardware and software domains. AADL and the FACE Technical Standard overlap in
their capacity to describe some system features but focus on different system characteristics and on highlighting
different classes of errors (see Figure 3). AADL is particularly good at detecting errors that only manifest in
integrated systems. For example, AADL analyses can detect conditions like total memory exceeded, fully loaded
processors fail to meet all deadlines, or unhandled error propagation flows.

The AADL Annex for the FACE Technical Standard

The AADL Annex for the FACE Technical Standard4 provides guidance for translating a FACE Technical
Standard Edition 3.0 Data Architecture eXtensible Markup Language (XML) Metadata Interchange (XMI) model
into AADL so that behavior and timing properties can be added and analyzed. The annex supports the modeling,
analysis, and integration of FACE artifacts in AADL. It gives AADL style guidelines and an AADL property set
to provide a common approach to using AADL to express architectures that include FACE components. Using
common properties and component representations in AADL makes AADL models of FACE components
portable and reusable and increases the utility of tools that operate on such AADL models. The annex will be
submitted for inclusion in the official SAE standard AADL.

Using AADL with Basswood

We used the FACE Data Model to AADL Translator5 to translate the Basswood USM to AADL following the
conventions of the AADL Annex for the FACE Technical Standard.

The FACE Data Model to AADL Translator

The FACE Data Model to AADL Translator converts a .face file aligned with the FACE Technical Standard,
Edition 3.0 into an AADL 2.2 model (The Carnegie Mellon Software Engineering Institute, 2018). For example,
the translator produces AADL data classifiers for the conceptual, logical, and platform entities, thread
groups for PSSS and PCS UoCs, and a system component for an integration model. The system contains
subcomponents for transport nodes and connections between these subcomponents.

The purpose of the translator is to enable developers of FACE UoCs to utilize the analytical capabilities of
AADL. The architectural information included in the FACE USM is captured and expressed in the resulting
AADL model. This model can then be extended by the user to add various properties and then analyzed. The
FACE Data Model to AADL Translator allows for changes in a FACE USM to be quickly realized and analyzed
in an AADL model.

The FACE Data Model to AADL Translator is a set of plugins to the Open Source AADL Tool Environment
(OSATE). The translator integrates with the OSATE modeling environment and is invoked from within OSATE.

Using the Translator with Basswood

4 The annex is available at https://www.adventiumlabs.com/sites/adventiumlabs.com/files/2018.04.09.2_annex_for_face_ed_3_0.pdf
5 See http://osate.org/additional-components.html for more information on the FACE Data Model to AADL Translator

Deleted: Figure 3

Basswood: BALSA in Real-time Copyright 2018 Adventium Labs

www.opengroup.org An Arm y F ACE T M T IM Pa p er 9

To create the AADL model used to analyze Basswood, we used the FACE Data Model to AADL Translator to
convert the .face XMI USM file into AADL packages. The translator creates up to four packages, depending on
the level of detail provided in the model. In our case, the FACE USM contained PSSS and PCS UoCs and an
integration model, so the translator created four AADL packages.

Motivating Example Revisited
In the introduction we described a scenario in which the Air Traffic Controller (ATC) UoC was required to
respond to a configuration change within 100ms. Basswood enables us to reliably demonstrate this scenario.

Consider a Basswood configuration in which each of the ATC, EGI, and AirConfig UoCs is assigned a priority
and a fixed rate dispatch schedule according to a Rate Monotonic Schedule (RMS). ATC runs at a high rate and is
assigned a high priority. EGI runs at a medium rate and is assigned a medium priority. AirConfig runs at a low
rate and is assigned a low priority. Figure 4 shows a graphical representation of this scenario.

Figure 4 Example Priority Preemption Scenario

As a low priority thread, the AirConfig UoC is vulnerable to preemption by higher priority threads. This means
that although AirConfig’s Worst Case Execution Time (WCET) is only 90ms, if the EGI is dispatched during
AirConfig’s execution then AirConfig may be preempted and may miss the deadline for sending updated
configuration to the AirTraffic Controller.

