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The RS-232 Character Repeater 
Refinement and Assurance Argument 

Chapter 1 

Introduction 

1.1 Goal 
The goal of this document is to demonstrate a method for coherently integrating the evidence that 
a computing system satisfies its critical requirements. A critical requirement is any requirement 
that, if not satisfied, could result in catastrophic behavior such as loss of life or the unauthorized 
disclosure of classified information. The method we use is particularly appropriate for systems that 
require high assurance of such critical requirements. 

1.2 Motivation 
The evidence that a system satisfies its critical requirements is typically assessed by an independent 
certification team during the accreditation phase of the system's development cycle. Previous expe- 
rience [25] developing a high assurance cryptographic controller called the EC A has taught us that, 
with respect to independent certification, the presentation of this evidence is at least as important 
as the kind of evidence gathered. The evidence should be presented as a coherent and integrated 
whole, which we call the assurance argument. 

The certification of the EC A was largely unsuccessful. Although the developers had confidence 
that the ECA conformed to its security requirements, we were not able to convince the certifiers of 
this fact. This is partly due to a late start of the certification effort. The primary reason, however, 
was that the evidence, as presented, was not very convincing to those not intimately involved in 
the ECA development. The ECA documentation provided (1) inadequate guidance on how to piece 
the evidence together into a convincing assurance argument, and (2) inadequate assurance that the 
evidence gathered was relevant to the ECA implementation. This made it difficult for the certifiers 
to identify potential problems in the implementation. They had little reason to be convinced by the 
evidence provided. 

Developers need methods to help them present the evidence they gather in a manner convinc- 
ing to system certifiers. Documenting a convincing assurance argument is complicated by several 
factors. First, non-trivial systems usually require the use of many different methods, both formal 
and informal, during the development process, e.g., for requirements analysis, design simulation and 
implementation. Disparate notations and methodological paradigms threaten the coherence of the 
assurance argument and put its certification at risk. Second, many aspects of an assurance argu- 
ment may not be easily formalized, e.g., design decisions, strategies and assumptions. The analysis 
of these aspects are necessarily more subjective than those aspects that are formalized. Finally, 
although formal methods are more precise, they can also be less intuitive than informal methods. 
The documentation must explain and motivate the formalisms used. 

Manuscript approved April 26, 1996. 



1.3 Approach 
Literate programming methods and tools [11] provide a foundation for solving the problems asso- 
ciated with documenting and managing a convincing assurance argument. The concept of literate 

programming is simple: 

A traditional computer program consists of a text file containing program code. Scattered 
in amongst the program code are comments which describe the various parts of the code. 

In literate programming the emphasis is reversed. Instead of writing code containing doc- 
umentation, the literate programmer writes documentation containing code. No longer 
does the English commentary injected into a program have to be hidden in comment de- 
limiters at the top of the file, or under procedure headings, or at the end of lines. Instead, 
it is wrenched into the daylight and made the main focus. The "program" then becomes 
primarily a document directed at humans, with the code being herded between "code 
delimiters" from where it can be extracted and shuffled out sideways to the language 
system by literate programming tools. 

The effect of this simple shift of emphasis can be so profound as to change one's whole 
approach to programming. Under the literate programming paradigm, the central activ- 
ity of programming becomes that of conveying meaning to other intelligent beings rather 
than merely convincing the computer to behave in a particular way. It is the difference 
between performing and exposing a magic trick. [30] 

We extend the use of literate programming beyond traditional programming to encompass the 
specification and verification process as well. The application that we choose to demonstrate this 
approach, an RS-232 character repeater, was originally posed as a non-trivial, security-relevant ex- 
ample on which to determine the feasibility of formal methods [15]. Our use of literate programming 
techniques (1) demonstrates how a formal assurance argument can be presented in a clear and intu- 
itive manner and (2) ensures that the documentation of the argument is consistent with the actual 
specification, implementation, and proof. This document was written using literate programming 
techniques and tools and is itself a literate program. 

The refinement of the repeater addresses many important issues that commonly arise in the 
development of more complex hardware/software systems. We analyze very abstract requirements 
of the repeater at the top level. We specify and verify both a logical design and a physical design 
of the repeater. We deal directly with concurrency in both the logical and physical designs. This 
approach required significant effort, as is evidenced by the length and complexity of this document. 
Nevertheless, by addressing these issues we demonstrate the potential scalability of the method. 
We expect this document will provide a model for developing assurance arguments for full-scale 

composite systems. 

1.4 Structure of this Document 

This document contains four parts. Part I describes the repeater problem and solution strategy; we 
adopt CSP [9] as the computational framework and casts the repeater critical requirements in terms 
of this model. Part II describes the repeater logical design, specification, and verification using the 
EVES interactive proof system [13]. Part III describes the physical implementation of this design 
and the verification that the implementation conforms to the design constraints using the Failures 
Divergence Refinement (FDR) model checker [26]. Part IV defines concepts that are used in the first 
three parts. This part presents a brief description of EVES library units that comprise the EVES 
and CSP background theory and repeater application modules. 

Part I contains three chapters. Chapter 2 informally describes the repeater problem and solution. 
Chapter 3 presents an overview of the notation used to specify, verify, and implement the repeater 



and the notation used to document the repeater assurance argument. This chapter provides enough 
detail of the notations used for a fairly thorough overview of the assurance argument. It is organized 
for ease of reference with much of the relevant notation summarized in tables in the appendices. 
Chapter 3 also provides pointers to relevant documentation (user manuals, tutorials, etc.) for readers 
interested in a deeper understanding of the repeater assurance argument. Chapter 4 refines the 
critical requirements for the repeater based on the assumptions of the CSP model. A subset of these 
requirements expressible as CSP trace specifications are formalized in the EVES syntax. Chapter 4 
forms the foundation for the rest of the assurance argument. The argument evolves as the repeater 
is refined using the formal techniques where possible and informal techniques where necessary to 
ensure full coverage of the critical requirements. 

Part II contains three chapters. Chapter 5 specifies the repeater logical architecture as the 
concurrent composition of two components. It decomposes the critical requirements described in 
Chapter 4 accordingly and justifies the integrity of the decomposition using EVES for the formal 
aspects of the argument. Chapters 6 and 7 present the design for each component and verify that 
the design satisfies the derived requirements, again using EVES as appropriate. 

Part HI contains two chapters. Chapter 8 recasts the repeater design specified in Part II in the 
FDR syntax. Chapter 9 implements this design and verifies, using FDR as appropriate, that the 
implementation conforms to the requirements of the design. This process generates a set of critical 
requirements that must be satisfied by any further refinement. Although this is the extent of the 
repeater refinement in this document, this specification is consistent with the repeater specified in 
[1], from which a VHDL design and gate-level hardware description were derived. 

Part IV contains four chapters describing, respectively, a theory for reasoning about character 
sequences, a module for representing character sequences as buffers, an interface to an abstract base 
machine providing CSP-like primitives, and an outline of the library units that comprise the repeater 

specification. 



Part I 

The Repeater Problem 



Chapter 2 

Informal Problem Statement and 
Solution Strategy 

The RS-232 character repeater, henceforth referred to simply as the repeater, relays all characters 
of correct parity until it overflows. More specifically, the repeater has an input data line, an output 
data line, and an error port, as shown in Figure 2.1, that can operate at a range of speeds. Characters 
(each consisting of a sequence of K bits) received from the input data line are transmitted at the 
output data line, possibly after some delay. All characters of correct parity (assume even parity 
coding) received by the repeater are stored, until transmission, in an internal buffer that can grow 
to a maximum size of N>0 K-bit characters. Characters of odd parity are not retransmitted and 
cause an error to be signaled on the error port. If the buffer overflows (grows to a size greater than 
N characters), an error is signaled on the error port, nothing more is accepted, all characters in the 
buffer received prior to the character causing the error condition are transmitted, and the repeater 
halts. 

The repeater must be rigorously shown to satisfy the critical requirements described in Section 2.1 
We use the strategy outlined in Section 2.2. We justify this strategy in Section 2.3. 

2.1     Critical Requirements 

Information security is increasingly recognized as a property of an information system as a whole, 
rather than a property of its components [31]. This raises the question as to why a low-level 
device like a character repeater was viewed as security-relevant by the originators of the problem. 
Typically as one focuses on the requirements of smaller and smaller components of a system, those 
requirements become less and less identifiable as security-relevant. Nevertheless, certain commonly 

Input 
Port 

Repeater 

Output 
Port 

Error Port 

Figure 2.1: The RS-232 Character Repeater 



reusable components, such as a memory management unit, have features that are generally useful 
in the construction of secure systems [14]. This is true as well for the repeater. 

Confidentiality and integrity of information are important concerns for building secure systems. 
The primary concern for the repeater is the integrity of the data it processes, i.e., ensuring the data 
is not corrupted in some way. The first critical requirement demands that the characters received by 
the repeater are transmitted without change. Enforcing a strong notion of integrity might require 
using an error-correcting code; that is, however, beyond the scope of this repeater design. 

Relay Characters Until Overflow — Exactly those characters of even parity received 
by the repeater prior to the reception of the character causing an overflow are transmitted, 
K-bit character by K-bit character. 

The repeater must also be concerned with ensuring that no new, possibly classified, information 
gets inserted into the character stream. The second and third critical requirements address which 
characters get transmitted and their ordering. Preserving the order of characters is necessary both 
to ensure that no sensitive information is encoded in a re-ordering (confidentiality) and to ensure 

that the data goes out as it came in (integrity). 

No Spurious Characters — Only received characters are transmitted. 

Order Preserved — Characters are transmitted in the order in which they were re- 
ceived. 

2.2    Solution Strategy 
The CSP language [9] forms the basis for the specification of the repeater and the verification that it 
satisfies its critical requirements. The EVES Verification System [5, 13] and the FDR model checker 
[6, 26] provide mechanical assistance for constructing and verifying the CSP specifications. EVES 
is a general purpose interactive verification system that can be used to prove mathematically that 
CSP descriptions conform to trace specifications. NRL extended an existing CSP theory [24, 12] to 
support such verifications [19]. FDR is a CSP model checker that automatically verifies (through an 
exhaustive state space analysis) that a CSP process implementation properly refines a CSP process 

specification. 
Figure 2.2 illustrates our approach for constructing the assurance argument for the repeater CSP 

process implementation. Slanted arrows indicate a refinement of a specification to a more detailed 
specification or implementation; vertical arrows indicate a translation of a specification from one 
semantic domain to another semantic domain at a comparable specification level. Dashed arrows 
indicate a refinement/translation that is informal; solid arrows indicate a refinement that uses a 
combination of informal and formal techniques. The increase in width of the argument from top to 
bottom illustrates additional detail that is specified at the lower levels. Other work describes the 
synthesis of a gate-level hardware description from the repeater CSP physical design using VHDL 

synthesis tools [1]. . 
The CSP computational paradigm makes a number of assumptions about the environment and 

implementation of CSP processes. Since we use this model to derive the repeater physical design, 
these assumptions result in critical requirements in addition to those described in the previous 
section. These additional critical requirements are not expressible in terms of the CSP model and, 
thus, must be verified informally. Tracing all the critical requirements through the levels of repeater 
refinement is a key aspect of the assurance argument that is not explicit in Figure 2.2. 

Figure 2.3 illustrates the trace of requirements through the repeater logical and physical designs 
to the verification that those designs satisfy their derived requirements. An arrow from A to B 
means that A contributes to the derivation of B. Critical requirements for the repeater's physical 
architecture derive both from the top-level critical requirements and the fact that the detailed logical 
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Figure 2.2: Repeater Assurance Argument 

design satisfies the top-level critical requirements. This latter fact simplifies the physical architecture 
requirements since we need to show only that the physical design conforms to the logical design to 
guarantee that the requirements of Section 2.1 hold. A set of requirements for further refinement of 
the repeater are generated out of the process of refining the physical architecture. 

Figure 2.3 provides part and chapter numbers indicating where in this document the primary 
elements of the requirements trace reside. Critical requirements are classified as either assumptions 
or assertions. Assumptions are those requirements that are necessary to satisfy the requirements 
of Section 2.1, but that can only be enforced by the repeater's environment. Assertions are those 
critical requirements that can be enforced by the repeater itself. Formal assumptions/assertions can 
be stated in the CSP model; informal assumptions/assertions are beyond the expressive power of 
the CSP model and are stated in English. We identify new or derived assumptions and assertions 
"in-line" during the presentation of a specification and summarize them near the end of the chapter 
in which they are identified. We use a numbering scheme similar to the chapter/section numbering 
scheme so that critical requirements can easily be traced back to their origin, e.g., "Assert 3.2" 
represents the second derived assertion that originated from assertion 3. 

Refinement of the repeater design requires justification. Each chapter representing such a refine- 
ment concludes with a section that justifies the refinement. Each justification relies on a combination 
of formal and informal arguments. Formal arguments are used to justify that a repeater design con- 
forms to its formal assertions; informal arguments are used to justify that a repeater design conforms 
to its informal assertions. We use narrative text to motivate and outline the formal arguments, but 
we rely on the mechanical tools to convince the reader that the details of the formal argument are 
correct. 

Formal and informal arguments use identical notation to identify exactly what is to be proven 
and what facts are needed in the proof. The expression c using al,a2,... ,an describes a theorem 
in which al through an are assumptions and c is the conclusion. This expression can be read "c 
follows from the assumptions al through an." The justification of each theorem immediately follows 
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the sequent representing the theorem. Each argument ends with symbol D. Critical requirements 
that do not change through the decomposition are signified by the name of the requirement followed 
by the phrase "No change." 

The rest of this section provides an overview of the tools that we use to specify and document 
the repeater assurance argument, with pointers to relevant documentation for a more thorough 
treatment. 

2.2.1    Overview of Tools Used 

The question arises why we use both interactive proof and model checking technology to construct 
the repeater argument. The use of interactive mathematical proof as a means of gaining assurance 
that an implementation conforms to its critical requirements is a (human) labor intensive process. 
Model checking can provide a comparable level of assurance for portions of a system verification 
at a substantial savings in time and human labor. Unfortunately, model checking currently applies 
only to the verification of relatively low-level requirements. FDR, for example, is used to verify that 
an implementation conforms to a CSP process specification. We need the EVES interactive prover 
to verify that the CSP process specification conforms to a more intuitive statement of the critical 
requirements. 

CSP: The Computational Framework 

CSP allows the description of systems composed of networks of communicating processes. A CSP 
process communicates with its environment through named communication channels. Olderog and 
Hoare [22] describe a family of increasingly sophisticated models for CSP; less sophisticated members 
of the family enable specification and proof of a subset of properties that the more sophisticated 
members enable. The Traces Refinement model is useful for ensuring that safety properties are 
preserved; the Failures Refinement is useful for ensuring that safety and liveness properties are 



preserved; and the Failures-Divergences Refinement model is useful for ensuring that safety and 
liveness properties are preserved and that the system does not diverge.1 We chose the Traces 
Refinement model as the basis for the repeater assurance argument due to its comparative simplicity 
and its ability to prove safety properties of networks of processes. 

The Traces Refinement model characterizes a process according to it's alphabet and set of traces. 
The alphabet of a process specifies all communication events, i.e., channel-value pairs, in which it is 
permitted to engage. A trace of a process is an observation of its execution. It consists of a finite 
sequence of all communication events in which the process has engaged at some moment in time. 
Properties specified about systems described in CSP take the form of restrictions on the traces in 
which a process representing the system may engage. If the set of traces associated with the process 
actually conform to these restrictions, the system is said to satisfy the properties. 

The formal assertions are specified using the Traces Refinement model of CSP to allow formal 
specification and proof of the repeater as a network of communicating components. The repeater 
architecture is reflected in a CSP description. A decomposition of the Traces Refinement model 
requirements (i.e., trace specifications) onto the major components of the architecture is performed 
using the CSP proof theory in conjunction with a method developed at NRL [21]. This decompo- 
sition is performed down to the level of sequential CSP processes. These CSP processes are then 
implemented and proven to conform to their derived requirements using the CSP proof theory. 

EVES: An Interactive Proof Assistant 

EVES consists of a specification and programming language called Verdi, a proof obligation genera- 
tor, and an interactive proof assistant called NEVER. An alternative syntax for Verdi, called Sugared 
Verdi (SVerdi), has been developed that is somewhat more conventional (Pascal-like) than the Lisp 
s-expression syntax of Verdi. We use SVerdi, rather than Verdi, in the refinement of the repeater 
assurance argument for increased readability. SVerdi consists of both executable (programming) 
constructs and non-executable (specification) constructs. SVerdi includes imperative statements 
(similar to Pascal), types for executable constructs, set theoretic concepts (including the axiom of 
choice) [7], first-order logic, and declarations such as mutually recursive procedures and functions, 
axioms, and types. 

SVerdi development using EVES starts from an initial built-in theory, which is documented in 
Appendix C of [4]. The EVES database consists of the initial theory extended as appropriate by any 
declarations parsed. Each declaration parsed into EVES extends the database with new symbols 
and axioms. To maintain consistency of the database, the proof obligation generator constructs 
the formulas that need to be proven for each declaration parsed. The EVES database keeps track 
of these proof obligations and requires their proof before the consistency of the database may be 
declared. Additions to the database for each class of declaration are described in Appendix D of [4]. 

FDR: A CSP Model Checker 

FDR offers the choice of verification using any of the three models of CSP: Traces Refinement, 
Failures Refinement, and Failures-Divergences Refinement. Although the CSP theory developed for 
EVES uses only Traces Refinement, the more sophisticated types of refinement are useful for the 
repeater argument to ensure that the repeater physical design makes progress processing characters 
and does not diverge. We, therefore, perform the more sophisticated types of refinement analysis 
during the FDR verification, since the analysis is performed automatically, but limit the EVES 
verification to the Traces Refinement, since the supporting theory for the more sophisticated models 
has yet to be encoded in SVerdi. 

1A system is non-divergent if all recursion is guarded and there is no possibility of the network engaging in an 
infinite consecutive sequence of hidden events, i.e. livelock. 



We claimed earlier that verification in FDR is automatic. Of course, this is true only if the CSP 
implementation described actually refines the CSP specification according to the type of refinement 
of interest. If the CSP implementation is in error, it is up to the developer to find and correct the 
error. FDR provides a graphical interface for determining the source of errors by analyzing the trace 
of events that led up to the error. The information provided depends on the type of refinement 
analysis performed. 

FunnelWeb: A Literate Programming Tool 

Literate programming (LP) tools allow users to produce typeset documentation and compiler-ready 
code from the same source document(s). This capability, along with automatic cross-referencing and 
the ability to interleave code and documentation in any order, gives the user great flexibility in the 

presentation of the program. 
The original LP tool was Knuth's WEB toolset [10]2 for writing Pascal. LP tools for other program- 

ming languages quickly followed, and eventually programming language-independent tools became 
available. FunnelWeb [30], developed by Dr. Ross Williams of the University of Adelaide, Australia, 
is a language-independent LP tool. In fact, it supports many, arbitrary languages, which makes it 
a good candidate for this exercise. From a single document, we can produce not only the typeset 
assurance argument, but also the EVES and FDR specifications. 

Except for some notational conventions described in Section 3.4, FunnelWeb's use should be 
invisible to the reader. Instead, the reader can be assured that the formal specifications herein are 
exactly those specifications processed by EVES and FDR. 

2.3    Justification of the Strategy 
The repeater problem statement, described in the introduction to this chapter, requires the repeater 
to receive and transmit bits at a range of speed. Support for asynchronous input and output suggests 
that we use a language suited to reasoning about asynchronously communicating components. Un- 
fortunately, few mechanical tools directly support formal reasoning about such systems. The Gypsy 
Verification Environment [8] is useful for the verification of a variety of concurrent applications, but 
limits on the form of the specification and implementation of concurrent programs make it awkward 
to use for the repeater. At this writing, it is difficult, for example to specify in Gypsy program exit 
conditions of the form "at the time a message is received over channel A, the history of channel B 
satisfies property P." 

Process algebras alleviate such problems by interleaving the individual channel histories in the 
order in which communications take place. Since the repeater is naturally described as a set of 
communicating processes and the repeater requirements are naturally stated as restrictions on traces 
of communication events, the process algebraic approach is ideal. While there are many process 
algebras documented in the literature, most are related in some way to one of the two early process 
algebras: CSP and CCS [17]. The tools that have been developed to aid reasoning about CSP and 
CCS are roughly comparable. However, we choose to use CSP because we had ready access to the 
CSP tools and we had experience using CSP to specify and verify security properties for a number 
of applications. Furthermore, the CSP Traces Refinement model is relatively easy to understand, 
allowing a clear exposition of the assurance argument. 

Our solution strategy balances the assurance gained with the development cost incurred (includ- 
ing both human resources used and time to completion). A number of tools exist that permit users 
to graphically depict the simulation of communicating processes, e.g., LOTOS [29], but we decided 
to limit the scope of our effort to techniques complementary to testing in the verification process. 
This left interactive mathematical proof and model checking. 

2 A better description of WEB is provided by Sewell [28]. 
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The choice of model checker is critical to achieving the goal of automating as much of the 
verification process as possible. FDR and the Concurrency Workbench [3] were the leading model 
checker candidates. While these tools are roughly equivalent in terms of functionality, FDR was 
chosen for the repeater refinement because of its basis in CSP, rather than CCS, and it's production- 
quality environment. 

