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Abstract. Architecture description languages such as AADL allow
systems engineers to specify the structure of system architectures and
perform several analyses over them, including schedulability, resource
analysis, and information flow. In addition, they permit system-level
requirements to be specified and analyzed early in the development
process of airborne and ground-based systems. These tools can also be
used to perform safety analysis based on the system architecture and
initial functional decomposition.

Using AADL-based system architecture modeling and analysis tools
as an exemplar, we extend existing analysis methods to support system
safety objectives of ARP4754A and ARP4761. This includes extensions
to existing modeling languages to better describe failure conditions, inter-
actions, and mitigations, and improvements to compositional reasoning
approaches focused on the specific needs of system safety analysis. We
develop example systems based on the Wheel Braking System in SAE
ATR6110 to evaluate the effectiveness and practicality of our approach.

Keywords: Model-based systems engineering + Fault analysis + Safety
engineering

1 Introduction

System safety analysis techniques are well established and are a required activity
in the development of commercial aircraft and safety-critical ground systems.
However, these techniques are based on informal system descriptions that are
separate from the actual system design artifacts, and are highly dependent on
the skill and intuition of a safety analyst. The lack of precise models of the
system architecture and its failure modes often forces safety analysts to devote
significant effort to gathering architectural details about the system behavior
from multiple sources and embedding this information in safety artifacts, such
as fault trees.
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While model-based development (MBD) methods are widely used in the
aerospace industry, they are generally disconnected from the safety analysis
process itself. Formal model-based systems engineering (MBSE) methods and
tools now permit system-level requirements to be specified and analyzed early
in the development process [3,7,8,21,22,26]. These tools can also be used to
perform safety analysis based on the system architecture and initial functional
decomposition. Design models from which aircraft systems are developed can be
integrated into the safety analysis process to help guarantee accurate and con-
sistent results. This integration is especially important as the amount of safety-
critical hardware and software in domains such as aerospace, automotive, and
medical devices has dramatically increased due to desire for greater autonomy,
capability, and connectedness.

Architecture description languages, such as SysML [10] and the Architec-
ture Analysis and Design Language (AADL) [1] are appropriate for capturing
system safety information. There are several tools that currently support rea-
soning about faults in architecture description languages, such as the AADL
error annex [18] and HiP-HOPS for EAST-ADL [6]. However, these approaches
primarily use qualitative reasoning, in which faults are enumerated and their
propagations through system components must be explicitly described. Given
many possible faults, these propagation relationships become complex and it is
also difficult to describe temporal properties of faults that evolve over time (e.g.,
leaky valve or slow divergence of sensor values). This is likewise the case with
tools like SAML that incorporate both qualitative and quantitative reasoning
[11]. Due to the complexity of propagation relationships, interactions may also
be overlooked by the analyst and thus may not be explicitly described within
the fault model.

In earlier work, University of Minnesota and Rockwell Collins developed and
demonstrated an approach to model-based safety analysis (MBSA) [14,16,17]
using the Simulink notation [20]. In this approach, a behavioral model of (some-
times simplified) system dynamics was used to reason about the effect of faults.
We believe that this approach allows a natural and implicit notion of fault prop-
agation through the changes in pressure, mode, etc. that describe the system’s
behavior. Unlike qualitative approaches, this approach allows uniform reason-
ing about system functionality and failure behavior, and can describe complex
temporal fault behaviors. On the other hand, Simulink is not an architecture
description language, and several system engineering aspects, such as hardware
devices and non-functional aspects cannot be easily captured in models.

This paper describes our initial work towards a behavioral approach to MBSA
using AADL. Using assume-guarantee compositional reasoning techniques, we
hope to support system safety objectives of ARP4754A and ARP4761. To make
these capabilities accessible to practicing safety engineers, it is necessary to
extend modeling notations to better describe failure conditions, interactions, and
mitigations, and provide improvements to compositional reasoning approaches
focused on the specific needs of system safety analysis. These extensions involve
creating models of fault effects and weaving them into the analysis process.
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To a large extent, our work has been an adaptation of the work of Joshi et al.
in [14,16,17] to the AADL modeling language.