Basswood’s real-time determinism and the real-time scheduler in RTEMS allow us to demonstrate this scenario.
Similarly, AADL’s timing semantics allow us to configure and analyze this scenario in AADL. Together these
models provide a robust training platform.

Deleted: Figure 4

Basswood: BALSA in Real-time Copyright 2018 Adventium Labs

www.opengroup.org An Arm y F ACE T M T IM Pa p er 10

Lessons Learned
The C++ BALSA Build is Difficult to Port

We originally intended to use the consortium-released BALSA 2.1 source code (written in C++) in RTEMS.
Several complications caused us to switch our plan to a subset of the BALSA architecture and to change our
implementation language to C. First, the BALSA architecture uses a UDP-based TSS. Although not complicated
to implement, most (open source) IP networking stacks are not intended for hard real-time application, and we
feared that UDP would prevent reliable demonstration of performance problems. Second,
we encountered compilation problems with the Makefiles in the BALSA system and the need to render them
compatible with the RTEMS build environment. BALSA assumes a standard Linux build environment, and uses
hierarchy of Makefiles. Unfortunately, many of them seemed to require changes for an RTEMS build. Some
variables pass from one Makefile to another, but others are reset in subordinate Makefiles. We also found some
libraries could not be resolved: Librt seemed to be missing; certain pthread functions seem to be missing (at
least in release version of RTEMS).

We also had trouble getting the RTEMS-provided C++ test programs to run correctly, specifically ones involving
exceptions and ones involving iostreams (iostreams are not permitted, per the FACE Technical Standard). The
same behavior was observed with our own test programs: attempts to exercise either feature caused runtime
hangs. Those are not major impediments with BALSA, but it raised a question about what other C++ runtime
issues we might need to code around.

Recommendations to the BALSA Developers: Consider switching to an automake6 configuration to ease issues
surrounding Makefiles.

Sharing Rules for BALSA are Complex

The BALSA exemplar has varying releasability across versions. One variant of BALSA 2.0 was approved for
public release, but BALSA 3.0 is not yet approved. We are pursuing consortium clarification on releasability of
derived artifacts before sharing our Basswood USM, as it is derived from BALSA models.

Recommendations to the Integration Workshop Standing Committee: Post specific guidance regarding the
release of BALSA-derived work.

6 https://www.gnu.org/software/automake/

Basswood: BALSA in Real-time Copyright 2018 Adventium Labs

www.opengroup.org An Arm y F ACE T M T IM Pa p er 11

References
SAE International. (2017, January). Architecture Analysis & Design Language (AADL) Aerospace Standard (AS)
5506 Revision C. From https://www.sae.org/standards/content/as5506c/

The Carnegie Mellon Software Engineering Institute. (2018, June). FACE Data Model to AADL Translator.
Retrieved July 31, 2018 from OSATE: http://osate.org/additional-components.html

The Open Group. (2017, November 15). FACE Standard 3.0. Retrieved 2018 from The Open Group:
https://publications.opengroup.org/c17c

The Open Group. (2016, September 27). Pilot BITS Event. Future Airborne Capability Environment . The Open
Group.