Verifying more intuitive properties of CSP specifications requires interactive proof. A number 
of interactive proof assistants in addition to EVES have been extended to support reasoning about 
CSP. Previous work at NRL encoded a subset of the CSP Traces Refinement model in the logic 
of EHDM [21]; work in the UK encoded the Failure-Divergences Model in the logic of HOL [2]. 
EVES was chosen for a number of reasons. Only EVES and HOL permit user-defined syntax of 
application theories, which is helpful for reasoning in a user-friendly CSP syntax. Only EVES and 
EHDM permit verification of actual software programs, which is important for future work involving 
literate assurance arguments about code. In the end, EVES was chosen because of its support for 
automating, rather than merely mechanizing, the reasoning process. The advent of other tools, e.g., 
PVS [23], may require a re-evaluation of this choice for future efforts. 
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Chapter 3 

Notation Overview 

The solution that we have proposed to the repeater problem stresses the importance of specifying 
the critical requirements in an intuitive manner while automating as much of the verification process 
as possible. Unfortunately, requirements stated to promote human understanding are usually not 
the easiest to verify automatically. This is exemplified by the low level requirements specification 
languages of existing model checkers. Our solution requires combining in a coherent manner the 
three tools we described in the last chapter: 

• CSP which provides a concise notation and theory, but, by itself, provides no mechanical 

support; 

• EVES which provides the ability to prove arbitrary properties, but, by itself, only provides a 
limited potential for automation; and 

• FDR which provides complete automation, but, by itself, does not support specifying properties 
in an intuitively appealing manner. 

Addressing the goals of our solution through the combined use of CSP, EVES and FDR comes 
at a cost. Each of these tools has its own set of notational conventions that often conflict. Our 
goal in the presentation of the repeater assurance argument is to use a notation that eases the 
understanding of the argument to the lowest levels of abstraction. Fortunately, EVES permits user- 
defined syntax for application theories, so that a CSP-like syntax for specifying and reasoning about 
CSP can be defined. However, EVES restricts user-defined syntax to certain sequences of ASCII 
character symbols; these restrictions do not permit full conformance with the syntax for CSP in [9] 
or the ASCII version of CSP on which FDR is based. 

We choose a syntax for CSP that is as close as possible to FDR's CSP syntax and that we believe 
promotes readability of the repeater assurance argument. We present this syntax in Appendix A; the 
index at the end of the document identifies the page number on which specific operators are described. 
Appendix B describes variations on the syntax necessary for processing by the mechanical tools. We 
explicitly choose not to use a pretty (FlfeX) version of the syntax in the narrative descriptions, 
e.g., one which follows more closely the notation described in [9], because we feel this would tend 
to confuse rather than clarify the ASCII-restricted SVerdi specifications. We present enough detail 
about the relatively small subset of CSP used that additional reading on CSP is probably not 
necessary. For readers already familiar with CSP or readers that desire additional background, 
Appendix C provides a summary of the correspondence between the syntax of Hoare's CSP and the 

syntax we have adopted. 
The rest of this section uses the notation of Appendix A to describe in more detail the CSP spec- 

ification paradigm and the infrastructure provided by EVES and FDR to specify and mechanically 
verify properties about CSP descriptions. We also describe the notational conventions of the literate 
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programming tool that we are using to document and manage the assurance argument. One need 
not memorize the notation presented at first reading. Only a small subset of the CSP and EVES 
notation is needed for the next chapter. Part II increasingly relies on a more in-depth understanding 
of the CSP and EVES notation. We do not use the FDR notation until Part III. An understanding 
of FunndelWeb notation is required uniformly through the document. We suggest a cursory review 
of the notation to start with followed by a more in-depth study as the need arises. 

While progressing through the assurance argument, we hope the reader keeps in mind Hoare's 
views on learning a new notation: 

Notations are a frequent complaint. ... If it is any consolation, this should be the least of 
your worries. After learning the script, you must learn the grammar and the vocabulary, 
and after that you must master the idiom and style, and after that you must develop 
fluency in the use of the language to express your own ideas. All this requires study and 
exercise and time, and cannot be hurried. So it is with mathematics. The symbols may 
initially appear to be a serious hurdle; but the real problem is to understand the meaning 
and properties of the symbols and how they may and may not be manipulated, and to 
gain fluency in using them to express new problems, solutions, and proofs. Finally, you 
will cultivate an appreciation of mathematical elegance and style. By that time, the 
symbols will be invisible; you will see straight through them to what they mean. 

3.1    The CSP Computational Framework 

The CSP language permits describing systems as networks of communicating processes. A CSP pro- 
cess is an entity that communicates with its environment through named communication channels. 
The Traces Refinement model of CSP characterizes a process according to its alphabet and set of 
traces. The alphabet of a process P, denoted alpha P, specifies all communication events relevant 
to characterizing P. A communication event is described by a pair cm; the alphabet of process P 
contains cm if and only if P is permitted to communicate message m over channel c. The trace 
of a process is an observation of its execution. It consists of a finite sequence of events in which 
the process has engaged at some moment of time. The set of all traces of a process P is denoted 
traces P. 

The CSP notation allows the description of processes using a variety of process constructors. The 
CSP subset used in this document contains nine primary process constructors, STOP, SKIP, the prefix 
constructor "->", the choice constructor "[]", the conditional constructor "if then else endif", 
the sequential constructor ";", the recursion constructor "=", the concurrent constructor "M", and 
the compose constructor " I ? I". STOP is the process with alphabet A that never engages in any 
events of A; it describes the behavior of a broken process. The only trace of STOP is the empty trace. 
SKIP is the process with alphabet A, which does nothing but terminate successfully; it describes the 
behavior of a process that has successfully finished its job. To distinguish STOP and SKIP the event 
tick is used to signify successful termination. The only traces of SKIP is .< >. and .<tick>.. 

The prefix process "e -> P" describes a process that first behaves like e and then like process 
P. The trace of this process is e tacked onto the front of t where t is the trace of P. The choice 
constructor allows the behavior of a process to be influenced by outside events. If P and Q are 
processes and e and / are events, the process "e -> P □ / -> Q" behaves like process P if e is the 
first event to occur and behaves like process Q if / is the first event to occur. This generalizes to a 
process "[] x:B ® P(x)" where B is a non-empty set of events, x is an arbitrary event from B, and 
P is a function from events to processes. A trace of a choice process must be a trace of one of the 
alternatives. The conditional process "if b then P else Q endif" is defined as the process P if b 
is true, otherwise Q. This can be generalized to allow any number of conditional branches in the 
natural way. The trace of a conditional process is simply the trace of the process specified by the 
value of the conditional expressions. 
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The sequential composition of processes, "P ; Q", describes a process that acts hke the successful 
termination of P followed by Q. UP does not terminate successfully then Q does not start. The 
trace of this process is a trace of P and, if this trace ends with the successful termination event, that 
event is replaced by a trace of Q. A process successfully terminates only if the process terminates 
on a SKIP process. The recursive process "X = P(X)" describes the process X that is the solution, 

i.e., fixed point, of the equation X = P(X). 
P [I X |] Q describes a process executing process P concurrently with process Q while syn- 

chronizing on events in X. Two processes synchronize on an event if and only if they engage in 
that event simultaneously. A commonly used abbreviation, P I I Q describes a process executing 
process P concurrently with process Q with synchronization on those events that occur in both 
alpha P and alpha Q. Events occurring in alpha P but not alpha Q may be engaged m by P 
independently of Q. While the concurrency constructor is an operation on two processes, either of 
the two processes may itself be a concurrent process. This operator therefore allows the description 

of arbitrary networks of processes. 
Processes executing concurrently communicate through channels. C ! m denotes the output ot 

message m on channel C; C ? x denotes the input of value for x on channel C These operations 

are communication events defined by 

(C\m->P)    =    {C.m->P) 
(C?x->P(x))    =    (D C.n:alpha P(n)-> P(n)). 

Although the CSP notation distinguishes between the input and output of values over channels, 
the Traces Refinement model uses only the generic dot notation, Cm, to represent communications 
over channels.  For example, the traces of the output process C\m -> P are simply the traces of 

C.m->P. •      • 11 i -f 
A communication of message m over C can occur between two processes running in parallel it 

and only if both processes have the communication event Cm in their alphabets and both processes 
simultaneously engage in that event. That is, whenever one process outputs a value onto the channel, 
the other process simultaneously inputs the same value from the channel. This implies that 

(C!m -> P) I I (C?x -> Q{x)) = Cm -> (P I I Q{m)) 

where Cm occurs in alpha P and alpha Q(m). If only one process in a network of processes has a 
communication event in its alphabet, then that process may communicate over the channel associated 
with that event independently of the other processes. To simplify the theory involved, Hoare assumes 
that at most two processes in a network of processes can access the same communication channel 
and that communication over a channel occurs in only one direction [9]. If only one process m 
the network can access the channel, the channel is said to be external; if two processes can access 
the channel, the channel is said to be internal. The only way a process can communicate with 
another process executing concurrently is by engaging in a communication event; no shared memory 

is permitted. 
The alphabet and set of traces of a concurrent process are defined in terms of its component 

processes. The alphabet of a concurrent process is simply the union of the alphabets of its component 
processes. The set of traces of a concurrent process includes any trace that, when restricted to one 
of its component alphabets, forms a trace for that component. 

The above view of concurrency requires that any trace of a concurrent process P \\ Q include 
every event in which P or Q engage. The visibility of the communications over internal channels in 
the traces of P I I Q reduces the amount of abstraction possible during the system design process. 
Hierarchical design, a proven method for managing the complexity of system design and verification, 
requires that the requirements of a component be based solely on the sequence of external commu- 
nications in which it may engage. We would like to be able to hide the internal events and describe 
requirements of a process's external interface only. The CSP hiding operation "P \ A" describes a 
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process P with the events in set A hidden. Therefore, P I I Q \ (alpha P ** alpha Q) describes 
a concurrent process with all internal event hidden. For convenience, we define an abbreviation for 
this process using the compose operator, denoted I ? I. P I ? I Q ~ tick is equivalent to the P I I Q 
except that the internal communications are hidden. The traces and alphabet of a compose process 
are the same as for a concurrent process with the internal events deleted. 

The Traces Refinement model of CSP permits specifying safety, i.e., partial correctness, require- 
ments of non-divergent processes [22], A process P is non-divergent if P contains no unguarded 
recursion (i.e., if every recursive call to P is prefixed by some event) and P cannot engage in an 
infinite consecutive sequence of hidden events.1 A requirement in CSP is viewed as a set of traces. 
Process P satisfies a requirement R, denoted P sat R, if and only if R contains every trace that 
may occur as an observation of P: 

{P sat R) = (traces P C R). 

The above discussion identifies a number of assumptions that the Traces Refinement model of 
CSP makes about the environment and implementation of a CSP process. In summary, these are 

Shared Channel Communication — Communication between concurrent processes 
(or a process and its environment) can take place only over channels shared by the 
alphabets of the processes. 

Two-Process Communication — Communication over a channel is unidirectional 
involving exactly two processes - one process acting as a sender and the other process 
acting as a receiver. 

Atomic Communication — Communication over a channel is an atomic event. 

Synchronous   Communication —  Communication over  a channel  requires syn- 
chronous participation of both sender and receiver. 

Non-Divergent Processes — Processes are non-divergent, i.e., all recursion is guarded 
and there is no possibility of a process engaging in an infinite consecutive sequence of 
hidden events. 

The validity of the assurance argument for the repeater developed in this document depends on the 
validity of these assumptions for the primitives of the repeater logical and physical designs. These 
assumptions will be continually refined and interpreted throughout the repeater refinement. 

3.2    EVES Notation 
We use SVerdi to write definitions, conjectures, and proofs. These entities can be organized using 
the built-in library mechanism. This mechanism provides a foundation from which to encode the 
CSP Traces Refinement model in EVES, to specify CSP applications and to prove that they satisfy 
their critical (trace) requirements. 

3.2.1    Non-Executable Definitions 

SVerdi can be partitioned into the constructs that permit execution in EVES and those that do not 
permit execution in EVES. SVerdi non-executable definitions are for specification purposes only; 
they can be stated as functions in the SVerdi Logic. The SVerdi Logic is based on the Predicate 
Calculus using an ASCII syntax for predicate logic operators (see Appendix A). Constants may be 
defined as functions of zero arguments. The EVES initial theory defines all the built-in functions 
including the set-theoretic extensions and operators for the pre-defined types. 

User-defined functions in SVerdi have the format 
JNote that while all terminating processes are non-divergent, not all non-divergent processes terminate. 
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function F (pi,p2,...,pn) = 

measure M(pl,p2 pn) 

begin 

FDef(pl,p2 pn) 

end F; 

The measure expression in the above template is required only for recursive functions as a basis for 
proof of termination. The measure M must describe an expression associating natural numbers to 
recursive calls that is bounded below by zero and decreases each recurrence of the function. The 
body of a function may be "stubbed out" to postpone its definition until a later time. A simple 
example is integer exponentiation, the stub of which might be 

function exp (base,exponent); 

and the fully expanded body of which might be 

function exp (base,exponent) = 

measure exponent 

begin 
if exponent >= 1 
then base * (exponent - 1) 

else 1 

end exp; 

The value of exponent, the measure for this function, decreases each iteration until it reaches a 

value less than 1. 
SVerdi provides a distinct notation called zf functions for constructing sets. To define, for exam- 

ple, the sets 
foo(x) = {y£f(x)\P(x,y)} 

bar(x) = {g{x,y,z) |y, «€/(*)} 

we define in SVerdi 

zf function foo (x) = 
begin 

{ y in f(x)   I   P(x,y)  } 
end foo; 

zf function bar (x) = 

begin 
■C g(x.y.z) I y.z in f (x) } 

end bar; 

One other type of zf function allows you to choose an arbitrary value that satisfies some expression; 

for example, the function 

zf function foobar (x) = 
begin 

y  I  P(x,y) 
end foobar; 

chooses a y such that P(x,y) holds, provided that one exists. No measures are needed for zf functions 
since they may not be defined recursively. These and other set theoretic operators, which do not 
require embedding in zf function definitions, are summarized in Appendix A.4. 
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3.2.2    Executable Definitions 

SVerdi specifications may use the full power of mathematics to describe the requirements to which 
a system must conform. SVerdi code, on the other hand, must be executable on a physical machine 
and, therefore, must conform to the constraints ofthat machine. For example, specifications may use 
unbounded integers, whereas any code will be constrained to a subset that is representable on the 
base machine chosen. The executable subset of SVerdi is strongly typed for representation purposes; 
the subset consists of type declarations, typed function declarations, and procedure declarations. 
SVerdi types include bool (Booleans), char (characters), int (integers), enumerated types, records 
and arrays. 

Typed functions have the format 

typed function TF (pll,pl2,...,pli :  tl, 
P21,p22,...,p2j   :  t2, 
■   ■   •   , 

pml,pm2,...,pmn : tm,) returns t = 

pre P(pll,..•,pmn) 
begin 

TFDef(pll,...,pmn) 
end TF; 

where t, tl, t2, .... tm are pre-declared types and pll, .... pmn are parameters of the asso- 
ciated types. The pre expression in the above template is needed only if the function TF is not total 
over the type space; in this case, P(pll pmn) defines the restricted domain of the function. 

SVerdi procedure declarations have the format 

typed function PR (xvar pll,pl2 pli  :  tl, 
xvar p21,p22,...,p2j   :  t2, 
■ ■ ■, 

xvar pml,pm2,...,pmn : tm) = 
initial I(pll,...,pmn) 
pre PI(pll,...,pmn) 
post P2(pll,...,pmn) 
measure M(pll,...,pmn) 
begin 

PRDef(pll,...,pmn) 
end PR; 

where t, tl, t2 tm are pre-declared types and pll pmn are parameters of the asso- 
ciated types, xvar is one of lvar, pvar, or mvar. Logical variable, or lvar, parameters are value 
parameters. Program variable, or pvar, parameters are variable parameters. Machine variable, or 
mvar, parameters provide restricted access to variables of the base machine, e.g., physical ports. 
Their exact value depends, ultimately, on linking the program to the specific observables. 

The initial expression in procedure declarations gives names to the initial values of the variables 
for reference in later annotations. The pre expression describes the condition that is assumed to hold 
on entry to the procedure. The post expression describes the condition that is guaranteed to hold 
on exit of the procedure, if it can be shown that execution of statements PRDef (pll,... ,pmn) of the 
procedure implies that the condition holds. The measure expression is required only for recursively 
defined procedures; M must describe an expression associating natural numbers to recursive calls 
that is bounded below by zero and decreases each recurrence of the procedure. 

SVerdi statements include assignments, conditionals, procedure calls, loops and loop exits. Each 
loop must have the format 
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loop 
invariant Inv(pll,...,pmn) 
measure m(pll,...,pmn) 
LDeKpll,. . . ,pmn) 

end loop; 

where the invariant expression describes a condition that holds at that point every iteration; the 
measure expression describes an integer expression that is bounded below by zero and decreases 
each iteration of the loop; and LDef describes the statements executed each iteration. 

3.2.3    Conjectures 
SVerdi provides several complementary ways to formulate conjectures, i.e., logical predicates, about 
SVerdi definitions. The simplest form of conjecture is an axiom: 

axiom A (vl,v2,...,vn) = 
begin 

P(vl,v2,..,vn) 
end A; 

where P is a predicate stated in terms of the variables vl through vn. Although this type of conjecture 
is referred to as an axiom, EVES obligates the developer to prove the predicate submitted. The 
EVES prover, which is called NEVER, requires that the axiom definition be explicitly assumed (via 
a use command) in order for the predicate defined by the axiom to be used in subsequent proofs. 

Three other types of conjecture definitions - rules, grules, and frules - allow the developer to 
direct NEVER to use the predicates defined automatically when certain conditions are met. Rules 
are rewrite rules of the form 

rule R (vl,v2,...,vn) = 
begin 

C(vl,v2,..,vn) 
-> P(vl,v2,..,vn) = E(vl,v2,..,vn) 

end R; 

where C is a predicate condition, P is a pattern to be matched, and E is an expression to be 
substituted. If R is in the EVES database and NEVER encounters the pattern P in the proof of a 
formula, then, if condition C can be proven automatically, expression E is substituted for P in the 
formula. If C is tautologically true, the definition of a rule can be simplified as expected. 

A grule is used in the proof of a formula when a subexpression of the formula matches the trigger 
expression for the grule. Grules have the form 

grule G (vl,v2,...,vn) = 
begin 

C(vl,v2,..,vn) 
-> P(vl,v2,..,vn) 

end G; 

where C is a predicate condition, and P is a predicate containing the trigger expression. The trigger 
is the first full function applied to zero or more distinct free variables when P is scanned from left 
to right. If G is in the EVES database and NEVER encounters G's trigger in the proof of a formula 
then, if condition C can be proven, predicate P is assumed. If C is tautologically true, the definition 
of a grule can be simplified as expected. 

Finally, a frule is used in the proof of a formula when an instance of its condition becomes true. 

Frules have the form 

18 



frule F (vl,v2 vn) = 
begin 

C(vl,v2,..,vn) 
-> P(vl,v2,..,vn) 

end F; 

where C and P are predicates. If F is in the EVES database and NEVER detects that condition C 
is satisfied for some instantiation of vl through vn in the proof of a formula, then predicate P is 
assumed. 

3.2.4 Proof Commands 

SVerdi provides commands to interact with NEVER to prove the proof obligations generated while 
parsing definitions and conjectures into the EVES database. These commands can roughly be 
classified as to whether they provide coarse-grained control or fine-grained control over NEVER. 

Commands providing coarse-grained control include simplify, rewrite, and reduce. Simplifica- 
tion uses frules and grules to transform an expression to one that the system considers to be simpler. 
Rewriting performs simplification and applies any rewrite rules that match the subexpression being 
traversed. Finally, reducing expands function definitions in addition to simplifying and rewriting 
the current formula. These coarse-grained commands can use a conjecture or function definition 
only if it is enabled. By default conjectures and definitions are enabled; they may be disabled by 
adding the keyword disabled in front of the conjecture or function definition. The coarse-grained 
commands can be incrementally strengthened/weakened using the with enabled/with disabled 
modifiers, specifying the definitions and conjectures to be enabled/disabled during the course of the 
command execution. 

Commands that provide fine-grained control include commands that allow definitions and con- 
jectures to be used manually (e.g., use, invoke, and apply) and commands that perform 

• quantifier manipulation (e.g., instantiate and prenex), 

• equality reasoning (e.g., equality substitute), 

• formula rearranging (e.g., rearrange and split), and 

• case splitting (e.g., cases and next). 

SVerdi also provides an induction command, induct, which inducts on a recursive function specified 
by the user or chosen heuristically based on calls to recursive functions within the current formula. 

3.2.5 Library Mechanism 

SVerdi descriptions can be organized into library units for configuration and proof management. 
Library units are either spec (i.e., specification) units or model units. Each spec unit corresponds 
to a unique model unit; EVES requires the model unit to be a model (in the mathematical logic sense) 
of its corresponding spec unit. A library can be specified as default by calling the set library 
command with the path name of the directory in which the library resides. The current state of the 
EVES database can be saved as either a spec or model unit by calling the make command, model 
units may only be saved if all the proofs are complete and all the definitions are consistent with its 
corresponding spec unit. The definition of new units may be started by resetting the state of the 
EVES database using the reset command. 

One library unit may load a previously defined spec unit to access the definitions and conjectures 
ofthat unit, if no circularities are introduced as a result. The definitions and conjectures loaded are 
referenced by prefixing their names with the name of the unit followed by an exclamation mark. For 
example, a definition def from the library unit lib is referred to as libldef. The only exception 
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to this naming convention is when the user defines specialized syntax for particular applications, 
in which case the user definition overrides the naming convention (see [16] for details on how this 
is accomplished). The special syntax used in the repeater refinement is described in Appendix A. 
The library distributed with EVES is described in [27]; a brief summary of the portion of the EVES 
Library that we use, including the names of the units defined, is presented in Section 1 of Chapter 13. 