To evaluate the effectiveness and practicality of our approach, we developed
an architectural model of the Wheel Braking System model in SAE AIR6110.
Starting from a reference AADL model constructed by the SEI instrumented
with qualitative safety analysis information [9], we added behavioral contracts
to the model. In so doing, we determine that there are errors related to (manu-
ally constructed) propagations across components, and also an architecture that
contains single points of failure. We use our analyses to find these errors.

2 Example: Wheel Brake System

As a preliminary case study, we utilized the Wheel Brake System (WBS)
described in [2] (previously found in ARP4761 Appendix L). This ficticious air-
craft system was developed to illustrate the design and safety analysis principles
of ARP4754A and ARP4761. The WBS is installed on the two main aircraft
landing gears and is used during taxi, landing, and rejected take off. Braking
is either commanded manually using brake pedals or automatically by a digital
control system with no need for the pedals (autobrake). When the wheels have
traction, the autobrake function will provide a constant smooth deceleration.

Each wheel has a brake assembly that can be operated by two independent
hydraulic systems (designated green and blue). In normal braking mode, the
green hydraulic system operates the brake assembly. If there is a failure in the
green hydraulics, the system switches to alternate mode which uses the blue
hydraulic system. The blue system is also supplied by an accumulator which is
a device that stores hydraulic pressure that can be released if both of the pri-
mary hydraulic pumps (blue and green) fail. The accumulator supplies hydraulic
pressure in Emergency braking mode.

Switching between the hydraulic pistons and pressure sources can be com-
manded automatically or manually. If the hydraulic pressure in the green sup-
ply is below a certain threshold, there is an automatic switchover to the blue
hydraulic supply. If the blue hydraulic pump fails, then the accumulator is used
to supply hydraulic pressure.

In both normal and alternate modes, an anti-skid capability is available. In
the normal mode, the brake pedal position is electronically fed to a computer
called the Braking System Control Unit (BSCU). The BSCU monitors signals
that denote critical aircraft and system states to provide correct braking func-
tion, detect anomalies, broadcast warnings, and sent maintenance information
to other systems.

2.1 Nominal System Model

The WBS AADL model of the nominal system behavior consists of mechani-
cal and digital components and their interconnections, as shown in Fig. 1. The
following section describes this nominal model from which the fault model was
generated.
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Fig. 1. AADL simple model of the wheel brake system

Wheel Braking System (WBS). The highest level model component is the WBS.
It consists of the BSCU, green and blue hydraulic pressure lines (supplied by the
green pump and blue pump/accumulator respectively), a Selector which selects
between normal and alternate modes of hydraulic pressure, and the wheel system.
The WBS takes inputs from the environment including PedalPosl, AutoBrake,
DecRate, AC_Speed, and Skid. All of these inputs are forwarded to the BSCU
to compute the brake commands.
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Braking System Control Unit (BSCU). The BSCU is the digital component in
the system that receives inputs from the WBS. It also receives feedback from
the green and blue hydraulic lines and two power inputs from two separate
power sources. The BSCU is composed of two command and monitor subsystems
each powered independently from separate power sources. The pedal position is
provided to these units and when skidding occurs, the command and monitor
units will decrease the pressure to the brakes. The command unit regulates the
pressure to the brakes in the green hydraulic line through the command cmd_nor.
Computing this command requires both the brake requested power and the skid
information. The command unit also regulates the pressure in the blue hydraulic
line in order to prevent skidding which it does through the cmd_alt command.
The monitor unit checks the validity of the command unit output.

The BSCU switches from normal to alternate mode (blue hydraulic system)
when the output from either one of its command units is not valid or the green
hydraulic pump is below its pressure threshold. Once the system has switched
into alternate mode, it will not switch back into normal mode again.

Hydraulic Pumps. There are three hydraulic pumps in the system, green pump
(normal mode), blue pump (alternate mode), and accumulator pump (emergency
mode). Each pump provides pressure to the system and is modeled in AADL as
a floating point value.