Basswood: BALSA in Real-time Copyright 2018 Adventium Labs

www.opengroup.org An Arm y F ACE T M T IM Pa p er 12

About the Authors
Tyler Smith – Adventium Labs

Mr. Smith is a senior research scientist at Adventium Labs and is leading Adventium’s work supporting the Army
Joint Multi-Role (JMR) Mission Systems Architecture Demonstration (MSAD) effort in model based procurement
and continuous virtual integration. Mr. Smith is responsible for the design and implementation of the Continuous
Virtual Integration Server (CVIS) that enables users to stand up a server to automatically execute scripts for
model retrieval, integration, analysis, and report generation. Likewise Mr. Smith is coordinating an Architecture
Centric Virtual Integration Process (ACVIP)-aligned exercise to evaluate AADL model based procurement and
integration with Single Source of Truth (SSoT) practices and tools. In addition, Mr. Smith was the Principal
Investigator (PI) on a Phase I SBIR (Small Business Innovative Research) building tools for integration of virtual
and physical components in a lab setting for early testing. Finally, Mr. Smith is a co-author of the AADL Annex
for the FACE Technical Standard, version 3.0. The Annex was released in February 2018 and has been distributed
to both the AADL and FACE Technical Standard communities. Prior to joining Adventium in 2014 Mr. Smith
was a software engineer with General Dynamics and worked on components aligned to the FACE Technical
Standard Edition 2.0. Mr. Smith is a member of the AADL Standards Committee and is Adventium’s primary
representative in the FACE Consortium.

Dr. Rob Edman – Adventium Labs

Dr. Edman is a senior research scientist at Adventium Labs and has participated in a range of projects involving
real-time scheduling, embedded systems, and computer networking. He has served as PI on multiple Phase
SBIRS, including Adventium’s current Phase II SBIR on virtual integration of behavioral aspects of components
aligned to the FACE Technical Standard. Edman has been deeply involved in generating analyzable models for
real-time scheduling problems and creating solvers for those models using SMT tools. These models included
process allocation, memory constraints, timing analysis of threads, bandwidth limited communications, and
asynchronous timing boundaries. The prototype SMT tools generated from Dr. Edman’s work formed the basis
for the schedulability analysis tools available through CAMET. On the Navy-funded Mixed Criticality, Assured,
Real-Time VMM TM (MiCART) program, Dr. Edman demonstrated that critical and non-critical software
processes could run side by side on the same virtualization base. As part of this effort, he helped implement a
static scheduler in Xen to provide performance guarantees on multi-core systems and created AADL models
capturing the performance requirements of real-time software running within the system. Dr. Edman is a co-
author of the AADL Annex for the FACE Technical Standard, version 3.0. Dr. Edman is a member of the AADL
Standards Committee and is one of Adventium’s representatives in the FACE Consortium.

Joe Seibel – Carnegie Mellon Software Engineering Institute

Mr. Seibel is a Member of the Technical Staff at the Software Engineering Institute (SEI). He is one of the main
developers of OSATE. His focus is on language implementation using the Xtext framework. He also works on
OSATE’s UI and recently developed the FACE Data Model to AADL Translator. Mr. Seibel is a member of the
AADL Standards Committee and is one of the SEI’s representatives to the FACE Consortium.

Basswood: BALSA in Real-time Copyright 2018 Adventium Labs

www.opengroup.org An Arm y F ACE T M T IM Pa p er 13

About The Open Group FACE Consortium
The Open Group Future Airborne Capability Environment (FACE) Consortium was formed as a government and
industry partnership to define an open avionics environment for all military airborne platform types. Today, it is an
aviation-focused professional group made up of industry suppliers, customers, academia, and users. The FACE
Consortium provides a vendor-neutral forum for industry and government to work together to develop and consolidate
the open standards, best practices, guidance documents, and business strategy necessary for acquisition of affordable
software systems that promote innovation and rapid integration of portable capabilities across global defense programs.

Further information on FACE Consortium is available at www.opengroup.org/face.

About The Open Group
The Open Group is a global consortium that enables the achievement of business objectives through technology
standards. Our diverse membership of more than 600 organizations includes customers, systems and solutions suppliers,
tools vendors, integrators, academics, and consultants across multiple industries.

The Open Group aims to:

Capture, understand, and address current and emerging requirements, and establish policies and share best practices

Facilitate interoperability, develop consensus, and evolve and integrate specifications and open source technologies

Offer a comprehensive set of services to enhance the operational efficiency of consortia

Operate the industry’s premier certification service

Further information on The Open Group is available at www.opengroup.org.