The SVerdi library mechanism supports abstraction, information hiding, modularization and 
reuse in the form of Ada-like package specifications or axiomatic descriptions of mathematical theo- 
ries. The spec unit can be used to document the specification portion of a package as a CSP process 
stub and the critical requirements of that process. The model unit documents the body portion of 
the package as an detailed design of the CSP process and the verification that it satisfies the critical 
requirements defined. More important for the CSP theory development is the use of the library 
mechanism to formulate axiomatic descriptions of mathematical theories given in the spec unit and 
model theoretic proofs of their consistency given in the model unit. The CSP library developed for 
EVES and documented in [19] uses this approach to set up the background theory to specify and 
verify the repeater. A brief summary of its contents, including the names of the units defined, is 

presented in Section 2 of Chapter 13. 

3.3    FDR Notation 
CSP descriptions in FDR consist of three elements: a low-level process description language, a set 
of high-level process combination operators, and a supporting mathematical language. FDR's low- 
level process language allows the definition of relatively small finite state sequential components in 
terms of relatively complex mathematical objects. FDR's high-level process composition operators 
allow low-level process components to be combined into complex system models. FDR enforces two 
restrictions on the combination of these elements: 

• no high-level operators may be nested inside low level processes, and 

• process descriptions that involve high-level operators may not be parameterized. 

These restrictions are made to ease the FDR verification process. Since our approach is to translate 
a logical CSP design into FDR syntax, we will have to ensure these restrictions are met throughout 
the design of the repeater. The FDR parser will reject any specification that does not meet these 

criteria. . 
Unlike EVES, FDR is tailored specifically to process CSP descriptions. CSP in FDR is strongly 

typed and has its own built-in language for defining channels, alphabets and processes. Channels 
and the values that may be communicated are declared as 

pragma channel cl,c2 en :  v 

where ci is the name of a distinct channel that may communicate the values in the set v. v may be 
either the name of a previously defined set or the set itself. Sets are user-defined finite enumerations 
that may include integers or truth values; conventional set notation is used, e.g., MySet = {0,1,2>. 

Although the values transmitted over channels are limited to simple atomic values, process 
definitions may be parameterized with more complex structures such as sets and sequences. In 
particular, the repeater descriptions depend on sequences of bits to represent characters and buffer 
contents. These sequences are parameters to recursive processes that represent the current state of 

the repeater. . 
FDR supports the definition of functions on the CSP complex structures in the Standard ML 

(Meta-Language) programming language [18]. To use ML functions in a CSP process description, 
the developer must define the ML function, load the function into FDR, declare the name of the 
function to be used in the CSP description, and link the function definition with the appropriate 

name. 
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3.3.1 Defining and Loading ML Functions 

ML functions are denned in a separate file and then loaded into FDR using the ML use command, 
e.g., use "filename". The syntax for the subset of ML that we use is similar to that for EVES' 
CSP function definitions with extensions to support integration with FDR. ML function definitions 
have the form 

fun F (vl,v2,...,vn) = 
Del(vl,v2,...,vn);; 

where Def is an ML expression in terms of F's parameters. 
ML functions that pass values to FDR are required to have a rather awkward and unintuitive 

structure. Such functions must have type expression list >-» expression or, if it is to be used 
as a predicate, expression list >-> bool. To cast ML/FDR interface functions in this form, FDR 
provides a set of built-in functions to coerce values to type expression and to interrogate values 
contained in a variable of type expression. A sequence of values can be coerced to type expression 
by passing the sequence as the first parameter to the EXPseqcomp function: 

EXPseqcomp:  expression list x expression list H-> expression 

Since a parameter list can be viewed as an expression list, ML functions used to directly interface 
to FDR have the form 

fun f  [EXPseqcomp (list,   [])] 
Def  (list);; 

ML functions called by Def use the more general syntax for ML function definitions described above. 
The first argument of EXPseqcomp is the list of parameters being passed; the second argument is 
always empty. The elaboration of Def requires the use of other coercion and interrogation functions, 
the signatures of which follow: 

CheckAtom :  expression •-► atomvalue 

Atom :  atomvalue ►-► expression 

InjectNum :  int >-> atomvalue 

NumberOf  :  atomvalue ►-► int 

3.3.2 Declaring and Linking ML Functions 

FDR is instructed that a function call in a CSP description is supplied by an ML function definition 
using the command 

pragma opaque "ML" fdr-name 

where fdr-name is the name of the function in the CSP description. The function call is linked to 
the ML definition by the command 

DefineMLFunction "fdr-name" ml-name 

or, if the function is a predicate, by the command 

DefineMLPredicate "fdr-name" ml-name. 
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3.4    FunnelWeb Notation 
As we mentioned earlier, a literate programming (LP) tool allows the user to interleave documen- 
tation and code in whatever order is most appropriate for presentation. However, the tool must 
be able to extract and reorder the code "chunks" properly for the compiler. Like other LP tools, 
FunnelWeb accomplishes this feat with macros and automatic cross-referencing. 

Each macro may contain some code as well as references to other macros. During the code 
extraction phase, FunnelWeb, starting at the "root" macro2, extracts any code from the macro and 
expands all references to other macros. The process continues until there are no more references to 
expand and all of the code is extracted. The macros and their cross-references also appear in the 
typeset documentation so the reader can see how the code chunks fit together. 

We use two types of FunnelWeb macros: 

Simple Macro: The simple macro, by far the most common, has the following format. (The 
typographical conventions are consistent with FunnelWeb's output.) 

{macro name)[definition number]= 
The code to be processed appears here 
(caii to another macro} [called macro's definition number] 

This macro is invoked in definition n. 

The letters M and Z may follow the definition number, indicating that the macro may be 
called many times or zero times, respectively. The numbers of the definitions that use a macro 
are listed in the last line. Macros that are invoked in a macro that is not defined in this 
document are invoked in external files as described by Section 3 of Chapter 13. 

Here is an example of a simple macro. 

(procedure exampie)[5]= 
procedure example is 

(Constants) [4] 
begin 

lor i in 1..n loop 
(Write out first p powers of i)[8] 

end loop; 
end example; 

This macro is invoked in definition 7. 

Additive Macro: This macro is like the simple macro except that its definition may be distributed 
throughout the document. Each extension of an additive macro has the same name. The only 
syntactic difference between an additive macro and a simple macro is that = is replaced with 

+ =. 
Parameterized Macro:   As its name implies, the parameterized macro accepts one or more 

parameters for its definition.  While not widely used in this report, this facility is useful in 
certain cases. Here is a simple example. 

(add) [6] (o2)M= 
ol +o2 

This macro is invoked in definitions 3, 4 and 9. 

2 There may be more than one root macro as each root macro names an output file. 
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This macro takes two parameters and the second is added to the first. The small diamonds 
(o) distinguish the quantity of parameters and the parameter numbers from the definition 
numbers and ordinary code. Since it makes little sense to define a parameterized macro to 
be invoked only once, the M will usually appear after the definition number. An invocation 
of add is illustrated below in the definition of another parameterized macro! The parameter 
list is enclosed in parentheses and the individual parameters are enclosed in single quotes and 
delimited by commas. 

(double) [3](ol)M= 
(add)[6]('ol7ol') 

This macro is invoked in definitions 10 and 11. 
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Chapter 4 

Critical Requirements Specification 

This chapter specifies the critical requirements for a CSP process called Rptr that represents the 
repeater. Rptr's critical requirements derive from both the requirements introduced in Section 2.1 
and the assumptions of the CSP Traces Refinement model introduced in Section 3.1. We start with 
the model assumptions since, in some sense, they lay the foundation for the specification of the other 
critical requirements. Section 4.1 discusses and motivates the definition of critical requirements that 
derive from the model assumptions. Section 4.2 presents the Rptr formal assertions in the literate 
style. Although the requirements derived from the model assumptions are critical they cannot be 
expressed in the CSP Traces Refinement model and, thus, are not formalized. Section 8.3 lists the 
collection of informal and formal Rptr critical requirements as a basis for future refinement. 

4.1    Critical Requirements that Derive from Model Assump- 
tions 

As depicted in Figure 4.1, the channel inbit represents Rptr's input port and the channel 
outbit represents Rptr's output port. The inbit and outbit channels are limited to single-bit 
transmissions per communication event. In this chapter, we model only that portion of the repeater 
function necessary to describe its critical requirements. The omitted function, e.g., error processing 
and signaling over the error port, will be introduced during later refinement. 

We derive critical requirements for Rptr by interpreting each Traces Refinement model assump- 
tion of Section 3.1 in terms of the primitives of the Rptr. 

inbit outbit 

Figure 4.1: The Repeater: CSP External View 
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4.1.1 Shared Channel Communication 

This assumption imposes a restriction on the way a CSP process description may be implemented 
in software or hardware. The Traces Refinement model assumes that the only way a process can 
communicate is through channels defined in it's alphabet. The proof theory associated with the 
model enforces this constraint on the CSP process description, but any refinement of the description 
to software or hardware is outside scope of the CSP theory and must be shown to satisfy the intent 
of the constraint independently. 

Although this model assumption primarily imposes a requirement on the mapping of a CSP 
process description to an implementation, it is also helpful to identify assumptions of the environment 
during the CSP refinement process. The only assumption at this level is that power is continuously 
supplied to Rptr. This simplification is made so that it is not necessary to model a power channel 
explicitly. Although from a formal perspective the arguments made about Rptr are invalidated by 
a loss of power, practically speaking power loss only violates the guaranteed delivery aspect of the 
Relay Characters Until Overflow requirement. 

Assump 1 Power is continuously supplied to Rptr. 

Assert 1 If Rptr is continuously powered, Rptr and its environment can communicate only via ex- 
ternal channels; communication between Rptr sub-processes can take place only over channels 
shared by the alphabets of the sub-processes. 

4.1.2 Two-Process Communication 

This assumption requires that the environment does not send data over outbit and that Rptr does 
not send data over inbit. Decomposing Rptr into sub-processes must ensure that communications 
are uni-directional involving exactly two processes. 

Assump 2 The environment does not send data over outbit. 

Assert 2 Rptr does not send data over inbit. 

Assert 3 Communication between Rptr sub-processes must be uni-directional and involve exactly 
two sub-processes. 

4.1.3 Atomic Communication 

The assumption that communication events are atomic makes reasoning about the behavior of CSP 
processes simpler. This assumption appears to be inconsistent with the fact that transmission of 
data over a physical channel requires some finite, non-zero amount of time to complete. The intent 
of the assumption, however, is not to force instantaneous communication, but rather to ensure 
that the existence of arbitrary transmission delay does not affect the truth or falsity of the critical 
requirements of interest. Since the Traces Refinement model of CSP is limited to specifying and 
proving safety properties of CSP processes, the time it takes for communications to occur has no 
impact on the truth of a property specified in the Traces Refinement model. This assumption, 
therefore, implies no additional requirement for Rptr. 

4.1.4 Synchronous Communication 

This assumption imposes a restriction on the way a CSP process description may be implemented 
in software or hardware. The Traces Refinement model assumes synchronous communication in its 
theory for reasoning about CSP processes; any implementation of a CSP process description must 
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ensure the synchrony of processes communicating via the CSP input and output operators. : Values 
sent over channels may not be lost due to mis-timed transmissions. 

Assert 4 The implementation of communications over a channel in the Rptr process description 
must synchronize sender and receiver. 

4.1.5    Non-Divergent Processes 

This assumption imposes a restriction on the form of CSP process descriptions. The restriction 
ensures that CSP recursive process descriptions have a single solution, i.e., a unique meaning. In 
general, process descriptions must be fully refined to ensure non-divergence. Nevertheless, the 
assumption provides important guidance for the refinement process to ensure non-divergence can be 
proven of the final implementation. 

Assert 5 Rptr must not engage in unguarded recursion nor engage in an infinite sequence of hidden 

events. 

4.2    Specification of the Formal Assertions 

The process representing Rptr has three parameters: 

• chsz represents the length in bits of a character processed. All characters processed by Rptr 
are delimited by a startbit/stopbit combination. In terms of the variable K introduced in 
Chapter 2, chsz is just K reduced by two bits, one bit for each delimiter (i.e., chsz equals K-2). 

• buff sz represents the capacity in characters of the internal buffer. From an external viewpoint, 
we have to interpret the size of the internal buffer referred to in Chapter 2 as the difference 
between the number of even parity characters received over inbit and the number of characters 
transmitted over outbit. Rptr may be processing a character in addition to those stored in 
the internal buffer; buf f sz represents the actual maximum number of characters that can be 
stored by Rptr in addition to the one being processed, i.e., the value N-l. The maximum size 
of the internal buffer, N, referred to in Chapter 2 is therefore mapped to the maximum capacity 
of Rptr. This somewhat awkward interpretation is necessitated by the desire to start from an 
external specification of the critical requirements. 

• tick represents the event representing successful termination. We use the variable tick, by 
convention, to represent a special event that occurs automatically when (and only when) a 
process terminates successfully. Rptr terminates successfully after it halts due to receiving 
a character that causes an overflow; otherwise, Rptr continues to process characters that it 

receives. 

(Definition Stub ofRptr)[l] = 
function Rptr(chsz, buffsz, tick); 

This macro is invoked in definition 219. 

Rptr is a CSP process if it is constructed from legal CSP process operators. The fact that Rptr 
is actually a process is specified as an axiom at this level of specification since Rptr has yet to be 

defined. 

(Rptr is a CSP process)[2]M = 

'Note, however, that asynchronous communication can be modeled in CSP, for example, by inserting a buffer 
process or implementing a handshaking protocol between communicating processes. 
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grule is_process_rep (chsz, buffsz, tick) = 

begin 
chsz >= 0 

and buffsz >= 0 
and not iscomm tick 

-> isprocess Rptr(chsz, buffsz, tick) 
end is_process_rep; 

This macro is invoked in definitions 219 and 221. 

Assert 6 Rptr is a CSP process. 

The alphabet of the repeater consists of communication of bits over the external channels inbit 
and outbit. A CSP channel is represented in EVES simply as a function with no parameters, i.e., 
a constant. Since these values are really constants we define nilf ix aliases for each to make them 
easier to use, e.g., inbit for inbit (). 

(Channels)[3]M = 
typed function in_bit 0 returns int; 
nilfix inbit in_bit; 

typed function out.bit () returns int; 
nilfix outbit out_bit; 

This macro is invoked in definition 203. 

These are actually just names of channels representing the medium for transmission that will 
be implemented at some lower level. The values of these constants are irrelevant as long as they are 
distinct. We make this assumption explicit in the EVES specification by adding an axiom stating 
that the values returned by these functions are different. This axiom is trivially satisfied by any 
unique scheme for assigning values to the channels. 

(Unique channels)[4]M = 
grule in_not_eq_out () = 
begin 

not inbit = outbit 
end in_not_eq_out; 

This macro is invoked in definitions 203 and 205. 

The alphabet of Rptr can now be defined as tick and the set of all communications of bits over 
the external channels. We use abstract bit values of 0 and i to represent the voltages over lines. 

(Alphabet)[b]M = 
function Rep_alpha_ext(tick) = 
begin 

reqs!seq_buff_alpha(-{inbit, outbit}-, -{0,  1}-, tick) 
end Rep_alpha_ext; 

This macro is invoked in definitions 203 and 205. 

That this is the alphabet for Rptr is specified as an axiom at this level of specification since 
the details of Rptr's design have yet to be defined. We assume that chsz is a natural number and 
tick is not a communication event. The latter assumption is made so that we do not need to worry 
about tick being indistinguishable from a communication event relevant to Rptr's description. 

(Rptr's alphabet is defined by Rep_aipha_ext)[6]M = 
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rule Rep_alphabet(chsz, buffsz, tick) = 

begin 
chsz >= 0 

and buffsz >= 0 

and not iscomm tick 

-> alpha Rptr(chsz, buffsz, tick) 
= defs!Rep_alpha_ext(tick) 

end Rep_alphabet; 
This macro is invoked in definitions 219 and 221. 

Assert 7 Rptr's alphabet is defined by Rep-alpha_ext 

4.2.1    Top-Level Requirements Structure 

Our goal is to specify formally as trace specifications the critical requirements for Rptr. Assuming 
valid-relay is the name for these requirements, our specification is 

(Rptr satisfies vaiid_reJay)[7]M = 
axiom Rep_sat_spec(chsz, buffsz, tick) = 

begin 
chsz >= 0 

and buffsz >= 0 

and not iscomm tick 

-> Rptr(chsz, buffsz, tick) 
sat valid_relay( (Rptr universe of events) [27],  chsz, buffsz, tick) 

end Rep_sat_spec; 
This macro is invoked in definitions 219 and 221. 

Assert 8 Rptr satisfies valid-relay. 

A trace specification like validjrelay is simply a set of traces. Elements of the set are chosen 
from the universe of possible traces of events and must conform to valid_relay_spec: 

(vaiicLreJay)[8]M = 
zf function valid_relay(a, chsz, buffsz, tick) = 

begin 
{ trl in a"* I valid_relay_spec(trl, chsz, buffsz, tick) } 

end valid_relay; 
This macro is invoked in definitions 219 and 221. 

We split validjrelay-spec into two pieces: one when Rptr has successfully terminated (i.e., 
tick is the last event of Rptr's trace) and one when it has not. Traces of Rptr that end with 
tick must satisfy Rptr's post condition; traces of Rptr that do not end with tick must satisfy 
Rptr's invariant. This forms a natural partition of validjrelay since we can say more about the 
requirements of Rptr when it has terminated. At termination we can say that all even parity 
characters received by Rptr before the buffer overflows have been successfully transmitted. Before 
termination, all we can say is that some subsequence of those characters have been transmitted. 
Henceforth, the phrase valid characters refers only to those characters of even parity received before 

an overflow. 

(Constraints on Rptr's trace)[9]M = 
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function valid_relay_spec(trl,  chsz, buffsz,  tick) = 
begin 

if  (Rptr terminates)[10] 
then (All valid characters were transmitted over outbit)[ll] 
else (A subsequence of valid characters were transmitted over outbit)[22] 
end if 

end valid_relay_spec; 

This macro is invoked in definitions 219 and 221. 

(Rptr terminates) [10] = 
not null trl 

and last(trl) = tick 
This macro is invoked in definition 9. 

4.2.2    Repeater Post Condition 

Under the assumption that Rptr has terminated, the three logical requirements taken together 
require that up to the point at which an overflow occurs, the output stream of characters must be 
identical to the input stream of characters with characters of odd parity removed. Also, nothing 
other than identifiable and complete characters may be transmitted over outbit. 

(All valid characters were transmitted over outbit)[11] = 
(Character sequence transmitted over outbit)[12] 

= (Valid character sequence received over inbit)[13] 
and (Only whole characters were transmitted over outbit)[21] 

This macro is invoked in definition 9. 

Character sequence transmitted over outbit 

The sequence of bits traversing outbit, i.e., trl I = outbit, is a flat representation of the characters 
processed by Rptr. The following formats this bit sequence into the character sequence it represents: 

(Character sequence transmitted over outbit) [12]M 
(Bits to cnars)[122]('tri  1= outbit') 

This macro is invoked in definitions 11 and 22 

Valid character sequence received over inbit 

valid_input_chars returns the sequence of even parity characters received over inbit in trace trl 
before an overflow occurs. This sequence is calculated by restricting the bits received before an 
overflow occurs to those characters of even parity. 

(Valid character sequence received over inbit)[13]M = 
valid.input_chars(trl, chsz, buffsz, tick) 

This macro is invoked in definitions 11 and 22. 

(DeRnition of vaJidJnput.ciiars)[14]M = 
function valid_input_chars(trl, chsz, buffsz,  tick) = 
begin 
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(Characters received over inbit before overflow)[15] 
I "  (Set of even parity characters) [133] 
end valid_input_chars; 

This macro is invoked in definitions 219 and 221. 

The sequence of characters received over inbit before an overflow are derived by transforming 
to characters the sequence of bits received over inbit before an overflow. 

{Characters received over inbit before overflow)[15] = 
(Bits to chars)[122]('(Trace before overflow)[16]   1= inbit') 

This macro is invoked in definition 14. 

The trace before an overflow occurs is derived by choosing the longest prefix of trl for which the 
predicate no .error .condition holds. This operation is performed by the function filter of the tr 
library unit. Intuitively, no .error .condition describes the condition under which no overflow of 

the internal buffer has occurred. 

(Trace before overflow)[16] = 
tr!filter(trl, 

def s!Rep_alpha(chsz,t ick), 
no_error_condit ion (.{Rptr universe of events) [27], 

chsz, buffsz)) 
This macro is invoked in definition 15. 

Functions to be passed as parameters in SVerdi are represented as a set of ordered pairs where 
the first elements of the pairs form the domain and the second elements form the range. Since 
no.error_condition is a boolean function, we define it as a set of ordered pairs with domain equal 
to the set of traces of the alphabet passed in and the range equal to the set of Boolean values. Each 
trace is mapped to the value returned when passed to the predicate no-over .flow. 

(Definition of nojerror.condition) [17]M = 
zf function no_error_condition(a, chsz, buffsz) = 
begin 

{ -<trl, no_over_flow(trl, chsz, buffsz)>-  I  trl in a"* } 
end no_error_condition; 

This macro is invoked in definitions 219 and 221. 

An overflow occurs when the difference between the number of even parity characters received 
over inbit and the number of characters transmitted over outbit exceeds buffsz + 1, at any point 
during execution, buffsz is incremented by 1 since Rptr may be processing a character in addition 
to the buffsz characters possibly held by the internal buffer. 

(Definition of no.overJlow)[18]M = 
function no_over_flow(trl, chsz, buffsz) = 

begin 
all tr2: 

tr2  .<=.  trl 
->        (len (Sequence of even parity inbit chars over tr2) [19]) 

-  (len (Sequence of outbit chars over tr2)[20]) 
<= buffsz + 1 

end no_over_flow; 
This macro is invoked in definitions 219 and 221. 

(Sequence of even parity inbit chars over tr2)[19]M = 
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(Bits to chars)[122]('tr2  1= inbit') 
I" (Set of even parity characters) [133] 

This macro is invoked in definitions 18 and 33. 