Shutoff Valve. The shutoff valve is situated between the green pump and the
selector. It receives an input from the BSCU regarding valve position and regu-
lates the pressure coming through the green pipe accordingly.

Selector Valve. The selector receives inputs from the pumps regarding pressure
output and the BSCU regarding which mode the system is in. It will output
the appropriate pressure from green, blue, or accumulator pump. An added
requirement of the selector system is that it will only output pressure from
one of these sources. Thus, the case of having pressure supplied to the wheels
from more than one pump is avoided. The Selector takes the two pipe pressures
(green and blue) as input, selects the system with adequate pressure and blocks
the system with inadequate pressure. If both systems have pressure greater than
the threshold, the AADL selects normal mode as the default.

Skid Valves. The blue_skid and green_skid valves receive input from the selector
as pressure coming through the respective pipes as well as input from the BSCU
that commands normal or alternate mode. The skid valves will use these inputs
to choose between the green or the blue pressure to send to the wheel.

2.2 Modeling Nominal System Behavior

In order to reason about behaviors of complex system architectures, we have
developed a compositional verification tool for AADL models. Our tool, the
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annex AGREE {**

eq nominal_ Select_ Alternate : bool;

eq pedals_pressed: bool = (pedall.val > 0.0) and (pedal2.val > 0.0);

eq skid_active: bool = (cmd _nor.activate_antiskid) or (cmd_alt.activate_antiskid);

eq commanded pressure: bool = (cmd nor.val > 0.0) or (cmd_alt.val > 0.0);

guarantee "If pedals pressed, no skid, and wheel pressure is nonexistant, then
select alternate should be true" :

(nominal_ Select Alternate =
faults.historically(false -> not (pre(pedals pressed and not(skid active)) =>
wheel pressure.val > 0.0)));

guarantee "Pedals pressed and no skid and normal implies pressure commanded" :
pedals_pressed and (not skid active) => commanded pressure;

guarantee "Alternate pressure and normal pressure don't occur simultaneously." :
not(cmd_alt.val > 0.0 and cmd_nor.val > 0.0);

Yy

Fig. 2. AGREE contract for BSCU

Assume-Guarantee Reasoning Environment (AGREE) [8] is based on assume-
guarantee contracts that can be added to AADL components. The language
used for contract specification is based on the LUSTRE dataflow language [12].
The tool allows scaling of formal verification to large systems by splitting the
analysis of a complex system architecture into a collection of verification tasks
that correspond to the structure of the architecture.

We use AGREE to specify behavioral contracts corresponding to the behav-
iors expected of each of the WBS components. An example of a contract is shown
in Fig. 2.

3 Model-Based Safety Analysis

A model-based approach for safety analysis was proposed by Joshi et. al in [14—
16]. In this approach, a safety analysis system model (SASM) is the central
artifact in the safety analysis process, and traditional safety analysis artifacts,
such as fault trees, are automatically generated by tools that analyze the SASM.

The contents and structure of the SASM differ significantly across different
conceptions of MBSA. We can draw distinctions between approaches along sev-
eral different axes. The first is whether models and notations are purpose-built
for safety analysis (such as AltaRica [23], smartIflow [13] and xSAP [4]) vs. those
that extend existing system models (ESM) (HiP-HOPS [6], the AADL error
annex [25]). A second dimension involves the richness of the modeling languages
used to represent failures. Most existing safety analysis languages only support
model variables types drawn from small discrete domains (which we call dis-
crete); the xSAP platform is a notable exception that allows rich types. Another
dimension whether causal or non-causal models are allowed. Non-causal models
allow simultaneous (in time) bi-directional failure propagations; currently only
AltaRica [23] and smartIflow [13] allow this. Yet another dimension involves
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whether analysis is compositional across layers of hierarchically-composed sys-
tems or whole-system.

In this section, we will focus on the dimension of failure propagation, and
contrast failure logic modeling (FLM) vs. failure effect modeling (FEM) [19]. In
FLM, failures are propagated between components explicitly and the analysis
proceeds by determining the likelihood of failures reaching system boundaries.
In FEM, failures propagate by changing the system dynamics, which may cause
the system behavior to visibly change. Our approach is an extension of AADL
(ESM), richly-typed, causal, compositional, mixed FLM/FEM approach. We
believe this is in a unique area of the trade space compared to other state-of-
the-art MBSA approaches.