(Sequence of outbit chars over tr2)[20]M = 
(Bits to chars)[122]('tr2  1= outbit') 

This macro is invoked in definition 18. 

Only whole characters were transmitted over outbit 

Specifying that no spurious bits were transmitted is a simple matter of stating that the sequence of 
bits that traversed outbit is a multiple of the character size, chsz, plus 2 for the start and stop bits 
delimiting each character transmitted. 

(Only whole characters were transmitted over outbit)[21] = 
(len trl   1= outbit) mod (chsz + 2)  = 0 

This macro is invoked in definition 11. 

4.2.3    Repeater Invariant 

Before Rptr terminates, we cannot guarantee that every even parity character received has been 
transmitted. We can guarantee, however, that the sequence of characters transmitted over outbit 
must be a prefix of the sequence of even parity characters received over inbit before the overflow 
occurred. This is easily specified in terms of the primitives already defined. 

(A subsequence of valid characters were transmitted over outbit) [22] = 
(Character sequence transmitted over outbit)[12] 

. <=.   {Valid character sequence received over inbit) [13] 
This macro is invoked in definition 9. 

4.3    Summary of the Critical Requirements 

The assumptions and assertions of Rptr given the use of the CSP Traces Refinement model and the 
above trace specification are summarized below. 

4.3.1 Assumptions 

1 Power is continuously supplied to Rptr. 

2 The environment does not send data over outbit. 

4.3.2 Assertions 

Informal Assertions 

1 If Rptr is continuously powered, Rptr and its environment can communicate only via external 
channels; communication between Rptr sub-processes can take place only over channels shared 
by the alphabets of the sub-processes. 
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2 Rptr does not send data over inbit. 

3 Communication between Rptr sub-processes must be uni-directional and involve exactly two 

sub-processes. 

4 The implementation of communications over a channel in the Rptr process description must 

synchronize sender and receiver. 

5 Rptr must not engage in unguarded recursion nor engage in an infinite sequence of hidden 

events. 

Formal Assertions 

6 Rptr is a CSP process. 

7 Rptr's alphabet is defined by Rep^alpha.ext. 

8 Rptr satisfies valid-relay. 
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Part II 

The Repeater Logical Design 
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Chapter 5 

Repeater Logical Architecture 

This chapter presents the logical CSP architecture for Rptr including the decomposition of Rptr crit- 
ical requirements onto the components of this architecture. The goal of the logical architecture (and 
subsequent logical component refinement) is to describe the most abstract CSP process description 
that embodies the critical requirements of Rptr elaborated in the previous chapter. This process 
description will be used as the basis for the FDR refinement and verification described in Part III. 
By making the semantic gap between the Rptr critical requirements and its logical architecture as 
small as possible, we can minimize the extent to which the Rptr verification depends on interactive 
proof and maximize the extent to which it depends on automatic model checking. As mentioned 
previously, this approach minimizes the human resources needed to carry out a rigorous verification 
of intuitively appealing properties of Rptr. 

Decomposition of the Rptr formal assertions onto the components of the logical architecture was 
carried out using the method described in [21]. We present only the final results of the application 
of this method; the process by which we reached these results are not particularly important for 
understanding the refinement and verification of Rptr. Section 5.1 presents an informal overview of 
the Rptr logical architecture and the primary responsibilities of its components. Sections 5.2 and 5.3 
describe the alphabet and the critical formal assertions of each component. Section 5.4 summarizes 
the critical requirements of the logical architecture. Finally, Section 5.5 outlines the proof that the 
combination of the component formal assertions imply the Rptr formal assertions. 

5.1    Overview of the Logical Architecture 

Figure 5.1: Repeater Logical Architecture 

As depicted in Figure 5.1, Rptr is specified as the composition of two processes: Get, which receives 
and checks the parity of incoming characters, and Put, which maintains the internal buffer and 
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transmits those characters that passed the parity check. The internal channel mid is used to pass 
valid characters for output. 

Assump 3L The environment does not send or receive data over mid. 

Assert 2.1L Get does not send data over inbit. 

Assert 3.2L Put does not send data over mid. 

Intuitively, Rptr operates as follows. The bit stream received over inbit and transmitted 
over outbit can be partitioned according to the delimited character sequence that the bit stream 
represents. Each segment of the bit stream representing a delimited character contains the startbit 
at the beginning of the segment and the stopbit at the end of the segment. For each such segment 
received over inbit, Get determines the parity of the character that the segment represents. If 
the character is of odd parity it is thrown out and the reception of a new character is initiated. 
Otherwise, the startbit and stopbit are stripped off and the character is sent in parallel form 
over mid to Put. Put serializes the data, adds the startbit and stopbit delimiters and stores the 
data until ready for transmission over outbit. Rptr's components are tightly synchronized; Get can 
be processing a character and the internal buffer can store a maximum of buff size characters. Get 
delays the reception of a new character until the transmission of the previous character to Put. At 
this level of specification, we have not indicated how or when errors are to be signaled over err. 

Assert 3.1L Communication between Get sub-processes must be unidirectional and involve exactly 
two processes. 

Assert 3.3L Communication between Put sub-processes must be unidirectional and involve exactly 
two processes. 

A few characteristics of this partitioning of the problem are worth emphasizing. The black box 
view of the problem, described in Chapter 2, defines an overflow to occur when the number of bits 
received over inbit exceeds the number of bits transmitted over outbit by more than K*N (i.e., 
(chsz + 2) * (buffsz + 1) in terms of the formal Rptr specification). While errors can occur in 
this refinement due to the reception of characters of odd parity, the tight synchronization of Rptr's 
components prohibits the occurrence of an overflow. Rptr can hold a maximum of N delimited 
characters, one from Get and N-l (i.e., buffsz) from Put. Once this maximum is reached, no more 
characters can be received until a character is transmitted. 

5.2    Get Formal Assertions 

This section presents the critical formal assertions for Get. The alphabet of Get consists of commu- 
nication of bits over the previously defined channel inbit and the new channel mid. The fact that 
Get is actually a sequential process is specified as an axiom at this level of specification since Get has 
yet to be defined. We assume that chsz is a natural number and tick is not a communication event. 
The latter assumption is made so that we do not need to worry about tick being indistinguishable 
from a communication event relevant to Get's description. 

(Definition Stub of Get) [23] = 
function Get(chsz tick); 
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This macro is invoked in definition 207. 

(Get is a sequential CSP process)[24]M = 
grule Get_is_seqpr (chsz,  tick)  = 
begin 

not iscomm tick 
and chsz >= 0 

-> pr!is_seqpr  (Get  (chsz,  tick),  tick) 
end Get_is_seqpr; 

This macro is invoked in definition 207. 

Assert 6.1L Get is a sequential CSP process. 

As before, a CSP channel is represented as a function with no parameters, i.e., a constant, so 
we define a nilfix alias for mid to make it easier to use, e.g., mid for mid (). mid is actually just 
a name of a channel representing the medium for transmission that will be implemented at some 
lower level. Its value is irrelevant as long as it is different than previously defined channels. We 
make this assumption explicit in the EVES specification by adding a series of axioms stating that 
the value returned by mid is different than that returned by any other channel. These axioms are 
trivially satisfied by any unique scheme for assigning values to the channels. 

(mid channei)[25]M = 
typed function mid () returns int; 
nilfix mid mid; 

This macro is invoked in definition 203. 

(Unique mid cnannei)[26]M = 
grule in_not_eq_mid () = 
begin 

not inbit = mid 

end in_not_eq_mid; 

grule mid_not_eq_out () = 

begin 
not mid = outbit 

end mid_not_eq_out; 

This macro is invoked in definitions 203 and 205. 

The universe of all events relevant to Rptr can now be defined as the externally visible events 
and the set of all communications of chsz-length characters over the mid. 

(Rptr universe of events) [27]M = 
defs!Rep_alpha(chsz,tick) 

This macro is invoked in definitions 7 and 16. 

(Definition of Rptr universe of events) [28]M = 
function Rep_alpha (chsz,tick) = 

begin 
Rep_alpha_ext (tick) 
++ reqs!seq_buff_alpha ({mid}, cseq!char_set(chsz), tick) 

end Rep_alpha; 
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This macro is invoked in definitions 203 and 205. 

The alphabet of Get can be defined as tick, the set of all communications of bits over inbit, 
and the set of all communications of characters over outbit. 

(Get alphabet)[29]M = 
function Get_alpha (chsz.tick) = 
begin 
reqs!seq_buff_alpha ({inbit}, -{0, 1}-, tick) 
++ reqs!seq_buff_alpha ({mid}, cseq!char_set(chsz), tick) 

end Get_alpha; 
This macro is invoked in definition 207. 

That this is the alphabet for Get is specified as an axiom at this level of specification since the 
details of Get's design have yet to be defined. 

(Get's alphabet is defined by Get_aJpJia)[30]M = 
rule Get_alphabet(chsz, tick)  = 
begin 

chsz >=    0 
and not iscomm tick 

-> alpha Get(chsz, tick) 
= Get_alpha(chsz,tick) 

end Get_alphabet; 
This macro is invoked in definition 207. 

Assert 7.1L Get's alphabet is defined by Get_alpha. 

5.2.1    Top-Level Requirements Structure 

Our goal is to specify formally as trace specifications the critical requirements for Get. Assuming 
valid_Get is the name for these requirements, our specification is 

(Get satisfies valid-Get)[31]M = 
grule Get_sat_spec (chsz, tick) = 
begin 

chsz >= 0 
and not iscomm tick 

-> Get (chsz, tick) 
sat valid_Get (defs!Rep_alpha (chsz.tick), chsz, tick) 

end Get_sat_spec; 
This macro is invoked in definition 207. 

Assert 8.1L Get satisfies valid_Get. 

valid-Get is simply a set of traces, the elements of which are chosen from the universe of possible 
traces of events from Get.alpha (chsz.tick) and must conform to Get-not_over.capacity and 
valid.char_Get: 

(vaiid.Get) [32] M = 
zf function valid.Get (a, chsz, tick) = 

37 



begin 
{ trl in a ** 

I    Get_not_over_capacity (trl, chsz, tick) 
and valid.char_Get (trl, chsz, tick) } 

end valid_Get; 
This macro is invoked in definition 207. 

We must know the capacity of every component of Rptr to determine whether an overflow 
occurs. Get is constrained to process one character at a time. Therefore, at any point in Get's 
execution, the number of even parity characters received over inbit can be at most one more than 
the number of characters transmitted over mid. 

(Definition of Get_jjot_over_capacity)[33]M = 
function Get_not_over_capacity(trl, chsz, tick) = 

begin 
all tr2: 

tr2  .<=.  trl 
and tr2 "*? defs!Rep_alpha(chsz,tick) 

-> (len (Sequence of even parity inbit chars over tr2)[19]) 
- (len tr2  1= mid) 

<= 1 
end Get_not_over_capacity; 

This macro is invoked in definitions 207 and 209. 

valid_char_Get can be specified much like the Rptr-level critical requirements, except that we 
need not worry about overflow. We split the specification of valid_char_Get into two pieces: one 
when Get has successfully terminated (i.e., tick is the last event of Get's trace) and one when it has 
not. Traces of Get that end with tick must satisfy Get's post condition; traces of Get that do not 
end with tick must satisfy Get's invariant. This forms a natural partition of valid.Get since we can 
say much more about the requirements of Get when it has terminated. At termination we can say 
that all even parity characters received by Get have been successfully transmitted over mid. Before 
termination, all we can say is that some subsequence of those characters have been transmitted. 

(Definition of valid.char.Get)[M]M = 
function valid_char_Get (trl,  chsz, tick) = 

begin 
if (Get terminates)[35] 
then (AH even parity characters were transmitted over mid) [36] 
else (A subsequence of even parity characters were transmitted over mid) [38] 

end if 
end valid_char_Get; 

This macro is invoked in definitions 207 and 209. 

(Get terminates)[35] = 
not null trl 

and last(trl) = tick 
This macro is invoked in definition 34. 

5.2.2    Get Post Condition 

Under the assumption that Get has terminated, the critical requirements for Rptr taken together 
require that the output stream of characters must be identical to the input stream of characters 
with characters of odd parity removed. 
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(AU even parity characters were transmitted over mid)[36] = 
trl   1= mid 

= (Character sequence received over inbit)[37] 
I*  {Set of even parity characters) [133] 

This macro is invoked in definition 34. 

The sequence of characters received over inbit before an overflow are derived by transforming 
to characters the sequence of bits received over inbit before an overflow. 

(Character sequence received over inbit)[37]M = 
{Bits to chars)[122]('trl  1= inbit') 

This macro is invoked in definitions 36 and 38. 

5.2.3    Get Invariant 

Before Get terminates, we cannot guarantee that every even parity character received has been 
transmitted. We can guarantee, however, that the sequence of characters transmitted over outbit 
must be a prefix of the sequence of even parity characters received over inbit. This is easily specified 
in terms of the primitives already defined. 

(A subsequence of even parity characters were transmitted over mid) [38] = 
trl   1= mid 

. <=.   ((Character sequence received over inbit) [37] 
I*  {Set of even parity characters) [133]) 

This macro is invoked in definition 34. 

5.3    Put Formal Assertions 

This section presents the critical formal assertions for Put in much the same manner as those specified 
for Get. The alphabet of Put consists of communication of bits over the previously defined channels 
outbit and mid. The fact that Put is actually a sequential process is specified as an axiom at 
this level of specification since Put has yet to be defined. Again, we assume that chsz is a natural 
number and tick is not a communication event. We also assume that the buffer can hold at least 
one character. 

{Definition Stub of Put)[39] = 
function Put(chsz tick); 

This macro is invoked in definition 211. 

{Put is a sequential CSP process) [40]M = 
rule Put_is_seqpr (chsz, buffsz, tick) = 

begin 
chsz >= 0 

and buffsz >= 1 
and not iscomm tick 

-> pr!is_seqpr (Put  (chsz, buffsz, tick), tick) 
= true 

end Put_is_seqpr; 
This macro is invoked in definition 211. 
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Assert 6.2L Put is a sequential CSP process. 

The alphabet of Put can be defined as tick, the set of all communications of bits over inbit, 
and the set of all communications of chsz-length characters over outbit. 

(Put alphabet)[41]M = 
function Put_alpha (chsz.tick) = 

begin 
reqs!seq_buff.alpha ({outbit}, -{0, 1}-, tick) 
++ reqs!seq_buff.alpha ({mid}, cseq!char_set(chsz), tick) 

end Put_alpha; 

This macro is invoked in definition 211. 

Assert 7.2L Put's alphabet is defined by Put .alpha. 

(Put's alphabet is defined by Put.alpha)[A2]M = 
rule Put_alphabet(chsz, buffsz, tick) = 

begin 
chsz >= 0 

and buffsz >= 1 
and not iscomm tick 

-> alpha Put(chsz, buffsz, tick) 
= Put_alpha(chsz,tick) 

end Put_alphabet; 
This macro is invoked in definition 211. 

5.3.1    Top-Level Requirements Structure 

Our goal is to specify formally as trace specifications the critical requirements for Put. Assuming 
valid-Put is the name for these requirements, our specification is 

(Put satisfies validJPut)[43]M = 
grule Put.sat.spec (chsz, buffsz, tick) = 

begin 
chsz >= 0 

and buffsz >=  1 
and not iscomm tick 

-> Put  (chsz, buffsz, tick) 
sat valid.Put  (defs!Rep_alpha (chsz.tick),  chsz, buffsz,  tick) 

end Put_sat_spec; 
This macro is invoked in definition 211. 

Assert 8.2L Put satisfies valid-Put. 

valid-Put is simply a set of traces, the elements of which are chosen from the universe of possible 
traces of events from Put.alpha (chsz.tick) and must conform to Put-not-over.capacity and 

valid.char_Put: 

(vaii<LPut)[44]M = 
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zf function valid_Put (a, chsz, buffsz, tick) = 
begin 

{ trl in a "* 
I    Put_not_over_capacity (trl, chsz, buffsz) 
and valid_char_Put (trl, chsz, tick) } 

end valid_Put; 
This macro is invoked in definition 211. 

Put is responsible for maintaining the internal buffer which can hold a maximum of buffsz 
characters. Therefore, at any point in Put's execution, the number of characters received over mid 
can be at most buffsz more than the number of characters transmitted over outbit. 

(Definition of Put_noLover_capacitj)[45]M = 
function Put_not_over_capacity (trl,  chsz, buffsz,tick) = 

begin 
all tr2: 

tr2   .<=.  trl 
and tr2 **? defs!Rep_alpha(chsz,tick) 

->  (len tr2   1= mid)  -  (len cseq!char_seq (tr2   |= outbit,  chsz)) 
<= buffsz 

end Put_not_over_capacity; 
This macro is invoked in definitions 211 and 213. 

As we did for valid_char_Get, we split the specification of validjchar_Put into two pieces: 
one when Put has successfully terminated and one when it has not. Traces of Put that end with 
tick must satisfy Put's post condition; traces of Put that do not end with tick must satisfy Put's 
invariant. At termination we can say that all characters received by Put have been successfully 
transmitted over outbit. Before termination, all we can say is that some subsequence of those 
characters have been transmitted. 

(Definition of valid.char.Put)[46}M = 
function valid.char_Put (trl,  chsz, tick) = 
begin 

if (Put terminates)[47] 
then (All characters were transmitted over outbit)[A8] 
else (A subsequence of characters were transmitted over outbit)[49] 
end if 

end valid_char_Put; 
This macro is invoked in definitions 211 and 213. 

(Put terminates) [47] = 
not null trl 

and last(trl) = tick 
This macro is invoked in definition 46. 

5.3.2    Put Post Condition 

Under the assumption that Put has terminated, the critical requirements for Rptr require that the 
output stream of characters must be identical to the input stream of characters. To ensure that no 
extraneous bits were transmitted we also specify that the length of the sequence of bits transmitted 
over outbit be divisible by the length of a delimited character. 
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(AU characters were transmitted over outbit)[48] = 
trl   1= mid = (Bits to chars)[122]('trl  1= outbit') 

and (len trl   1= outbit) mod (chsz + 2) = 0 
This macro is invoked in definition 46. 

5.3.3    Put Invariant 

Before Put terminates, we cannot guarantee that every character received has been transmitted. We 
can guarantee, however, that the sequence of characters transmitted over outbit must be a prefix 
of the sequence of characters received over mid. 

(A subsequence of characters were transmitted over outbit) [49] = 
(Bits to chars)[122]('trl  1= outbit')  .<=.  trl   1= mid 

This macro is invoked in definition 46. 

5.4    Summary of the Logical Architecture Critical Require- 
ments 

5.4.1 Assumptions 

1 Power is continuously supplied to Rptr. 

2 The environment does not send data over outbit. 

3L The environment does not send or receive data over mid. 

5.4.2 Assertions 

Informal Assertions 

2.1L Get does not send data over inbit. 

3.1L Communication between Get sub-processes must be unidirectional and involve exactly two 
processes. 

3.2L Put does not send data over mid. 

3.3L Communication between Put sub-processes must be unidirectional and involve exactly two 
processes. 

Formal Assertions 

6.1L Get is a sequential CSP process. 

7.1L Get's alphabet is defined by Get Jilpha. 

8.1L Get satisfies valid.Get. 

6.2L Put is a sequential CSP process. 

7.2L Put's alphabet is defined by Put ..alpha. 

8.2L Put satisfies valid-Put. 
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5.5    Justification of the Decomposition 

This section presents an intuitive justification that the Rptr logical architecture and the critical 
requirements imposed on the components of that architecture are sufficient to imply the critical 
requirements of Rptr described in Chapter 4. More specifically we must show that the requirements 
listed in Section 4.3 follow from the requirements listed in Section 5.4 and the following elaboration 
ofRptr: 

(Definition of Rptr) [50]M = 
function Rptr (chsz, buffsz, tick) = 
begin 

get!Get (chsz, tick)   |?l  put!Put  (chsz, buffsz, tick)  " tick 
end rptr; 

This macro is invoked in definition 221. 

5.5.1 Assumptions Argument 

Assump 1: 

No change. 

Assump 2: 

No change. 

5.5.2 Assertions Argument 

Assert 1 using Assert 6.1L-6.2L, Assert 7.1L-7.2L: 

Since this is a logical design only, no implementation of CSP communication is given. Each process 
may communicate only over channels identified in its alphabet. D 

Assert 2 using Assert 2.1L, Assert 7.2L: 

Assert 2.1L ensures that Get does not send data over inbit. The alphabet of Put defined by Assert 
7.2L ensures that Put cannot access inbit. Since Rptr is composed solely of Get and Put, Rptr 
cannot send data over inbit. D 

Assert 3 using Assert 7.1L-7.2L, Assert 3.1L-3.3L, Assump 3L: 

Assert 7.1L and Assert 7.2L ensure that the only communication path between Get and Put is the 
channel mid. By Assert 3.2L Put does not send data over mid, so the communication path is uni- 
directional. The facts that Rptr is composed solely of Get and Put and that the environment cannot 
access mid (by Assump 3L) implies that all communication between the first level decomposition of 
Rptr into sub-processes is uni-directional and involves exactly two sub-processes. Assert 3.1L and 
3.3L ensure that any further decomposition conforms to these restrictions as well. D 
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Assert 4: 

Since this is a logical design only, no implementation of CSP communication is given. This assertion, 
therefore, implies no requirement at this level. D 

Assert 5: 

This assertion is proven during the FDR verification of the physical architecture. D 

Assert 6 using Assert 6.1L-6.2L: 

The pr library unit guarantees that a process is a CSP process if its components are processes. Since 
sequential processes are by definition CSP processes, Assert 6 trivially follows from Assert 6.1L-6.2L. 

D 

Assert 7 using Assert 6.1L-6.2L, Assert 7.1L-7.2L: 

The pr library unit guarantees that the alphabet of a compose process includes tick and any event 
that is in one of the component's alphabet and not in the other component's alphabet. Assert 7, 
thus, trivially follows from Assert 6.1L-6.2L, Assert 7.1L-7.2L. D 

Assert 8 using Assert 6.1L-6.2L, Assert 7.1L-7.2L, Assert 8.1L-8.2L: 

As mentioned in the introduction of this chapter we used the method described in [21] to decom- 
pose the requirements for Rptr into requirements on its components. The proof obligations that 
correspond to a requirements decomposition are also described in [21]. These proof obligations arise 
through the application of two inference rules that reside in the reqs library unit: 

rule compose_sat_rule (p,  q, tick, r) = 
begin 

pr!is_seqpr (p, tick) 
and pr!is_seqpr (q, tick) 
and  (p   I I   q)  sat r) 
and compose_restriction_condition (p,  q, tick, r) 

->  ((p  l?l  q " tick) sat r) = true 
end compose_sat_rule; 

rule parallel_sat_rule (p,  q,  s, r, t,  a) = 
begin 

isprocess p 
and isprocess q 
and a =  (alpha p)  ++ (alpha q) 
and p sat s 
and q sat r 
and concurrent_restriction_condition_conjunct (p,  s,  a) 
and concurrent_restriction_condition_conjunct (q, r,  a) 
and conjunction_condition (s, r,  t,  a) 

->   ((p   II   q)  sat t)  = true 
end parallel_sat_rule; 
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compose-satjrule describes a sufficient set of conditions for proving that a compose process 
satisfies some requirement given that the corresponding process with visible internal communications 
satisfies that requirement. The primary condition, the compose restriction condition, requires that 
the truth of the requirement be independent of the internal communications. 

function compose_restriction_condition (pi, p2, tick, r) = 
begin 

all trl: not (tick -[ (nlast tri)) 
and trl in traces  ((alpha pi) ++  (alpha p2)) 
and trl in r 

->  (trl   I"  (tick adj  ((alpha pi) \\ (alpha p2))))  in r 
end compose_restriction_condition; 

parallel_sat.rule describes a sufficient set of conditions for proving that a concurrent process 
satisfies some requirement given that its component processes satisfy some sub-requirements. The 
primary conditions are the concurrent restriction condition and the conjunction condition. The con- 
current restriction condition requires the truth of each component's sub-requirement be independent 
of the events not in that component's alphabet. 

function concurrent_restriction_condition_conjunct (p,  s,  a) = 
begin 

all trl: trl in a"* 
and (trl   I"  (alpha p))  in s 

-> trl in s 
end concurrent_restriction_condition_conjunct; 

The conjunction condition requires that every trace that satisfies both of the component sub- 
requirements also satisfies the requirement of the concurrent composition. 

function conjunction_condition (s,  r,  t,  a)  = 
begin 

all trl: trl in a"* 
and trl in s 
and trl in r 

-> trl in t 
end conjunction_condition; 

Each of the proof obligations of the requirements decomposition process is stated and proven 
as a distinct SVerdi rewrite rule. 

{Rptr Compose Restriction Condition) [51]M = 
rule compose_restriction_condition_rep (chsz,  buffsz,  tick)  = 

begin 
chsz >= 0 

and buffsz >= 0 

and not isconun tick 
-> reqs!compose_restriction_condition 

(get!Get (chsz, tick), 

put!Put (chsz, buffsz, tick), 

tick, 
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valid_relay (defs!Rep_alpha (chsz.tick), chsz, buffsz, tick)) 

= true 
end compose_restriction_condition_rep; 

This macro is invoked in definition 221. 

(Get Concurrent Restriction Condition)[52] = 
rule concurrent_restriction_condition_conjunct_get (chsz, tick) = 

begin 
chsz >= 0 

and not isconun tick 
-> reqs!concurrent_restriction_condition_conjunct 

(get!Get (chsz, tick), 
get!valid_get (defs!rep_alpha (chsz.tick), chsz, tick), 

defs!rep_alpha (chsz.tick)) 

= true 
end concurrent_restriction_condition_conjunct_get; 

This macro is invoked in definition 221. 

{Put Concurrent Restriction Condition)[53] = 
rule concurrent_restriction_condition_conjunct_Put (chsz, buffsz, tick) = 

begin 
chsz >= 0 

and buffsz >= 0 
and not isconun tick 

-> reqs!concurrent_restriction_condition_conjunct 

(putlPut (chsz, buffsz, tick), 
put!valid_Put (defs!rep_alpha (chsz.tick), chsz, buffsz, tick), 

defs!rep_alpha (chsz.tick)) 

= true 
end concurrent_restriction_condition_conjunct_Put; 

This macro is invoked in definition 221. 

{Rptr Conjunction Condition) [54] = 
rule conjunction_condition_rep (chsz, buffsz, tick) = 

begin 
chsz >= 0 

and buffsz >= 0 
and not isconun tick 

-> reqs!conjunction_condition 
(get!valid_get (defs!rep_alpha (chsz.tick), chsz, tick), 
put!valid_Put (defs!rep_alpha (chsz.tick), chsz, buffsz, tick), 
valid_relay (defs!rep_alpha (chsz.tick), chsz, buffsz, tick), 
defs!rep_alpha (chsz.tick)) = true 

end conjunction_condition_rep; 
This macro is invoked in definition 221. 

The proofs of these rules are given in the rep model library unit. D 
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Chapter 6 

Get Component Refinement 

We considered two approaches to define and verify sequential CSP processes in SVerdi: a functional 
approach and a procedural approach. The functional approach uses the theory specified in the CSP 
library, documented in [19], to construct sequential processes using EVES function declarations. 
Specification and verification proceeds in a manner similar to that documented for concurrent pro- 
cesses in the last chapter. The procedural approach models sequential CSP processes as SVerdi 
procedures. The critical (trace) requirements are specified much as they are in the functional ap- 
proach, but they appear in the post condition of the SVerdi procedure that represents the CSP 
process. EVES's proof obligation generator constructs the conditions under which the process con- 
forms to its requirements. 

The procedural approach requires modeling an interface to a base machine on which the CSP 
described system executes. This interface, described in the mach library unit in Chapter 12, provides 
a set of communication routines very similar to the input and output primitives provided by CSP. An 
SVerdi procedure that communicates using these routines builds up a trace of its execution recorded 
in a machine variable parameter that represents the internal state. This trace forms the basis for 
the specification of the procedure's critical requirements. 

The functional approach is more rigorous than the procedural approach since it does not rely 
on an informal interpretation of CSP processes as SVerdi procedures. Nevertheless, we adopt the 
procedural approach in the refinement of the Rptr sequential processes. The procedural approach 
reduces the complexity of specifying and verifying sequential processes by exploiting EVES's ap- 
proach to decompose the requirements of SVerdi procedures and automatically generate the proof 
obligations required. We believe that this reduced complexity results in a more intelligible assurance 
argument than possible using the functional approach. 

This chapter begins in Section 6.1 by describing an overview of the design of Get in CSP. 
Section 6.2 recasts this design in SVerdi by modeling CSP processes as SVerdi procedures and CSP 
operations as SVerdi statements. Critical requirements Assert 7.1L and Assert 8.1L are cast as a post 
condition on the procedure representing Get. Finally, Section 6.3 decomposes these requirements 
onto the primary procedures of the design and argues that the design satisfies the set of critical 
requirements of Get. 

6.1    Overview of the Get Design 

Get is a recursive non-terminating CSP process. Once Get receives the initiating startbit over 
channel inbit, processing of the next character may begin. One bit arrives over inbit with each 
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iteration of Get until the whole character has been received, i.e., chsz + 2 bits including the delim- 
iters. If the character received is of even parity and the final bit received is stopbit, the character 
is transmitted over mid; otherwise, Get ignores the character and initiates reception of the next 
character. The design of Get in CSP follows. Inchar is responsible for receiving the character once 
the startbit has arrived. A character has odd parity if the exclusive or of the bits that constitute 
the character holds true, where a 1 bit value represents true and a 0 bit value represents false. 

Get(chsz, tick) = 
inbit ? b -> if b = startbit 

then Inchar(.<startbit>..chsz.tick);Get(chsz,tick) 

else Get(chsz.tick) end if 

Inchar(ch,chsz,tick) = 

if (len ch) <= chsz then 
then inbit ? b -> Inchar(ch " .<b>.,chsz,tick) 

else inbit ? b -> (if    not odd_parity (tail ch) 

and b = stopbit 

then mid ! tail ch -> SKIP 

else SKIP end if) 

end if 

function odd_parity (ch) = 

measure len ch 

begin 

if null ch 

then false 
else xor (head ch = 1, odd_parity (tail ch)) end if 

end odd_parity; 

function xor (x, y) = 

begin 

(x or y) 

and not (x and y) 

end xor; 

6.2    Formal Specification of the Get Design 

The machine variable st representing internal state provides a means to transmit of values over 
channels and, for specification purposes, to store a record of the sequence of values transmitted. 
The current trace of Get during execution is evaluated from st and must be restricted to Get's 
alphabet. The process trace is the basis for the specification of Get's two primary requirements: 
Get -not ^over-capacity and valid_char_Get. Showing that these requirements hold for every prefix 
of the final trace ensures that they hold invariantly during Get's execution. Although the CSP 
process representing Get does not terminate, EVES requires termination. We, therefore, force the 
SVerdi representation to terminate at an arbitrary point, i.e., after the variable cntdwn reaches zero, 
cntdwn starts at the value of the maximum integer, int'last(). Later refinement will reveal how 

and when cntdwn decreases. 

(Get design)[55] = 
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procedure Get  (ntvar st  :   (State type) [159], 
lvar chsz  :  int, 
lvar tick  :   (Event type)[161]) = 

pre chsz >= 0 
sind not iscomm tick 
and (7>ace)[163]('st') =  .<>. 

post (I>ace)[163]('st') "*? Get_alpha(chsz,tick) 
and all tr2: 

(        tr2  .<=.   (7Yace)[163]('st') 
and tr2 **? Get_alpha(chsz,tick)) 

->  (        Get_not_over_capacity (tr2,  chsz, tick) 
and valid.char.Get (tr2,  chsz, tick)) 

begin 
pvar cntdwn  :  int  := int'last() 
Get_step(st,chsz,tick,cntdwn) 

end Get; 
This macro is invoked in definition 209. 

Put's buffer buff is represented as a first-in first-out queue of bits. An iteration of Put-step 
depends on the current state of buff. If buff is empty the only option is to receive the next character 
over mid. If the current length of buff will not accommodate storing another character the only 
option is to send the next bit stored in buff. Finally, if buff is not empty and there is room for 
storing another character, either of the above options may occur. 

Get_step receives at most one character, stored in the variable chr. Character variables can be 
thought of as a trace of bits. Once Inchar has received the character, Out char determines whether 
the character is appropriate for transmission over mid and, if so, transmits it. Note that an input 
or output operation is successful if and only if cntdwn remains greater than zero. 

{Getstep design)[56]M = 
procedure Get_step (mvar st  :   (State type)[159], 

lvar chsz  :  int, 
lvar tick  :  (Event type)[161], 
pvar cntdwn :   int) = 

(Get^step specification)[63] 
begin 

pvar b  :   {Bit type) [139] 
pvar chr  :   (Buffer type) [137]  := (Trace of single startbit)[U7] 
(inbit ? b)[170] 
if cntdwn > 0 

and (b is startbit)[148] then 
InOutChar(st,chr,chsz,tick,cntdwn) 
if cntdwn > 0 then Get_step(st,chsz,tick,cntdwn) end if 

end if 
end Get_step; 

This macro is invoked in definition 209. 

(InOutchar design)[57]M = 
procedure InOutchar (mvar st  :   (State type) [159], 

pvar chr  :   (Buffer type) [137], 
lvar chsz  :  int, 
lvar tick  :   (Event type)[161], 
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pvar cntdwn :   int) = 
(InOutchar specification)[68] 
begin 

Inchar(st,chr,chsz,tick,cntdwn) 
if cntdwn > 0 then 

Out char(st,chr,chsz,tick,cntdwn) 
end if 

end InOutChar; 
This macro is invoked in definition 209. 

6.2.1    Inchar design 

Inchar is a recursive process that iteratively accepts another bit over inbit and appends it to the 
end of chr. The recursion bottoms out when the length of chr becomes greater than chsz, i.e., the 
length of the character plus 1 for the startbit. cntdwn must decrease each iteration of Inchar 
since it will be used as the measure to prove the termination of Get_step. 

(Inchar design) [58]M = 
procedure Inchar(mvar st   :  (State type)[159], 

pvar chr  :   (Buffer type) [137], 
lvar chsz  :  int, 
lvar tick :   (Event type)[161], 
pvar cntdwn :   int) = 

(Inchar specification) [72] 
begin 

pvar b  :   (Bit type)[139] 
if (len of chr) [157] <= chsz then 

(inbit ? b)[170] 
if cntdwn > 0 then 

chr  := (Append b onto end of chr)[154] 
Inchar(st,chr,chsz,tick,cntdwn) 

end if 
else cntdwn := cntdwn - 1 
end if 

end Inchar; 
This macro is invoked in definition 209. 

EVES requires that executable recursive definitions be specified in terms of procedures. The 
function odd_parity specified previously in the overview of the Get design is defined as an EVES 
procedure odd_parity_check. The proof that this procedure terminates with is_odd equal to the 
value returned by odd-parity is trivial. 

(Definition of odd.parity.check) [59]M = 
procedure odd_parity_check (lvar chr  :  bfrlbuffer, 

pvar is_odd  : bool) = 

pre true 
post is_odd = odd_parity(bfr!contents(chr)) 

measure lenp chr 
begin 

if nullp chr 
then is_odd := false 
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else odd_parity_check(tailp ehr,is_odd) 
is_odd:=xor(bfr!cnv_bit(headp chr)=l,is_odd) 

end if 
end odd_parity_check; 

This macro is invoked in definition 209 

(Get's definition of xor)[60]M = 
typed function xor (a, b  : bool) returns bool = 

begin 
(a or b) 

and not  (a and b) 
end xor; 

This macro is invoked in definition 209. 

(Definition of odd.pa.rity) [61]M = 
function odd.parity (chr) = 

measure len chr 
begin 

if null chr 
then false 
else xor (head chr = 1, odd_parity (tail chr)) end if 

end odd_parity; 
This macro is invoked in definition 209. 

6.2.2    Outchar design 

Out char receives the final delimiter and checks the parity of the character. If the final delimiter is 
stopbit and the character is of even parity, the non-delimited character is transmitted over mid. 

(Outchar design)[62]M = 
procedure Outchar (mvar st  :   (State type)[159], 

lvar chr  :   (Buffer type) [137], 
lvar chsz  :  int, 
lvar tick  :  (Event type)[161], 
pvar cntdwn :   int) = 

(Outchar specification)[76] 
begin 

pvar b  :   (Bit type) [139] 
pvar is_odd : bool 
(inbit ? b)[170] 
odd_parity_check((taiJ of chr)[153], is_odd) 
if cntdwn > 0 

and not is_odd 
and (b is stopbit)[149] then 

(mid! tail of chr) [179] 
end if 

end Outchar; 
This macro is invoked in definition 209. 
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6.3    Justification of the Get Design 

This section presents an intuitive justification that the design of Get satisfies the assertions of Get 
described in Chapter 5. More specifically, we must show that the requirements listed in Section 5.4 
follow from the design of Get described in the last section. 

6.3.1    Assertions Argument 

Assert 2.1L: 

By inspection of the Get design, the only way Get can access external channels is through the mach 
library unit interface. The only calls Get makes are to send a character over mid using snd-chr 
and to receive a bit over inbit using rcv_bit. Of course, any refinement of these calls must be 
shown not to send any information over inbit. However, since we are using this model for design 
verification only, this level of analysis suffices. D 

Assert 3.1L: 

Get is not decomposed into concurrent sub-processes so no internal communication channels exist. 

D 

Assert 6.1L using Assert 7.1L, Assert 8.1L: 

We must argue that the procedural model of the Put CSP process has certain critical properties 
required of sequential processes. This argument is necessarily informal since the correspondence 
between our procedural model and CSP is informal. First we show that Get is a CSP process and 
then we show that it is sequential. 

From the definition of isprocess in the pr model library unit, we must show that 

1. the empty trace is a trace of Put, 

2. the traces of Get are restricted to events in Get_alpha(chsz,tick), and 

3. any prefix of a trace of Get is also a trace of Get. 

We define the traces of the procedural design of Get so that these properties hold. By inspection 
of this design, the trace of Get is constructed as it executes by appending to its end the commu- 
nication event associated with every communication in which it engages. Viewing Get's execution 
symbolically, we define the set of traces of Get as the set of all possible traces constructed up to 
any point in its execution. Clearly this ensures that (3) holds. (1) holds since the pre-condition 
for Get ensures that the trace is initially empty. (2) holds as a consequence of Assert 7.1L and the 
portion of the post-condition for Get that requires all traces generated to be confined to events in 
Get ..alpha (chsz, tick). We delay proof of the post-condition until the argument for Assert 8.1L. 

From the definition of is-seqpr from the pr model library unit, a sequential process must have 
the successful termination event in its alphabet. The only place this event may appear in a trace of 
a sequential process is as the last event. The parameter tick represents the successful termination 
event for Get. tick is in the alphabet of Get as shown in Assert 7.1L. tick does not occur m any 
trace of Get since Get does not terminate successfully.1 D 

1 The SVerdi procedural model of Get does complete execution, but only because EVES requires proof of termina- 
tion. This may be considered unsuccessful termination in the CSP sense. 
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Assert 7.1L: 

We define the alphabet of the procedural model for Get as the set of events in which it may engage. 
The post-condition for Get requires that this set be restricted to Get_alpha(chsz,tick). We delay 
proof of the post-condition until the argument for Assert 8.1L. D 

Assert 8.1L: 

Assert 8.1L requires that all traces of Get be members of the set defined by valid-Get. This requires 
that every trace of Get satisfy Get jiot-over_capacity and valid.char.Get. The post-condition 
for Get requires these properties of the Get design. The rest of this section presents an overview of 
the proof of the post-condition. 

Proof Structure of Get The first task is to derive a set of valid requirements for Get_step 
that allows us to prove that Get satisfies its post-condition. The recursive nature of Get_step 
suggests that its specification is invariantly true before and after execution. We call this invariant 
valid_Get_step. 

(Get-step specification)[63]M = 

pre    cntdwn > 0 
and cntdwn <= int'lastO 
and (len cseq!char_seq ((Trace)[163]('st') 1= inbit, chsz) 

I" cseq!even_parity_chars (chsz)) 
<= (len (2>ace)[163]('st') 1= mid) 

and valid_Get_step((Trace)[163]('st'),chsz,tick,cntdwn) 
post valid_Get_step((Trace)[163]('st'), chsz,tick, cntdwn) 

measure cntdwn 
This macro is invoked in definition 56. 

valid_Get-step preserves the truth of both Get_notjover_capacity and valid_char_Get. In 
addition, it requires that only characters be permitted over mid and that no partial characters be 
accepted over inbit. Recall that this requirement must hold before and after each iteration of 
Get .step; clearly, during execution partial characters can be accepted. 

(Definition of valid-Getstep)[64]M = 
function valid_Get_step (trl,chsz,tick,cntdwn) = 
begin 

chsz >= 0 
and chsz + 2 <= int'lastO 
and not iscomm tick 
and trl "*? Get_alpha(chsz,tick) 
and not  (tick -[ trl) 
and (mid allows only chars) [121] 
and (cntdwn > 0 -> (Partial char over inbit)[124]('trl') =  .<>.) 
and Get_not_over_capacity (trl,  chsz, tick) 
and all tr2: (        tr2  .<=.  trl 

and tr2 "*? Get_alpha(chsz,tick)) 
-> valid_char_Get (tr2,  chsz, tick) 

end valid_Get_step; 
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This macro is invoked in definition 209. 

Showing that the specification for Get follows from the specification for Get_step requires 

showing that 

1. the pre-condition and initial assignments for Get imply the pre-condition for Get_step, and 

2. the post-condition for Get_step implies the post-condition for Get. 

The first proof obligation follows trivially from the definitions involved: 

(Get lemma #l)[6b)M = 
rule valid_Get_step_empty_empty (chsz.tick.cntdwn) = 

begin 
chsz >= 0 

and not iscomm tick 
-> valid_Get_step(.<>.,chsz.tick.cntdwn) = true 

end valid_Get_step_empty_empty; 
This macro is invoked in definition 209. 

The second proof obligation is split according to the structure of the post-condition for Get. 
Note that the requirement that the trace be restricted to Get_alpha(chsz,tick) follows trivially 
from the definition of valid_Get_step. 

(Get lemma #2>[66]M = 
rule Get_step_Get_not_over_capacity (trl,tr2,chsz.tick.cntdwn) = 

begin 
tr2 .<=. trl 

and tr2 "*? Get_alpha(chsz,tick) 
and valid_Get_step (trl,chsz.tick.cntdwn) 

-> Get_not_over_capacity (tr2,chsz,tick) = true 
end Get_step_Get_not_over_capacity; 

This macro is invoked in definition 209. 

(Get lemma #3}[67]M = 
rule Get_step_valid_char_Get (trl,tr2,chsz.tick.cntdwn) = 

begin 
tr2 .<=. trl 

and tr2 "*? Get_alpha(chsz,tick) 
and valid_Get_step (trl,chsz.tick.cntdwn) 

-> valid.char.Get (tr2,chsz,tick) = true 
end Get_step_valid_char_Get; 

This macro is invoked in definition 209. 