3.1 Failure Logic Modeling (FLM) Approaches

The FLM approach focuses on faults rather than constructing a model of system
dynamics. We illustrate this approach with the AADL error model annex [25]
that can be used to describe system behaviors in the presence of faults. This
annex has facilities for defining error types which can be used to describe error
events that indicate faults, errors, and failures in the system (the term error
is used generically in the annex to describe faults, errors, and failures). The
behavior of system components in the presence of errors is determined by state
machines that are attached to system components; these state machines can
determine error propagations and error composition for systems created from
various subcomponents.

Error types in this framework are a set of enumeration values such as
NoData, BadData, LateDelivery, EarlyDelivery, TimingError, and NoService.
These errors can be arranged in a hierarchy. For example, LateDelivery and Ear-
lyDelivery are subtypes of TimingError. The errors do not have any information
(other than their type) associated with them. AADL includes information on
the bindings of logical components (processes, threads, systems) and their com-
munication mechanisms onto physical resources (memories, processors, busses),
and the error annex uses this information to describe how physical failures can
manifest in logical components.

An example is shown in Fig. 3 Errors are labeled with error types: 1-BadData,
2-NoData, 3-NoSvc. Failure events that can cause a component to fail are labeled
with the corresponding error number. The error behavior of components is
described by their state machines. Note that while all state machines in Fig. 2
have two states, they can be much more complex. The dashed arrows indicate
propagations describing how failures in one component can cause other compo-
nents to fail. For example, failures in the physical layer propagate to failures in
the associated logical components.

Although the error model annex is very capable, it is not closely tied to the
behavioral model of components or their requirements. For example, in the wheel
braking system (WBS) example [24], it is possible that hydraulic system valves
can fail open or fail closed. In fail closed, downstream components receive no flow
and upstream pipes may become highly pressurized as a natural consequence of
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Fig. 3. Example of error model information and propagation

the failure. Physical models of these behavioral relationships often exist that
can propagate failures in terms of the behavioral relationships between compo-
nents. However, with the AADL error model annex, the propagations must be
(re)specified and defined for each component. This re-specification can lead to
inconsistencies between physical models and error annex models. In addition, the
physical relationships between failures can be complex and may not be describ-
able using enumeration values, leading to additional inconsistencies between the
behavior of the physical phenomena and the behavior of the error model.

3.2 Failure Effect Modeling (FEM) Approaches

In a failure effect modeling approach, the analysis starts from a nominal model
of the system that describes the system behavior when no faults are present.
To perform safety analysis, we then also formalize the fault model. The fault
model, in addition to common failure modes such as non-deterministic, inverted,
stuck_at etc., could encode information regarding fault propagation, simultane-
ous dependent faults and fault hierarchies, etc. After specifying the fault model
and composing it with the original system model, the safety analysis involves
verifying whether the safety requirements hold in presence of the faults defined
in the fault model.

In this approach, a safety engineer can model different kinds of fault behavior:
e.g., stuck-at, ramp-up, ramp-down, and nondeterministic, and then weave these
fault models into the nominal model. The language for describing faults is exten-
sible, allowing engineers to define a catalog of faults appropriate for their domain.
In addition, the weaving process allows error propagation between unconnected
components within a system model [15]. This allows consideration of physical
aspects (e.g., proximity of components, shared resources such as power) that
may not be present in a logical system model but can lead to dependent fail-
ures. In addition, it allows propagation of faults in the reverse direction of the
model data flow. This can occur when physical components have coupling such
as back-pressure in fluid systems or power surges in the opposite direction of
communication through connected components. Finally, it is possible to create
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fault mediations to describe the output in the presence of multiple simultaneous
faults.