Proof Structure of Get_step This level requires us to derive a set of requirements for InOutchar 
that allows us to prove that Get_step satisfies its post-condition. The post condition requires that 
Get-step!s post condition holds. The pre condition is similar to Get step's precondition except 
that the startbit has already been received. Furthermore, to prove that Get-Step terminates, 
InOutchar must ensure that cntdwn decreases to a value no less than zero. 

(InOutchar specification)[68]M = 
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initial cntdwn_0=cntdwn 
pre    cntdun > 0 

and cntdwn <= int'last() 
and InOutchar_pre(bfr!contents(ehr),mach!hist(st),chsz,tick) 

post   cntdwn < cntdwn_0 
and cntdwn >= 0 
and (cntdwn > 0 

-> ((len cseq!char_seq (mach!hist(st) 1= inbit, chsz) 
I" cseq!even_parity_chars (chsz)) 

<= (len machihist(st) 1= mid))) 
and valid_Get_step(mach!hist(st),chsz,tick,cntdwn) 

measure cntdwn 
This macro is invoked in definition 57. 

(Definition of InOutchar-pre)[69]M = 
function InOutchar_pre(cchr,trl,chsz,tick) = 

begin 
chsz >= 0 

and not iscomm tick 
and chsz + 2 <= int'lastQ 
and trl **? Get_alpha(chsz,tick) 
and (mid allows only chars)[12l] 
and not  (tick -[ trl) 
and cchr =   .<startbit>. 
and cseq!current_char(trl  1= inbit,chsz) = cchr 
and (len cseq!char_seq (trl  1= inbit, chsz) 

I* cseq!even_parity_chars (chsz)) <=  (len trl   1= mid) 
and Get_not_over_capacity (trl,  chsz, tick) 
and all tr2: (        tr2  .<=.  trl 

and tr2 "*? Get_alpha(chsz, tick)) 
-> valid.char_Get (tr2,  chsz, tick) 

end InOutchar_pre; 
This macro is invoked in definition 209. 

Four cases are identified in the proof of Get_step's post-condition: 

1. while trying to accept the initial bit, cntdwn becomes zero, in which case Put .step terminates 
with no change to the buffer or trace; 

2. the initial bit is received but is not startbit, in which case Get_step recurs with the bit 
appended to the end of the trace; 

3. the initial startbit is received and InOutchar executes unsuccessfully with cntdwn equal to 
zero, in which case Get_step terminates; 

4. the initial startbit is received and is InOutchar executes successfully, in which case Get-Step 

recurs. 

Each of these cases generates a proof obligation in addition to that generated for proof of 
termination. That these are all of the cases can be seen by inspection of the post-condition of the 
procedures involved. We deal with each case in turn. Termination follows directly from the fact 
that cntdwn decreases each iteration and is bounded below by zero. 
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The first case (1) is trivial since no change to the buffer or trace requires only that 
valid.Get.step hold initially, which is guaranteed by Get-Step's pre-condition. 

The second case (2) requires us to prove the following theorem, which is trivial from the defi- 
nitions involved since initial delimiters that are not staxtbit are ignored by cseq!char_seq. 

(Getstep lemma #J)[70]M = 
rule valid_Get_step_tack_inbit_skip (b.trl,chsz,tick,cntdwn.O,cntdwn) - 

begin 
cntdwn_0 > 0 

and cntdwn > 0 
and not (b = startbit) 
and b in -{0, 1}- 
and valid_Get_step(trl,chsz,tick,cntdwn.O) 

-> valid_Get_step(tri " .<inbit.b>.,chsz,tick,cntdwn) = true 

end valid_Get_step_tack_inbit_skip; 

This macro is invoked in definition 209. 

The third and fourth cases (3,4) requires us to prove that InOutchar's pre condition is met and 
that its post condition implies Get .step's post condition. The latter of these is trivial; the former 
is stated as the following theorem. This theorem's proof follows by noticing that InOutchar^re is 
a simple restatement of valid_Get_step with the contents of chr as .<startbit>.. 

(Getjstep lemma #2)[71]M = 
rule valid_Get_step_tack_startbit_pre (bs.trl,chsz,tick,cntdwn) = 

begin 
cntdwn > 0 

and bs = .<startbit>. 
and (len cseq!char_seq (tri 1= inbit, chsz) 

I" cseq!even_parity_chars (chsz)) <= (len trl 1= mid) 
and valid_Get_step(trl,chsz.tick,cntdwn) 

-> InOutchar_pre(bs,trl * .<inbit.startbit>.,chsz,tick) = true 
end valid_Get_step_tack_startbit_pre; 

This macro is invoked in definition 209. 

Specification of InOutChar This level requires us to derive a set of requirements for Inchar and 
Outchar that allows us to prove that InOutchar satisfies its post-condition. Just as for Get_step, the 
recursive nature of Inchar suggests that its specification, called validJnchar, must be invariantly 

true before and after execution. 

(Inchar specification) [72]M = 
initial cntdwn_0=cntdwn,st_0=st,chr_0=chr 
pre cntdwn > 0 

and cntdwn <= int'lastQ 
and valid Inchar ({Contents}[143]('chr'), (Contents)[143]Cchr'), 

(Trace)[163]('st'),(Trace)[163]('st'), chsz, tick) 

post    cntdwn < cntdwn_0 
and cntdwn >= 0 
and (cntdwn > 0 -> (len (Contents)[143]('chr')) = chsz+1) 
and valid Inchar ((Contents)[143]('chr_0'),(Contents)[143]('chr'), 

(Trace)[163]('st_0'),(Trace)[163]('st'), chsz, tick) 

measure cntdwn 
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This macro is invoked in definition 58. 

Discovering the invariant for Inchar requires understanding the crucial role that the partially 
received character chr plays, cchr represents the final contents of chr. trl represents the final 
trace after execution of Inchar. cchr.O and trl.O represent the initial contents of chr and the 
initial trace, respectively, cchr invariantly contains the partial character (including the startbit) 
that was received over inbit. 

(Definition of validJnchar)[73]M = 
function valid_Inchar (cchr_0,cchr,trl_0,trl,chsz,tick) = 

begin 
chsz >= 0 

and not iscomm tick 
and chsz + 2 <= int'lastO 
and trl "*? Get_alpha(chsz,tick) 
and not  (tick -[ trl) 
and {mid allows only chars)[121] 
and cchr_0 "*? -{0,1}- 
and not null cchr_0 
and (Partial char over inbit)[124]('trl_0') = cchr_0 
and cchr_0  .<=.  cchr 
and trl.O  .<=. trl 
and not null cchr 
and cchr "*? -{0,1}- 
and {Partial char over inbit)[124]('trl') = cchr 
and (Inchar prefix invariant) [74] 

end valid_Inchar; 
This macro is invoked in definition 209. 

The specification for Inchar must also describe the required properties of every prefix of the 
final trace. Let pcchr and ptrl represent some intermediate value of cchr and trl, respectively. 
ValidJEnchar must ensure that communications that occur during execution of Inchar, i.e., those 
in the trace tr!removeJirst_n(ptrl,len trl_0), contain only communications over inbit. The 
number of these communications must be bounded above by chsz + 1 - (len cchr_0). 

(Inchar prefix invariant)[74]M = 
all ptrl:  some pcchr: 

invariant_over_char(cchr_0,pcchr,trl.O,ptrl,trl,chsz,tick) 

This macro is invoked in definition 73. 

(Definition of invariant.over_char)[75]M = 
function invariant_over_char (cchr_0,pcchr,trl.O,ptrl,trl,chsz,tick) = 

begin 
(   ptrl "*? defs!Rep_alpha(chsz,tick) 

and ptrl .<=. trl 

and trl_0 .<=. ptrl) 

-> (   not null pcchr 

and pcchr "*? -{0,1}- 
and (Partial char over inbit)[124]('ptrl') = pcchr 
and (trl_0  1= mid) =  (ptrl   1= mid) 
and tr!remove_first_n(ptrl,len trl_0) 

-*? reqs!buffer_alpha({inbit},-{0, 1}-) 
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and (len trlremove.first_n(ptrl,len trl_0)) 

<= chsz + 1 - (len cchr_0)) 

end invariant_over_char; 

This macro is invoked in definition 209. 

The specification of Outchar is much simpler than that of Inchar since it is not recursively 
defined. In the case that the character to be transmitted has even parity and the correct final 
delimiter is received, the specification requires that the trace be appended only by the stopbit 
communication over inbit and the character transmission over mid. Otherwise, at most one bit is 

received over inbit. 

(Outchar specification)[76]M = 
initial cntdwn_0=cntdwn,st_0=st 

pre   cntdwn > 0 
and Outchar_pre((Contents)[143]('chr'),(I>ace)[163]('st'),chsz,tick) 

post   cntdwn < cntdwn_0 

and cntdwn >= 0 
and valid.Outchar ((Cojitents)[143]('chr'),{T>ace)[163]('st_0'), 

(Trace)[163]('st'), chsz, tick, cntdwn) 

measure cntdwn 
This macro is invoked in definition 62. 

{Definition of Outchar.pre)[77]M = 
function Outchar.pre (cchr.trl,chsz,tick) = 

begin 
chsz >= 0 

and not iscomm tick 

and not null cchr 
and cseq!is_char(tail cchr,chsz) 

and trl "*? Get_alpha(chsz,tick) 

end Outchar.pre; 

This macro is invoked in definition 209. 

(Definition of valid.Outchar)[78]M = 
function valid.Outchar (cchr,trl_0,trl,chsz,tick,cntdwn) = 

begin 
trl "*?  Get_alpha(chsz,tick) 

and if    cntdwn > 0 
and not odd_parity(tail cchr) 

and last (trl 1= inbit) = stopbit 
then trl = trl_0 * .<inbit.stopbit,mid.tail cchr>. 

else   trl = trl_0 * .<inbit.last (trl 1= inbit)>. 

or (cntdwn <= 0 and trl = trl_0) 

end if 

end valid.Outchar; 

This macro is invoked in definition 209. 

Proof Structure of InOutchar   Two cases are identified in the proof of InOutchar's post- 

condition: 

1. Inchar executes unsuccessfully with cntdwn = 0; 
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2. Inchar executes successfully; 

The first case (1) follows directly from the following two theorems, the first of which guarantees 
satisfaction of Inchar's pre condition and the second of which guarantees satisfaction of its post 

condition: 

(InOutchar lemma #J)[79]M = 
rule valid_Inchar_tack_startbit_pre (cchr,trl,chsz,tick) = 

begin 
InOut char_pre(cchr,tr1,chsz,t ick) 

-> valid_Inchar(cchr,cchr,trl,trl,chsz,tick) = true 

end valid_Inchar_tack_startbit_pre; 

This macro is invoked in definition 209. 

{InOutchar lemma #2)[80]M = 
rule valid_Get_step_Inchar_timeout (cchr_0,cchr,trl_0,trl,chsz,tick,cntdwn) = 

begin 
cntdwn = 0 

and InOutchar_pre(cchr_0,trl_0,chsz,tick) 
and valid_lnchar(cchr_0,cchr,trl_0,trl,chsz,tick) 

-> valid_Get_step(trl,chsz,tick,cntdwn) = true 

end valid_Get_step_Inchar_timeout; 

This macro is invoked in definition 209. 

The second case (2) requires us to show that the pre condition for Outchar holds and that 
the post condition for Outchar guarantees that the post condition for Get_step holds. These facts 
follow directly from the following two theorems. 

(InOutchar Jemma #3)[81]M = 
rule valid_Inchar_Outchar_pre (cchr.O,cchr,trl_0,trl,chsz,tick,cntdwn) = 

begin 
(len cchr) = chsz+1 

and InOutchar_pre(cchr_0,trl_0,chsz,tick) 
and valid_lnchar(cchr_0.cchr,trl_0,trl,chsz,tick) 

-> Outchar_pre (cchr,trl,chsz,tick) = true 

end valid_Inchar_Outchar_pre; 

This macro is invoked in definition 209. 

(InOutchar lemma #4)[82]M = 
rule valid_Get_step_InOutchar (cchr_0,cchr,trl_0,trl, 

tr2,chsz,tick,cntdwn) = 

begin 
InOutchar_pre(cchr_0,trl_0,chsz,tick) 

and valid_lnchar(cchr_0,cchr,trl_0,trl,chsz,tick) 

and Outchar_pre(cchr,trl,chsz,tick) 
and valid_0utchar(cchr,trl,tr2,chsz,tick,cntdwn) 

-> valid_Get_step(tr2,chsz,tick,cntdwn) = true 

end valid_Get_step_InOutchar; 

This macro is invoked in definition 209. 
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Proof Structure of Inchar    Three cases are identified in the proof of Inchar's post-condition: 

1. the entire character (except the final delimiter) has been received, in which case Inchar ter- 

minates; 

2. only part of the character has been received and reception of the next bit causes cntdwn 
decrease to zero, in which case Inchar terminates; 

3. only part of the character has been received and the next bit is successfully received, in which 

case Inchar recurs. 

The first case (1) is trivial since Inchar's post condition follows trivially from the precondition 

and that fact that cntdwn is decremented. 

The second case (2) follows from the following theorem: 

(Inchar lemma #1) [83]M = 
rule valid_Inchar_tack_inbit_timeout (b,cchr,trl,chsz,tick) = 

begin 
(len cchr) <= chsz 

and b in -{0, 1}- 
and valid_Inchar(cchr,cchr,trl,trl,chsz,tick) 

-> valid_Inchar(cchr,cchr " .<b>.,trl, 
trl " .<inbit.b>.,chsz,tick) = true 

end valid_Inchar_tack_inbit.timeout; 

This macro is invoked in definition 209. 

The third case (3) requires us to show that the pre condition for Inchar holds and that the post 
condition for the recurrence of Inchar guarantees that the post condition for Inchar holds. These 
facts follow directly from the following two theorems. 

(Inchar lemma #2)[84]M = 
rule valid_Inchar_tack_inbit_pre (b,cchr,trl,chsz,tick) = 

begin 
(len cchr) <= chsz 

and b in -{0, 1}- 
and valid.Inchar(cchr,cchr,trl,trl,chsz,tick) 

-> valid_Inchar(cchr * .<b>.,cchr " .<b>.,trl " .<inbit.b>., 
trl " .<inbit.b>.,chsz,tick) = true 

end valid_Inchar_t ack_ inbit _pre; 

This macro is invoked in definition 209. 

(Inchar lemma #3)[85]M = 
rule valid_Inchar_tack_inbit_step (b,cchr,pcchr,trl,tr2,chsz,tick) - 

begin 
b in -{0, 1}- 

and valid_Inchar(cchr,cchr,trl,trl,chsz.tick) 
and valid.Inchar(cchr " .<b>..pcchr.tr1 " .<inbit.b>., 

tr2,chsz,tick) 
-> valid_Inchar(cchr,pcchr,trl,tr2,chsz,tick) = true 

end valid_Inchar_tack_inbit_step; 

This macro is invoked in definition 209. 
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Chapter 7 

Put Component Refinement 

This chapter uses the same procedural approach to the design of Put as used in the last chapter in 
the design of Get (see the introduction to Chapter 6 for a description of the approach). We begin in 
Section 7.1 by describing an overview of the design of Put in CSP. Section 7.2 recasts this design in 
SVerdi by modeling CSP processes as SVerdi procedures and CSP operations as SVerdi statements. 
Critical requirements Assert 7.2L and Assert 8.2L are cast as a post condition on the procedure 
representing Put. Finally Section 7.3 decomposes these requirements onto the primary procedures 
of the design and argues that the design satisfies the set of critical requirements of Put. 

7.1    Overview of the Put Design 

Put is a recursive non-terminating CSP process. Each recurrence chooses either to send a bit from 
the internal buffer, i.e., buff, over outbit or receive a character over mid. A bit can be sent whenever 
there is one available to send; a character can be received only if the buffer has enough room to 
store it. 

The buffer has sufficient capacity to store a character if the buffer is empty, since we assume 
buffsz >= 1, or if buffsz*(chsz+2) >= (len buff )+chsz+2, since the two delimiting'bits are 
stored along with each chsz-length character. Characters received are stored at the right end of the 
buffer; bits transmitted are taken from the left end of the buffer. The design of Put in CSP follows: 

Put (chsz, buffsz, tick,buff) = 
if null buff 
then mid ? ch -> Put(chsz,buffsz,tick, 

buff " (startbit ]- (ch " .<stopbit>.))) 
elseif buffsz*(chsz+2) < (len(buff) + chsz + 2) 
then outbit ! head(buff) -> Put (chsz, buffsz, tick, tail(buff) 
else outbit ! head(buff) -> Put (chsz, buffsz, tick, tail(buff) 

□ mid ? ch -> Put(chsz,buffsz,tick, 
buff " (startbit ]- (ch " .<stopbit>.))) 

end if 
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7.2    Formal Specification of the Put Design 

As in the design of Get, the machine variable st representing internal state provides a means to 
transmit values over channels and, for specification purposes, to store a record of the sequence of 
values transmitted. The current trace of Put during execution is evaluated from st and must be 
restricted to Put's alphabet. The process trace is the basis for the specification of Put's two primary 
requirements: Put_not_over .capacity and valid-char .Put. Showing that these requirements hold 
for every prefix of the final trace ensures that they hold invariantly during Put's execution. Although 
the CSP process representing Put does not terminate, EVES requires termination. We, therefore, 
force the SVerdi representation to terminate at an arbitrary point, i.e., after the variable cntdwn 
reaches zero, cntdwn starts at the value of the maximum integer, int•last(). Later refinement 

will reveal how and when cntdwn decreases. 

(Put design)[86] = 
procedure Put (ravar st  :  (State type) [159], 

lvar chsz, buffsz  :   int, 
lvar tick  :   (Event type)[161]) = 

pre chsz >= 0 
and buffsz >=  1 
and buffsz*(chsz+2) + chsz + 2 <= int'last() 
and not iscomm tick 
and (I>ace)[163]('st') =  .<>. 

post  (l>ace)[163]('st') **? Put_alpha(chsz,tick) 
and all tr2: 

tr2  .<=.   (I>ace)[163]('st') 
->  (        Put_not_over_capacity (tr2,  chsz, buffsz, tick) 

and valid_char_Put (tr2, chsz, tick)) 

begin 
pvar buf f  :  (Buffer type) [137]  := (Empty buffer) [150] 
pvar cntdwn :  int  := int'last() 
Put_step(st,chsz,buffsz,tick,buff.cntdwn) 

end Put; 
This macro is invoked in definition 213. 

Put's buffer buff is represented as a first-in first-out queue of bits. An iteration of Put .step 
depends on the current state of buff. If buf f is empty the only option is to receive the next character 
over mid. If the current length of buff will not accommodate storing another character the only 
option is to send the next bit stored in buff. Finally, if buff is not empty and there is room for 
storing another character, either of the above options may occur. Note that an input or output 
operation is successful if and only if cntdwn remains greater than zero. 

(Putstep design) [87]M = 
procedure Put_step (mvar st  :   (State type)[159], 

lvar chsz, buffsz  :   int, 
lvar tick  :   (Event type)[161], 
pvar buff  :   (Buffer type) [137], 
pvar cntdwn:  int) = 

(Putstep specification)[90] 
begin 

pvar chr  :   (Buffer type) [137] 
if (buff is empty) [151.[then 

(mid ? chr) [174] 
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if cntdwn > 0 then 
buff:= {Append delimited chr onto end of buff)[155] 

end if 
elseif buffsz*(chsz+2) <  ((len of buff)[156]+chsz+2) then 

(outbit ! head of buff )[165] 
if cntdwn > 0 then 

buff:= (tail of buff)[152] 
end if 

else poll_mid_and_outbit(st,chsz,buffsz.tick,buff,cntdwn) 
end if 
if cntdwn > 0 then 

Put_step(st,chsz,buffsz,tick,buff.cntdwn) 
end if 

end Put_step; 
This macro is invoked in definition 213. 

When both receiving a character over mid and sending a bit over outbit is possible, mid and 
outbit must be iteratively polled to determine whether a communication can take place. Once one 
of the communications occurs buff is updated as appropriate. 

(polljjiidjand.outbit design)[88]M = 
procedure poll_mid_and_outbit (mvar st  :   (State type) [159], 

lvar chsz, buffsz :   int, 
lvar tick :   {Event type)[161], 
pvar buff  :   {Buffer type) [137], 
pvar cntdwn :  int) = 

(poll-mid-and-outbit specification) [96] 
begin 

pvax sent.rcvd :  bool  := false 
pvar chr  :   (Buffer type) [137] 
(Poll mid to receive chr) [177] 
loop 

(poll-mid^and-outbit loop specification) [99] 
exit when xor(sent.rcvd) or cntdwn=0 
(Poll outbit to send first of buff) [168] 
if  (not sent)  and cntdwn > 0 then 

(Poll mid to receive chr) [177] 
end if 

end loop 
if sent and cntdwn > 0 then 

buff:= (tail of buff)[lb2] 
elseif rcvd and cntdwn > 0 then 

buff := (Append delimited chr onto end of buff)[155] 
end if 

end poll_mid_and_outbit; 
This macro is invoked in definition 213. 

(Put's definition ofxor)[89]M = 
typed function xor (a, b : bool) returns bool = 

begin 
(a or b) 

and not (a and b) 
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end xor; 
This macro is invoked in definition 213. 

7.3    Justification of the Put Design 

This section presents an intuitive justification that the design of Put satisfies the assertions of Put 
described in Chapter 4. More specifically, we must show that the requirements listed in Section 5.4 
follow from the design of Put described in the last section. 

7.3.1    Assertions Argument 

Assert 3.2L: 

By inspection of the Put design, the only way Put can access external channels is through the mach 
library unit interface. The only calls Put makes are to send a bit over outbit using snd-bit and 
poll-snd-bit and to receive a character over mid using rcv.char and poll_rcv_char. Of course, 
any refinement of these calls must be shown not to send any information over mid. However, since 
we are using this model for design verification only, this level of analysis suffices. D 

Assert 3.3L: 

Put is not decomposed into concurrent sub-processes so no internal communication channels exist. 

D 

Assert 6.2L using Assert 7.2L, Assert 8.2L: 

We must argue that the procedural model of the Put CSP process has certain critical properties 
required of sequential processes. This argument is necessarily informal since the correspondence 
between our procedural model and CSP is informal. First we show that Put is a CSP process and 
then we show that it is sequential. 

From the definition of isprocess in the pr model library unit, we must show that 

1. the empty trace is a trace of Get, 

2. the traces of Put are restricted to events in put .alpha (chsz, tick), and 

3. any prefix of a trace of Put is also a trace of Put. 

We define the traces of the procedural design of Put so that these properties hold. By inspection 
of this design, the trace of Put is constructed as it executes by appending to its end the commu- 
nication event associated with every communication in which it engages. Viewing Put's execution 
symbolically, we define the set of traces of Put as the set of all possible traces constructed up to 
any point in its execution. Clearly this ensures that (3) holds. (1) holds since the pre-condition 
for Put ensures that the trace is initially empty. (2) holds as a consequence of Assert 7.2L and the 
portion of the post-condition for Put that requires all traces generated to be confined to events in 
put .alpha (chsz, tick). We delay proof of the post-condition until the argument for Assert 8.2L. 
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From the definition of is-seqpr from the pr model library unit, a sequential process must have 
the successful termination event in its alphabet. The only place this event may appear in a trace of 
a sequential process is as the last event. The parameter tick represents the successful termination 
event for Put. tick is in the alphabet of Put as shown in Assert 7.2L. tick does not occur in any 
trace of Put since Put does not terminate successfully.1 D 

Assert 7.2L: 

We define the alphabet of the procedural model for Put as the set of events in which it may engage. 
The post-condition for Put requires that this set be restricted to put .alpha (chsz, tick). We delay 
proof of the post-condition until the argument for Assert 8.2L. D 

Assert 8.2L: 

Assert 8.2L requires that all traces of Put be members of the set defined by valid-Put. This requires 
that every trace of Put satisfy Put_not-over_capacity and valid-char-Put. The post-condition 
for Put requires these properties of the Put design. The rest of this section presents an overview of 
the proof of the post-condition. 

Proof Structure of Put The first task is to derive a set of valid requirements for Put-Step 
that allows us to prove that Put satisfies its post-condition. The recursive nature of Put_step 
suggests that its specification is invariantly true before and after execution. We call this invariant 
valid-Put .step. 

(Putstep specification)[90]M = 
pre cntdwn > 0 

and buffsz*(chsz+2) + chsz + 2 <= int'lastO 
and valid_Put_step ((Contents)[143]('buff'),(Trace)[163]('st'), 

chsz,buffsz,tick) 
post valid_Put_step ((Contents)[143]('buff'),(Trace)[163]('st'), 

chsz,buffsz,tick) 

measure cntdwn 
This macro is invoked in definition 87. 

Discovering the invariant for Put-step requires understanding the crucial role that the internal 
buffer buff plays. We refer to the contents of buff as cbuff. cbuff invariantly contains the 
delimited characters, or parts of characters, received over mid buf not yet transmitted over outbit. 
The length of cbuff, i.e., len cbuff, plus the number of bits of the last non-complete character 
transmitted over outbit, i.e., (len trl 1= outbit) mod (chsz+2), must be bounded above by 
the maximum capacity of the buffer, i.e., buffsz* (chsz+2). 

{Definition of vaiid_Put-step) [91]M = 
function valid_Put_step (cbuff,trl,  chsz, buffsz,tick) = 

begin 
chsz >= 0 

and buffsz >= 1 
and not iscomm tick 

1 The SVerdi procedural model of Put does complete execution, but only because EVES requires proof of termina- 
tion. This may be considered unsuccessful termination in the CSP sense. 
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and trl  "*? put_alpha(chsz,tick) 
and not  (tick -[ trl) 
and (mid allows only chars) [121] 
and invariant_over_bnffer(cbuff,TR1, CHSZ, buffsz.tick) 
and ALL TR2:   some cbuff2: 

TR2   .<=.  TR1 
->  invariant_over_buffer(cbuff2,TR2,  CHSZ, buffsz.tick) 

end valid_Put_step; 
This macro is invoked in definition 213. 

(Definition of invariant-over-buffer)[92]M = 
function invariant_over_buffer(cbuff,TR1, CHSZ,buffsz,tick) = 

begin 
cbuff "*? -{0,1}- 

and (mid chars to bits)[123] = ((TR1  1= OUTBIT) * cbuff) 
and buffsz*(chsz+2) >= (len cbuff) 

+ ((len TR1 1= OUTBIT) mod (chsz+2)) 

end invariant_over_buffer; 

This macro is invoked in definition 213. 

Showing that the specification for Put follows from the specification for Put-step requires 

showing that 

1. the pre-condition and initial assignments for Put imply the pre-condition for Put-step, and 

2. the post-condition for Put-step implies the post-condition for Put. 

The first proof obligation follows trivially from the definitions involved: 

(Put lemma #i)[93]M = 
rule valid_Put_step_empty_empty (chsz,buffsz.tick) = 

begin 
chsz >= 0 

and buffsz >= 1 
and not iscomm tick 

-> valid_Put_step(.<>.,.<>.,chsz, buffsz.tick) = true 

end valid_Put_step_empty_empty; 

This macro is invoked in definition 213. 

The second proof obligation is split according to the structure of the post-condition for Put. 
Note that the requirement that the trace be restricted to put^alpha(chsz.tick) follows trivially 
from the definition of valid-Put_step. 

(Put lemma #2)[94]M = 
rule Put_step_Put_not_over_capacity (cbuff,trl,tr2,chsz,buffsz,tick) = 

begin 
tr2 .<=. trl 

and valid_Put_step (cbuff, trl, chsz, buffsz.tick) 
-> Put_not_over_capacity (tr2, chsz, buffsz, tick) = true 

end Put_step_Put_not_over_capacity; 

This macro is invoked in definition 213. 

(Put lemma #3) [95] M = 
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rule put_step_valid_char_Put (cbuff,trl,tr2,chsz,buffsz,tick) = 

begin 
tr2 .<=. trl 

and valid_Put_step (cbuff,trl, chsz,buffsz, tick) 
-> valid_char_Put (tr2, chsz, tick) = true 

end put_step_valid_char_Put; 
This macro is invoked in definition 213. 

Proof Structure of Putjstep This level requires us to derive a set of requirements 
for poll-mid^and-outbit that allows us to prove that Put-Step satisfies its post-condition. 
poll-mid-and_outbit can assume that either a character reception or a bit transmission is possible; 
thus, the buffer is not empty and there is room to store a character. We know that valid-Put_step 
must remain invariant in either case. Furthermore, to prove that Put_step terminates, cntdwn must 
decrease to a value no less than zero. 

(poll-mid^ind-outbit specification)[96]M = 
initial buff_0=buff, st_0=st,cntdwn_0=cntdwn 
pre     cntdwn > 0 

and not nullp buff 
and buffsz*(chsz+2) >= (len (Contents)[143]('buff')) + chsz + 2 
and valid_Put_step ((Contents)[143]('buff'),(Trace)[163]('st'), 

chsz,buffsz,tick) 
post cntdwn < cntdwn.0 

and cntdwn >= 0 
and valid.Put.step ((Contents)[143]('buff'),(?Vace)[163]('st'), 

chsz.buffsz,tick) 
This macro is invoked in definition 88. 

Put-step may receive a character over mid or transmit the head of the buffer over outbit 
depending, in part, on the status of the internal buffer. The cases are identified in the proof of 
Put_step's post-condition: 

1. cntdwn becomes zero, in which case Put_step terminates with no change to the buffer or trace; 

2. cntdwn remains greater than zero and a character is received over mid, in which case Put_step 
terminates with the delimited character appended to the end of the buffer and the associated 
communication event appended to the end of the trace; and 

3. cntdwn remains greater than zero and a character is transmitted over outbit, in which case 
Put_step terminates with the head of the buffer deleted and the associated communication 
even appended to the end of the trace. 

Each of these cases generates a proof obligation in addition to that generated for proof of termination. 
That these are all of the cases can be seen by inspection of the post-condition of the procedures 
involved. We deal with each case in turn. Termination follows directly from the fact that cntdwn 
decreases each iteration and is bounded below by zero. 

The first case (1) is trivial since no change to the buffer or trace requires only that 
valid_Put_step hold initially, which is guaranteed by Put_step's pre-condition. 

The second case (2) requires us to prove the following theorem. We can assume that there is 
room for storing a character in the internal buffer since Put-step only permits receiving characters 
over mid when this is the case. 
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{valid JPut step lemma #J)[97]M = 
rule valid_Put_step_tack_mid (cbuff,trl,chsz,buffsz,tick,chr) = 

begin 
buffsz*(chsz+2) >= (len cbuff) + chsz + 2 

and cseq!is_char(chr,chsz) 
and valid_Put_step(cbuff,trl,chsz,buffsz,tick) 

-> valid_Put_step(cbuff " (startbit ]- (chr " .<stopbit>.)), 
trl " .<mid.chr>.,chsz,buffsz,tick) = true 

end valid_Put_step_tack_mid; 
This macro is invoked in definition 213. 

The third case (3) requires us to prove the following theorem. We can assume that the buffer 
is not empty since Put_step only permits transmitting bits over outbit when this is the case. 

(vaJitLPut-step iemma #2)[98]M = 
rule valid_Put_step_tack_outbit (b,cbuff,trl,chsz, buffsz,tick) - 

begin 
not null cbuff 

and (head cbuff) = b 
and valid_Put_step(cbuff,trl,chsz, buffsz,tick) 

-> valid_Put_step(tail cbuff,trl * .<outbit.b>., 
chsz, buffsz,tick) = true 

end valid_Put_step_tack_outbit; 
This macro is invoked in definition 213. 

Proof Structure of poll_mid-andjoutbit The proof of poll.mid.and_outbit is similar to the 
proof of Put-step since the same two communications are possible during its execution: sending a 
bit over outbit and receiving a character over mid. The invariant for the loop hinges on the boolean 
variables sent and rcvd, which indicate which if either communication has occurred. 

(poiLmicLaiid-outbit loop specification) [99]M = 
invariant cntdwn < cntdwn_0 

and cntdwn >= 0 
and chsz >= 0 
and buffsz >= 1 
and not iscomm tick 
and buff_0=buff 
and not  (sent and rcvd) 
and if rcvd and cntdwn > 0 then 

cseq!is_char((Contents)[143]('chr'),chsz) 

and (Trace)[163]('st') 
= <Trace)[163]('st_0') 

- .<mid.(Contente)[143]('chr')>. 

elseif sent and cntdwn > 0 then 
<Trace)[163]('st') 

= (Trace)[163]('st_0') 
-   .<outbit.head (Contents)[143]('buff')>• 

else (Trace)[163]('st') = (Trace)[163]('st_0') end if 

measure cntdwn 
This macro is invoked in definition 88. 
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The loop in pollJnid.and_outbit terminates when the polling process results in a successful 
communication. Proof of the post-condition on termination relies on the same two lemmas as the 
proof of Put .step: (valid.Pui.siep lemma #1) and (valid.Pui.siep lemma #£). 

The EVES proof of lemmas cited in this justification are documented in the put library model 
unit. D 
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Part III 

The Repeater Physical Design 
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Chapter 8 

Repeater Physical Architecture 

This chapter presents the physical CSP architecture for Rptr. The target for the physical architecture 
and design is the CSP design specified in [1]. We present in Section 8.1 an overview of the physical 
architecture including the primary responsibilities of the components ofthat architecture. Section 8.2 
translates the Rptr logical design described in SVerdi in Part II of this document to the syntax 
required by FDR. The FDR logical design is the CSP process specification to which the physical 
design must conform. Section 8.3 summarizes the critical requirements of the physical architecture. 
These requirements are derived from the top-level critical requirements described in Chapter 4. This 
derivation uses the fact that the Rptr logical design conforms to the requirements of Section 2.1 to 
simplify the physical architecture critical requirements. The critical requirements of the physical 
architecture were not derived directly from the logical architecture requirements since the logical 
architecture has a different structure than the physical architecture. 

8.1    Overview of the Physical Architecture 

outbit 

Figure 8.1: Repeater Physical Architecture 

As depicted in Figure 8.1, the Rptr physical architecture composes three processes: Rev, which 
receives and checks the parity of incoming characters; Str, which maintains the internal buffer; and 
Tx, which transmits those characters that passed the parity check. The internal channels datal and 
data2 are used to pass characters of even parity for transmission over outbit. The channels errl 
and err2 are used to relay status information, such as parity or framing error, to the operator. 

Assert 2.IP The environment does not send data over outbit, errl, or err2. 
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At the external interface, the Rptr physical design behaves the same as the Rptr design if you 
ignore communications over the error channel. This fact is, of course, the subject of the justification 
that the physical design conforms to the design constraints. From an internal perspective, the 
behavior of the Rptr physical design is a refinement of the the behavior of the Rptr logical design. 
For each delimited character received over inbit, Rev determines the parity of the character that 
the segment represents. A signal is sent over the error channels indicating whether the character 
received had a parity error (not even parity), a framing error (improper stopbit delimiter), or if 
no error occurred. If the character is of odd parity it is thrown out, and the reception of a new 
character is initiated. Otherwise, the startbit and stopbit are stripped off and the character is 
sent as an integer encoding over datal to Str. 

Assert 3.IP The environment does not send or receive data over datal or data2. 

Str has the capacity to store only a single character at a time. When Tx is ready, Str relays the 
character encoded as an integer over data2 to Tx. Tx decodes the character, adds the startbit and 
stopbit delimiters, and transmits the character in serial for over outbit. As in the logical design, 
Rptr's physical components are tightly synchronized. Rev cannot receive a new character until it 
has transmitted the character it is processing to Str. Str cannot accept another character from Rev 
until its buffer is empty. Finally, Tx cannot receive a character from Str until it has transmitted 
the character that it is processing over outbit. Note that this design implies that the size of the 
buffer, N, specified in the initial problem description equals three; each component has a capacity of 
one character. 

8.2    Translation of the Logical Design to FDR 

FDR places certain constraints on CSP descriptions to which the Rptr design currently does not 

conform: 

• Process descriptions that involve high level operators may not be parameterized. This implies 
that the parameters of low level process descriptions must be concrete. 

• The set of events that synchronize concurrent components must be explicit. Processes are 
composed with the [I X |] operator (where X is the set of events synchronized) rather than 
the II or the I ? I operators. 

• The set of events hidden for abstraction purposes must be explicit. The hiding operator \ is 
used to hide internal events rather than the I ? I operator. 

• Values that may be transmitted over channels are limited to integers or truth values. The char- 
acters transmitted over mid in the Rptr design must be encoded as integers before transmission 
by Get and decoded before transmission by Put. 

• The successful termination event in FDR is implicit. The parameter tick in the Rptr design 
is suppressed in the FDR specification. 

• Functions returning something other than a CSP process must be defined in ML. 

This section recasts the logical design of Part II to conform to these constraints in the syntax 
required by FDR and ML. The CSP process called Rptr in Part II is renamed RptrSpec in the FDR 
specification. The CSP process Rptr now represents the repeater physical design. The goal of the 
FDR verification will be to show that Rptr refines RptrSpec. 

Assert 8.1P traces Rptr  .<=.    traces RptrSpec 
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8.2.1    FDR Process Specification 

The alphabet of a CSP process in FDR is implicitly specified as the union of the set of communication 
events associated with all channels declared via the channel pragma declarations. 

(Rptr specification channel declarations)[100]M = 
pragma channel inbit, outbit  :  bit 
pragma channel mid  :  max_vals 

This macro is invoked in definition 215. 

The values that may be transmitted over a channel are strictly defined by the set of values 
specified in the channel pragma declarations. We limit the values that may flow over mid to integers 
between zero and fifteen, which restricts Rptr to process characters of at most four bits long, i.e., K 
<= 4. 

Assert 9P K <= 4. 

(Values transmitted over external dianneis)[101]M = 
bit = {0,1} 

This macro is invoked in definition 215. 

(Vaiues transmitted over mid)[102]M = 
max_vals = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} 

This macro is invoked in definition 215. 

The Rptr design was specified in Section 5.5 as the concurrent composition of Get and Put with 
internal event hiding, mid is the only channel on which Get and Put are synchronized and, thus, is 
the only internal channel whose communications are to be hidden. Note that we use the concrete 
values K and N-l as the character size and internal buffer size respectively. These values will be 
identified during later refinement. 

(FDR Rptr specification}[103]M = 
RptrSpec = Get(K)   [|{mid}|] Put(K,N-l,<>) \ {I mid  1} 

This macro is invoked in definition 215. 

The primary difference between the FDR process specification of Rptr's components and the 
design specified in Sections 6.1 and 7.1 is the transmission of integers, rather than characters, over 
mid. Characters are encoded as integers by Get via a function cnv_to_int and decoded by Put via 
a function cnv_to_int. 

(FDR Get specification)[104]M = 
Get(chsz) = 

inbit ? b -> if b == startbit 
then Inchar(<b>,chsz);Get(chsz) 
else Get(chsz) 

This macro is invoked in definition 215. 

(FDR definition of inciiar)[105]M = 
Inchar(ch,chsz) = 

if #(ch) <= chsz then 
inbit ? b -> Inchar(ch"<b>,chsz) 

else inbit ? b -> if    not odd_parity(ch) 
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and b == stopbit 
then mid ! cnv_to_int(tail(ch)) -> SKIP 

else SKIP 

This macro is invoked in definition 215. 

(FDR Put specification)[106]M = 
Put(chsz,buffsz,buff) = 

if null(buff) then 
mid ? i -> Put(chsz,buffsz, 

buff"(<startbit>"(cnv_to_char(<i,chsz>)*<stopbit>))) 
else if buffsz*(chsz+2) < #(buff) + chsz + 2 

then outbit   ! head(buff) -> Put(chsz,buffsz,tail(buff)) 

else 
outbit   ! head(buff) -> Put(chsz,buffsz,tail(buff)) 

[] mid ? i -> Put(chsz,buffsz, 
buff"(<startbit> 

"(cnv_to_char(<i,chsz>)"<stopbit>))) 

This macro is invoked in definition 215. 

8.2.2    ML Support Definitions 

Recall that FDR requires that support functions, such as odd-parity and the character coercion 
functions, to be denned in ML. These functions are rather awkward to specify since FDR requires 
that the parameters to ML functions be of type ML expression and the return type be either ML 
expression or bool. FDR provides functions that allow coercion of expressions to/from atoms 
and atoms to/from int as described in Section 3.3.1 Using these coercion functions, odd-parity is 
specified as follows: 

(ML definition of odd.pa.nty)[107]M = 
fun xor(x.y) = ( (x orelse y) 

andalso not(x andalso y));; 

fun is_odd ch = 
if null ch then false 
else (xor ((CheckAtom(hd ch)=InjectNum(l)), 

is_odd (tl ch)));; 

fun odd_parity [EXPseqcomp(ch,[])] = 

is_odd(ch);; 

This macro is invoked in definition 217. 

Characters are converted to integers by simply calculating the decimal value of the binary 
representation of the bit sequence representing the character. 

(ML definition of cnv_to_int)[108]M = 
fun char_to_int ch = 

if null ch then 0 
else NumberOf(CheckAtom(hd ch)) 

+ 2*char_to_int(tl ch);; 

fun cnv_to_int  [EXPseqcomp(ch,[])] = 
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(Atom(InjectNum(char_to_int(ch))));; 
This macro is invoked in definition 217. 

Converting integers to characters is the inverse of the above operation. 

(ML definition oi"cnv.to.char)[109]M = 
fun int_to_char (i.sz) = 

if i<l    andalso sz<l then [] 
else if  i<l then  ([Atom(InjectNum(0))]  «I int_to_char(i,sz-l)) 
else ([Atom(InjectNum(i mod 2))]  0 int_to_char(i div 2,sz-l));; 

fun cnv_to_char [EXPseqcomp([i,sz],[])] = 
EXPseqcomp(int_to_char(NumberOf(CheckAtom(i)), 

KumberOf(CheckAtom(sz))),  □);; 

This macro is invoked in definition 217. 

8.3    Summary of the Physical Architecture Critical Require- 
ments 

The following critical requirements were derived from the top-level Rptr critical requirements of 
Chapter 4 and the assumptions and assertions identified in throughout this chapter. 

8.3.1    Assumptions 

1 Power is continuously supplied to Rptr. 

2.IP The environment does not send data over outbit, errl, or err2. 

3.IP The environment does not send or receive data over datal or data2. 

8.3.2    Assertions 

Informal Assertions 

1 If Rptr is continuously powered, Rptr and its environment can communicate only via external 
channels; communication between Rptr sub-processes can take place only over channels shared 
by the alphabets of the sub-processes. 

2 Rptr does not send data over inbit. 

3 Communication between Rptr sub-processes must be uni-directional and involve exactly two 
sub-processes. 

4 The implementation of communications over a channel in the Rptr process description must 
synchronize sender and receiver. 

5 Rptr must not engage in unguarded recursion nor engage in an infinite sequence of hidden 

events. 
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Formal Assertions 

6 Rptr is a CSP process. 

7 Rptr's alphabet is defined by Repjilpha.ext. 

8.IP traces Rptr  .<=.    traces RptrSpec 

9P K <= 4 
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Chapter 9 

Repeater Detailed Physical Design 

This chapter describes the Rptr CSP process implementation in FDR and the justification that this 
physical design satisfies the critical requirements identified in the last chapter. This justification 
generates a set of critical requirements that must be satisfied of any further refinement of Rptr. 