A safety analysis system model can be used for a variety of simulations and
analyses. Modeling allows trivial exploration of what-if scenarios involving com-
binations of faults through simulations. The current AADL tool suite contains a
graphical symbolic simulator that allows for forward and back-stepping through
different failure scenarios. In addition it contains a test-case generator that can
automatically generate such scenarios. For more rigorous analyses, we can use
model checking tools to automatically prove (or disprove) whether the system
meets specific safety requirements. As we will demonstrate on the WBS, an engi-
neer first verifies that safety properties hold on the nominal system, an idealized
model of the digital controller and the mechanical system containing no faults.
Once the nominal model is shown to satisfy the safety property, the behavior of
the fault-extended model can be examined to examine its resilience to faults.

4 Architectural Failure Effect Modeling for the WBS

We illustrate our FEM approach on the Wheel Braking System. Starting from
the nominal model described in Sect.2.1, we first determine whether a given
safety property of interest holds on a fault-free instance of the model. We then
extend the model with faults and determine whether the property continues to
hold under reasonable fault scenarios.

The initial safety property to be proven determines whether the system will
apply pressure to the wheels when commanded to do so:

If pedals are pressed and no skid occurs, then the brakes will
receive pressure.

Using the reference AADL model constructed by the SEI [9] extended with
AGREE contracts describing system behaviors, this property proves immedi-
ately. From this point, we focus our attention on component failures and how
this will affect the top level property of the system.

We would like to specify different component failure modes. These failure
modes can be triggered by some internal or propagated fault. In order to trigger
these faults, additional input was added to the AADL model for each fault that
can occur within a nominal model component. This consists of two types:

— fail_to fault: This type of fault accounts for both nondeterministic failures
and stuck-at failures. The components that are affected by this fault include
meter valves and pumps. This fault can be used to describe both digital and
mechanical errors. Examples of digital failures include a stuck_at failure for
the command subsystem in the BSCU component, which causes the command
unit to become stuck at a previous value. An example of a mechanical failure
would be a valve stuck open (or closed).
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— inverted_fail fault: This type of fault will be used on components which con-
tain boolean output. It will simply take boolean input, negate it, and output
the negated value. An example of this is the selector. In the nominal model,

input to the selector consists of a boolean value select_alternate value from
the BSCU.

These faults can be easily encoded in AGREE as shown in Fig. 4. The fail-
ures simply return an alternate value (for fail_to) or invert the input value (for
inverted_failure) when a failure occurs.

node fail to(val_in: real, alt_val: real, fail occurred: bool) returns (val_out: real);
let

val_out = if (fail_occurred) then alt_val else val_in;
tel;

node inverted_fail(val_in: bool, fail occurred: bool) returns (val_out:bool);
let

val_out = if fail occurred then not(val_in) else val_in;
tel;

Fig. 4. AGREE definition of a fail_to and inverted_failure faults

While modeling faults, the duration of the fault must also be taken into
account. The AGREE tools allow a great deal of flexibility in terms of how
faults are defined and their duration. For the purposes of this model, we currently
consider only transient and permanent faults, where transient faults occur for
an instant in time (e.g., a single-event upset) and a permanent fault persists for
the remainder of the system execution.

4.1 Analysis of Faulty Models

The following is a short summary of the failures defined in the fault model.

— Valves and Pumps: All valves and pumps have the possibility of a fail_to fault.
This includes green pump, blue pump, accumulator, and the shutoff valves.

— The selector can also have a digital fail_to fault regarding the inputs from
BSCU commanding to use normal or alternate means of pressure along with
an inverted_fail fault which would change the boolean value that commands
antiskid to activate.

Given our understanding of the WBS, our assumption was that any single
permanent fault could be introduced into the system and the pilot would still
be able to command brake pressure. However, our analysis tools returned a
counterexample to the property, and upon examination, the structure of the
reference model was insufficient to guarantee the property.

The first issue was feedback; the reference model did not have a sensor to
determine pressure after the selector valve. This means that a single failure of
(for example) the blue or green antiskid valve cannot be detected by the BSCU
(see Fig.1), and it cannot route around the failure. In order to address this,
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we added a pressure sensor to the wheel that communicates with the BSCU to
detect lack of pressure at the wheel.

After adding a sensing apparatus to the wheel, the analysis generated another
counterexample due to a single failure of the selector valve. In the reference
model, there is a single selector component that takes as inputs the green pump,
the blue pump, and the accumulator. A single failure in this component can lead
to no pressure along either of the two outgoing pressure lines. To solve this issue,
we removed the accumulator from the selector and added an accumulator valve.
This component takes in the blue pressure from the selector and the accumulator
pressure. It also takes in a select_alternate flag from the BSCU. The output of
the accumulator_valve goes directly to the blue_skid component and is either the
blue or the accumulator pressure.

Finally, our BSCU is currently structured to always fail-over from the
green system to the blue system but never the reverse. Because of this choice
(which matches the AIR6110 document), it is also necessary to guarantee that
select_alternate is false until a failure occurs in the system; otherwise, a single
failure in the blue anti-skid valve can cause the system to fail to provide pressure.
This asymmetry is something that could be revisited in future work.

Even after making these three changes to the model, the original property
still does not prove. At issue is that the sensing of a no-pressure situation is
not instantaneous; there is a delay for this information to reach the BSCU and
be acted upon to switch to the alternate braking system. In our current timing
model for the system, the feedback to the BSCU involves a delay, but the BSCU
and valves can react. Thus, we weaken our top-level property to state that if
the brakes are pressed for two consecutive time instants, then pressure will be
provided to the wheels:

If pedals are pressed in the previous state and pressed in the
current state and no skid occurs, then the brakes will receive
pressure.

The nominal WBS model extended with the faults described in this section
can be found at https://github.com/loonwerks/AMASE.

5 Discussion

We have used the WBS model as a vehicle to experiment with different modeling
and fault representation ideas, and to get a feel for the scalability of our approach.
We started from the reference AADL model [9] to attempt to contrast our FEM
approach using AGREE contracts vs. the FLM-based approach that was already
part of this model. Part of this was driven by curiosity as to whether important
faults might be caught by one approach and missed by the other, and to contrast
the two styles of analysis.

During the process of defining and injecting faults, subtle issues of the system
structure and behavioral interactions became much clearer. The idea that the
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system must use the green side until a failure occurs was unexpected. In addition,
the extensions to the model were driven by the counterexamples returned by the
tools. The approach quickly and precisely provided feedback towards aspects
of the system that were not robust to failure. The researcher who produced
the model (Stewart) was not involved in earlier MBSA work and had no prior
exposure to the WBS model and yet was able to relatively quickly construct a
fault-tolerant model. The fact that these holes in the reference model perhaps
means that the behavioral approach can be better at drawing attention to certain
kinds of failures.

On the other hand, the utility of the safety analysis is driven by the “good-
ness” of the properties. Our one example property is clearly insufficient: for
example, it is not possible to detect faults related to over-pressurization or mis-
application of the brakes when no braking is commanded. Of course, any com-
plete analysis should have properties related to each hazardous condition. The
approach is foundationally a top-down analysis (like fault trees) rather than a
bottom up approach (like a FMEA/FMECA). In addition, if properties are mis-
specified, or the system dynamics are incorrectly modeled, then properties may
verify even when systems are unsafe. The explicit propagation approach of the
FLM techniques force the analyst to consider each fault interaction. This too
is a double-edged sword: when examining some of the fault propagations in the
reference model, we disagreed with some of the choices made, particularly with
respect to the selector valve. For example, if no select alternate commands are
received from the BSCU, then both the green and blue lines emit a No_Service
failure.

In terms of scalability, the analysis time for counterexamples was on the order
of 1-2 s, and the time for proofs was around 4 s, even after annotating the model
with several different failures. From earlier experience applying compositional
verification with the AGREE tools (e.g., [3,21]), we believe that the analysis
will scale well to reasonably large models with many component failures, but
this will be determined in future work.

The analysis in this paper involved hand-annotating the models with failure
nodes. This process is both schematic and straightforward: we define the AGREE
contracts over internal nominal output variables and then define the actual out-
puts using the nominal output variables as inputs to the fault nodes like those
in Fig. 4. We are currently in the process of defining a fault integration language
which will eliminate the need for hand-annotation. Some aspects of the Error
Annex could be directly relevant: the state machines describing leaf-level faults
could easily be compiled into behavioral state machines that determine when
faults occur. On the other hand, in a behavioral approach we need to be able
to bring in additional quantities (inputs, parameters) to instantiate behavioral
faults, and the two approaches have very different notions of propagation.

The xSAP tool [4] has an elegant extension language that allows for fault def-
inition, selection between multiple faults for a component, and “global” depen-
dent faults that can affect multiple components. The authors have used this
support to construct a sophisticated analysis model for the WBS [5]. However,
some useful aspects of fault modeling, such as global faults that are driven by the
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state of the model, appear to be hard to construct. For example, a pipe-burst fail-
ure can be seen as a global failure because it may cause unconnected components
within the model to fail, so can be represented as having a certain probability.
On the other hand, the likelihood of failure in the real system is driven by the
number of currently pressurized pipes in the system, which appears to be hard
to define. We hope to allow for such conditional and model-driven failures in our
fault definition language.

6 Conclusions and Future Work

In this paper, we describe our initial work towards performing MBSA using the
AADL architecture description language using a failure effect modeling app-
roach. Our goal is to be able to perform safety analysis on common models
used by systems and safety engineers for functional and non-functional analyses,
schedulability, and perhaps system image generation. To perform this analysis,
we use existing capabilities within AADL to describe the structure of the sys-
tem, and build on the existing AGREE framework for compositional analysis of
components.

As part of our exploration, we are interested in examining the strengths
and weaknesses of our FEM and the AADL Error Annex FLM-based approach.
We believe that the FEM approach has advantages both in terms of brevity
of specifications and accuracy of results, and can build on existing analyses
performed for systems engineering. However, there are also risks in the FEM
approach involving incomplete or mis-specified properties.

We illustrated the ideas using architecture models based on the Wheel Brak-
ing System model in SAE AIR 6110 [2] and use this in the evaluation of our
approach. Using assume-guarantee compositional reasoning techniques, we prove
a top level property of the wheel brake system that states when the brake pedals
are pressed in the absence of skidding, there will be hydraulic pressure supplied
to the brakes.

Starting from the error model notions of error types, two main faults were
defined: fail_to which will describe failures of valves and pressure regulators and
inverted_fail which describes the failures occurring to components that output
boolean values. Using the AADL behavioral model of the WBS, these permanent
faults were tied into the nominal model in order to reason about how this model
behaves in the presence of specific kinds of faults.

In order to demonstrate that the system was resilient to single faults, we
modified the model to allow feedback from the wheel pressure to the BSCU. This
changed the way the system responded to faults that were further downstream of
the BSCU or Selector and created a chance for the system to switch to alternate
forms of hydraulic pressure. We also reasoned about the initialization values of
the system in regards to which mode is the starting mode. It is crucial for the
system to begin in Normal mode in order to function successfully in the presence
of faults. After model modification and a small weakening of our original property
to account for feedback delay, the model does fulfill the top level contract even
when a permanent fault of one of the high level components is introduced.
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The current capabilities of AGREE are well-suited to specifying faults. Our
approach allows for scalar types of unbounded integers and reals, as well as
composite types such as tuples and structures. It is possible to model systems and
reason about them in either discrete time or real-time. However, adding faults
to existing components is cumbersome and can obscure the nominal behaviors
of the model. We are currently examining several fault specification languages,
giving special consideration to the xSAP modeling language.

Future research work will involve the continuation of development of the
methods and tools needed to perform model-based safety analysis at the system
architecture level. By introducing a common set of models for both nominal
system design and safety analysis, we hope to reduce the cost of development
and improve safety. Our hope is to demonstrate the practicality of formal analysis
for early detection of safety issues that would be prohibitively expensive to find
through testing and inspection. We will base this research on industry standard
notations that are being used in airborne and ground-based avionics in order to
ensure transition of this technology.
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