9.1    Formal Specification of the Physical Design 

The Rptr physical design requires defining four new channels: two for passing characters between the 
components and two one-bit channels representing the two-bit error channel. We use two channels 
to represent the error channel for simplicity. We hide these four channels in the Rptr process 
implementation since they did not occur in the Rptr design. The models of refinement in CSP all 
require that the set of traces of the process implementation be a subset of the set permitted by the 
process specification. 

(Additional channels of the Rptr physical design)[110]M = 
pragma channel datal, data2  :  max_vals 
pragma channel errl,  err2  : bit 

This macro is invoked in definition 215. 

(Rptr physical architecture) [111]M = 
Rptr = Rev   [ I {datal} I ]   (Str  [Kdata2}|]  Tx) 

\ {|  datal,data2,errl,err2 |} 
This macro is invoked in definition 215. 

Once the Rev component receives a startbit it begins processing the next K-bit character. The 
process Data receives all but the startbit and first bit of the character eh. Once Data has received 
K-2 bits (making a total of K bits received including startbit), Data initiates reception of the last 
bit of the character. 

{Definition of Rev) [112]M = 
Rev = 

inbit ? b -> if b != startbit then Rev 
else inbit ? b -> Data(<b>,0,b == 1) 

Data(ch,cnt,parity_err) = 
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if cnt < K-2 then 
{Accept the next bit and continue)[113] 

else {Accept the last bit and continue)[115] 
This macro is invoked in definition 215. 

A running tally of the parity status of the incoming character is maintained by Data using a 
function of zero arguments called prty_xor. The Boolean variable parity.err is true if and only if 
the character thus far received has odd parity. 

{Accept the next bit and continue)[113]M = 
inbit ? b -> Data(ch~<b>,cnt+l,prty_xor) 

This macro is invoked in definition 112. 

{Definition of prtj_xor)[l 14]M = 
prty_xor =  (parity.err or (b == 1)) 

and (not  (parity.err and (b == 1))) 
This macro is invoked in definition 215. 

Once the last bit of the character has been received, the final delimiting bit is received and 
stored in the variable f rame_err, is received. Output signals the error status of the character just 
received and transmits the character over mid if no error is indicated. 

{Accept the last bit and continue)[115]M = 
inbit ? b -> Stop_bit(ch"<b>,prty_xor) 

This macro is invoked in definition 112. 

{Definition of Stop.bit)[ll6]M = 
Stop_bit(ch,parity.err) = 

inbit ? frame.err -> Output(ch,parity.err,frame.err) 

Output(ch,parity_err,frame.err) = 
if parity.err then ErrOut(0,l);Rcv 
else if frame.err != stopbit then ErrOut(l.O);Rcv 
else ErrOut(O.O); datal!cnv_to_int(ch) -> Rev 

Err0ut(bl,b2) = 
errl ! bl -> err2 ! b2 -> SKIP 

This macro is invoked in definition 215. 

Str is a simple one-place buffer. 

{Definition of Str)[U7]M = 
Str = datal ? i -> data2  !  i -> Str 

This macro is invoked in definition 215. 

Tx begins at Input by waiting to input an integer over data2, after which it decodes the integer 
returning the character. Input recursively transmits the delimited character bit by bit over outbit. 

Once complete Input starts over again. 

{Definition of Tx)[118]M = 
Tx = Input(<>,K+2) 

Input(ch,outct) = 
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if outet == K+2 then data2?i -> Input(cnv_to_char(<i,K>),0) 

else if outct == 0 then outbit ! startbit -> Input(ch,outct+l) 

else if outct == K+l then outbit ! stopbit -> Input(ch,outct+1) 

else outbit ! head(ch) -> Input(tail(ch),outct+l) 

This macro is invoked in definition 215. 

9.2    Justification of the Physical Design 

This section presents an intuitive justification that the FDR Rptr physical design satisfies the critical 
requirements of Rptr as described in Section 8.3. We argue informally that the physical design 
satisfies the informal assertions. We use a combination of informal and formal techniques to argue 
that the physical design satisfies the formal assertions. In particular we use the FDR model checker 
to demonstrate that the Rptr physical design satisfies the constraints of the Rptr specification. 

9.2.1 Assumptions Argument 

Assump 1: 

No change. 

Assump 2.1P: 

No change. 

Assump 3.1P: 

No change. 

9.2.2 Assertions Argument 

Assert 1: 

By inspection of the Rptr physical design, the only way that Rptr can communicate with its en- 
vironment is through the inbit, outbit, errl and err2 channels. Likewise, the components can 
communicate only through the channels defined. This requirement must be true of any refinement 
of the physical design and so remains in the list of critical requirements. 

Assert 2: 

By inspection, Rev is the only component with access to inbit and Rev does not transmit data over 

inbit. D 

Assert 3: 

Trivial by inspection. D 
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Assert 4: 

This requirement must be true of any refinement of the physical design and so remains in the list of 

critical requirements. 

Assert 5: 

The non-divergence of Rptr is verifiable either through inspection of the physical design or, more 
formally, using FDR. FDR verification proceeds by showing that the process Rptr is a proper 
refinement of the process CHAOS({ I inbit.outbit I}. This process is the most non-deterministic non- 
divergent process over the alphabet of bit communications over inbit and outbit. This verification 
proceeds fully automatically. For completeness, we also verified that RptrSpec is non-divergent. D 

Assert 6: 

We must argue that the FDR model of CSP processes has the properties that our EVES theory 
requires of those processes. This argument is necessarily informal since the correspondence between 
the EVES theory and the FDR model of CSP is informal. 

From the definition of isprocess in the pr model library unit, we must show that 

1. the empty trace is a trace of Rptr, 

2. the traces of Rptr are restricted to events in Repj.lpha_ext(chsz,tick), and 

3. any prefix of a trace of Rptr is also a trace of Rptr. 

The traces of a CSP process are the same in FDR as they are in the EVES theory. Thus, the empty 
trace is a trace of every process (1) and all prefixes of a trace of a process is also a trace of that 
process (3). (2) holds as a consequence of Assert 7.1P which is proved next. D 

Assert 7: 

Rptr hides all events that are not communications of bit values over inbit or outbit. Since 
the successful termination event tick is implicit in FDR, the alphabet of Rptr is exactly 
Repjilpha_ext(tick). D 

Assert 8.1P: 

This assertion is verified fully automatically by FDR but the result depends on the values of the 
character size K and the maximum character storage capacity N. The FDR Traces Refinement checks 
are successful for values in the range 2<=K<=4 and N>=3. 

Assert 9.1P 2<=K<=4 

The upper bound on K is due to the need in the FDR specification to permit the communication 
of only a finite set of values over individual channels. Thus, values communicated over mid were 
constrained to lie between zero and fifteen. The algorithm used to convert between integers and 
characters implies that this constraint limits the character size to a maximum of four bits. Although 
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this limit may seem rather arbitrary, the larger the character size the longer and the more memory it 
takes for the FDR verification to terminate. A character size of four was the longest possible before 
the state explosion exhausted memory on the machine on which the verification was performed. 

The lower bound on K is due to the structure of the design of Rev. Rev requires that at least one 
bit of the character be received immediately after the startbit and that an additional character be 
received immediately before the stopbit. A Traces Refinement check fails for values 0<=K<2 since 
the design always receives at least two bits (in addition to the startbit and stopbit) whereas the 
specification receives exactly K bits. There exist traces of the process implementation that are not 
traces of the process specification. 

N is a parameter only of the Rptr process specification. The process implementation assumes 
that the maximum capacity of Rptr is exactly three characters - each component can be process- 
ing/storing at most one character at a time. The specification, on the other hand, assumes only 
that the buffer be able to store at least one character. For values of K less than three, the process 
implementation exhibits behavior not permitted by the process specification — the Traces Refine- 
ment check in this range fails. The Traces Refinement check succeeded for N = 3 and N = 4 before 
the state explosion caused FDR to exhaust memory. 

To test the limits of the Rptr physical design we applied the more sophisticated Failures Diver- 
gences Refinement check as well. The check succeeded for the same values of K as before but only 
for N = 3. The reason for this is clear. The Failures Divergences Refinement model requires that 
the implementation not refuse to engage in any event in which the specification may engage. For 
values of H greater than three, the implementation refuses to receive greater than three characters 
before transmitting a character. The specification does not refuse to receive characters in these 
circumstances. This is as one would expect for models of CSP that permit verification of liveness as 
well as safety properties. D 

Assert 9P using Assert 9.IP: 

As described above the FDR verification of Rptr succeeded for values 2<=K<=4. This generates 
Assert 9.IP. D 

9.3    Summary of the Implementation Critical Requirements 

The following assumptions must be validated of any environment in which Rptr is embedded. The 
following assertions must be proven of any refinement of the Rptr physical design. 

9.3.1    Assumptions 

1 Power is continuously supplied to Rptr. 

2.IP The environment does not send data over outbit, errl, or err2. 

3.IP The environment does not send or receive data over datal or data2. 

81 



9.3.2    Assertions 

Informal Assertions 

1 If Rptr is continuously powered, Rptr and its environment can communicate only via external 
channels; communication between Rptr sub-processes can take place only over channels shared 
by the alphabets of the sub-processes. 

4 The implementation of communications over a channel in the Rptr process description must 
synchronize sender and receiver. 

9.IP 2<=K<=4 
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Part IV 

Supporting Definitions 
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Chapter 10 

Character Sequence Theory 

The formalization of the repeater critical requirements is based on a theory, called cseq, for par- 
titioning a bit stream into a sequence of characters and for reasoning about the bit stream in an 
abstract manner. The theory also includes facilities for reasoning about the parity of characters. 
Characters include all chsz-length sequences of bits. 

{Definition of charset)[119]M = 
function char_set(chsz) = 
measure chsz 

begin 
if chsz > 0 
then pr!map_tack(0, char_set(chsz - 1)) 

++ pr!map_tack(l, char_set(chsz - 1)) 

else unit .<>. 
end if 

end char_set; 
This macro is invoked in definition 201. 

All characters processed by Rptr are delimited by a startbit/stopbit combination. These 
values are implemented as SVerdi functions, startJbit and stopJbit, with no parameters. Since 
these values are really constants we define nilf ix aliases for each to make them easier to use. To 
avoid confusion, henceforth, we refer to a character that is delimited appropriately as a delimited 
character, the term character simply refers to the entity between the delimiters. 

{Definitions of startbit/stopbit) [120] = 
function start_bit  ()  = 
begin 

0 
end start_bit; 
nilfix startbit start_bit; 

function stop_bit  ()  = 
begin 

1 
end stop_bit; 
nilfix stopbit stop_bit; 

This macro is invoked in definition 201. 
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10.1    Primary Operations 

The primary operations provided by cseq are to identify character sequences (is_char_seq), to 
convert between bit streams and character sequences (char_seq and flatten), and to determine 
the current (partial) character being processed (current.char). These functions are used many 
times in the definition and decomposition of the repeater critical requirements. 

(mid allows only chars) [121]M = 
cseq!is_char_seq(trl 1= mid.chsz) 

This macro is invoked in definitions 64, 69, 73, and 91. 

(Bits to chars)[122](ol)M = 
cseq!char_seq(ol,chsz) 

This macro is invoked in definitions 12, 15, 19, 20, 37, 48, and 49. 

(mid chars to bits)[123]M = 
cseq!flatten(trl   |= mid.chsz) 

This macro is invoked in definition 92. 

(Partial char over inbit)[124](ol)M = 
cseq!current_char(ol  |= inbit,chsz) 

This macro is invoked in definitions 64, 73, 73, and 75. 

We begin by defining each of the above functions in terms of a set of secondary operations. 
is.char.seq describes a trivial predicate that holds if and only if each element of the sequence that 
it is passed is a character, via the is_char call. 

(Definition of is_diar_seq)[125]M = 
function is_char_seq (s,  chsz) = 

measure len s 
begin 

if null s then true 
else is_char(head s.chsz) 

and is_char_seq(tail s.chsz) 
end if 

end is_char_seq; 
This macro is invoked in definition 199. 

char_seq begins by searching through the bit stream for the first startbit. Once found, 
a decision must be made whether the bit sequence starting at that startbit begins with a valid 
delimited character, i.e., whether has_char (s, chsz) returns true. If so, the character is retrieved, 
via the char Jiead call, and the search continues by recurring on all but the first delimited character, 
via the first char-tail call. Otherwise, the malformed delimited character (which may be merely 
an incomplete delimited character) is discarded, via the second char-tail call, and the search 
continues. The recursion bottoms out when the bit sequence is null, returning the empty sequence. 
This process constructs the chsz-length character sequence formed from the bit sequence s. 

(Definition of charseq)[126]M = 
function char_seq(s,  chsz) = 

measure len s 
begin 

if not null s 
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and not head(s) = startbit 

then char_seq(tail s, chsz) 

elseif has_char(s, chsz) 
then char_head(s, chsz) ]- char_seq(char_tail(s, chsz), chsz) 

elseif not null s 
then char_seq(char_tail(s, chsz), chsz) 

else .<>. end if 

end char_seq; 
This macro is invoked in definitions 199 and 201. 

If flatten is passed a valid character sequence, it should reverse the effect of char_seq. This 
is done by appropriately delimiting each character of the sequence it is passed. 

(Definition of flatten)[127]M = 
function flatten (cs.chsz) = 

measure len cs 
begin 

if null cs 
or not is_char(head cs.chsz) then .<>. 

else (startbit ]- (head cs)) * (stopbit ]- flatten(tail cs, chsz)) 

end if 
end flatten; 

This macro is invoked in definition 199. 

current .jchar traverses a bit sequence until it gets to a delimited character that is only partially 
specified. It ignores all false starts and fully specified characters. If no partial character remains at 
the end of the bit sequence after its traversal, the empty sequence is returned. 

(Definition of current-char) [128]M = 
function current_char (s.chsz) = 

measure len s 
begin 

if not null s 
and not head(s) = startbit 

then current_char(tail s, chsz) 

elseif    not null s 
and (len s) >= chsz+2 

then current_char(char_tail(s, chsz), chsz) 

elseif not null s 

then s 
else .<>. end if 

end current_char; 

This macro is invoked in definitions 199 and 201. 

10.2    Secondary Operations 

10.2.1    Definition of has_char 

has_char determines whether a bit sequence begins with a valid delimited character. It does this by 
asking whether there is some character that when delimited by a startbit/stopbit forms a prefix 

of the bit sequence. 

86 



(Definition of has.char)[l29] = 
function has_char (s,  chsz) = 
begin 

some c: is_char (c,  chsz) 
and startbit ]- (c "   .<stopbit>.)   .<=.  s 

end has_char; 
This macro is invoked in definition 201. 

10.2.2 Definition of is_char 

is_char determines whether a given sequence c is a chsz-length character. This requires only that 
c be a sequence of only 0's and l's and be exactly chsz in length. 

(Definition of is.char) [130] = 
function is_char (c, chsz) = 

measure len c 
begin 

if    chsz > 0 
and not null c 

then   head c in -{0, 1}- 
and is_char (tail c, chsz - 1) 

else    c = .<>. 
and chsz = 0 end if 

end is_char; 
This macro is invoked in definition 201. 

10.2.3 Definition of char_head 

char .head returns the first character of a bit sequence whether the delimited character representing 
the character is valid or not. char .head (s, chsz) simply returns all but the delimiters of the first 
chsz + 2 bits of the bit sequence s. By default, we return the empty sequence for all values of chsz 
less than 0. 

(Definition of char-head) [131] = 
function char_head (s,  chsz) = 
begin 

if chsz >= 0 
then tail (nlast tr!get_first.n (s, chsz +2)) 
else .<>. end if 

end char_head; 
This macro is invoked in definition 201. 

10.2.4 Definition of char_tail 

char .tail returns all but the first character of a bit sequence (including delimiters) independent 
of the first character's validity, char-tail (s, chsz) removes the first chsz + 2 bits of the bit 
sequence s. By default, we delete only two bits (the bits representing the delimiters) for all values 
of chsz less than 0. 
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(Definition of char.tail)[lZ2] = 
function char_tail (s,  chsz)  = 
begin 

if chsz >= 0 
then tr!remove_first_n (s, chsz + 2) 
else tr!remove_first_n (s, 2) end if 

end char_tail; 
This macro is invoked in definition 201. 

10.3    Set of even parity characters 

cseq also contains the definition of the subset of characters that have even parity. A character is of 

even parity if and only if the sum of its bits is even. 

(Set of even parity characters) [133]M = 
cseq!even_parity_chars (chsz) 

This macro is invoked in definitions 14, 19, 36, and 38. 

(Definition of even.parity.chars)[lS4]M = 
zf function even_parity_chars(chsz) = 
begin 

{ c in char_set(chsz)   I   even(sum(c)) } 
end even_parity_chars; 

This macro is invoked in definitions 199 and 201. 

(Definition of even) [135]M = 
function even(i) = 
begin 

i mod 2=0 
end even; 

This macro is invoked in definitions 199 and 201. 

(Definition of sum) [136]M = 
function sum(s) = 

measure len s 
begin 

if null s 
then 0 
else head(s) + sum(tail s)  end if 

end sum; 
This macro is invoked in definitions 199 and 201. 



Chapter 11 

Character Storage Module 

The procedural approach to modeling CSP sequential processes using EVES requires using only 
executable SVerdi constructs. Although traces are useful for storing characters in the specifications 
about Rptr, they cannot be used in SVerdi procedure definitions since they are not executable. This 
section characterizes a module called bf r that includes a set of operations on a data type called 
buffer used to store sequences of characters. 

(Buffer type)[137]M = 
bfr(buffer 

This macro is invoked in definitions 56, 57, 58, 62, 86, 87, 87, 88, 88, 176, 178, 181, 182, 193, and 193. 

{Definition stub for buffer type)[138]M = 
type buffer; 

This macro is invoked in definition 197. 

Characters and sequences of characters are represented simply as sequences of values of type 
bit. A function is provided to convert a bit to a one or a zero. Two bits are equal if and only if 
they are equal after conversion. 

{Bit type)[139]M = 
bfr!bit 

This macro is invoked in definitions 56, 58, 62, 167, 169, 172, 173, 193, and 193. 

{Definition stub for bit type)[140]M = 
type bit; 

This macro is invoked in definition 197. 

{Definition stub for cnv_bit) [141]M = 
typed function cnv_bit (b  : bit) returns int; 

This macro is invoked in definition 197. 

{Definition for equality of bits) [142]M = 
typed function bit_equal (bl,b2 : bit) returns bool = 

begin 
cnv_bit(bl) = cnv_bit(b2) 

end bit_equal; 
This macro is invoked in definition 197. 

89 



Objects of type buffer are isomorphic to traces of bits in the sense that there is a mapping from 
buffers to traces of bits that is one-to-one and onto. We call this mapping contents; we call its 
inverse rebuff. We specify the properties of buff er only at its interface since we are not concerned 
at this point with an implementation. Of course, any implementation would require that buffers be 
bounded which would imply a more constrained interface. 

(Contents)[143](ol)M = 
bfr!contents(ol) 

This macro is invoked in definitions 72, 72, 72, 72, 72, 76, 76, 90, 90, 96, 96, 96, 99, 99, 99, 175, 175, 176, 176, 178, 178, 180, 

181, and 182. 

(Buffer-Trace conversions) [144]M = 
function contents (buff); 

function rebuff (tr); 

grule contents_is_trace (buff) = 

begin 
typeof(buff) = bufferQ 

-> contents (buff) **? -f.0,l>- 
end contents_is_trace; 

rule rebuff_is_buffer (tr) = 

begin 

tr -*? -{0,1}- 
-> typeof rebuff(tr) = buffer () 

end rebuff_is_buffer; 

rule contents_rebuff (tr) = 

begin 

tr "*? -{0,1>- 
-> contents (rebuff (tr)) = tr 

end contents_rebuff; 

grule cnv_bit_is_0_or_l (b) = 

begin 
typeof(b) = bit() 

-> cnv_bit(b) in -{0,1}- 

end cnv_bit_is_0_or_l; 

This macro is invoked in definition 197. 

The isomorphic nature of buffers and traces of bits implies that each operation on traces has a 
counterpart for buffers. As a notational convenience we name each operation on a buffer similar to 
its counterpart. In particular, operations named by a sequence of alphabetic characters are modified 
by appending the letter p onto the end, e.g., tailp for the tail of a buffer. Operations named by 
a special symbol are modified by delimiting the symbol with backward quote marks, e.g., '"' for ". 

(Buffer operations)[145]M = 
typed function start_bitp () returns bit; 
typed function stop.bitp () returns bit; 
typed function is_emptyp (buff  : buffer) returns bool; 
typed function emptyp () returns buffer; 
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typed function tackp (b : bit, buff : buffer) returns buffer; 

typed function first_eventp (buff : buffer) returns bit; 

typed function but.firstp (buff : buffer) returns buffer; 

typed function appendp (buffi,buff2 : buffer) returns buffer; 

typed function lengthp (buff : buffer) returns int; 

This macro is invoked in definition 197. 

(Buffer operation abbreviations) [146]M = 
nilfix startbitp start_bitp; 
nilfix stopbitp stop_bitp; 
delim ","; 
delim ">.'"; 
plist "'.<"  ,  >.' tackp emptyp; 
prefix nullp is_emptyp 18; 
infixr •"]-"' tackp 24; 
prefix headp first_eventp 20; 
prefix tailp but.firstp 22; 
infix •"-"• appendp 22; 
prefix lenp lengthp 16; 
infix "'='" bit.equal 16; 

This macro is invoked in definition 197. 

The above definitions allow us to define the following special macros. 

(IVace of single startbit)[147]M = 
'.<startbitp>.' 

This macro is invoked in definition 56. 

(b is startbit)[148]M = 
b  '='  startbitp 

This macro is invoked in definition 56. 

(b is stopbit)[149]M = 
b  '='  stopbitp 

This macro is invoked in definition 62. 

(Empty buffer)[150]M = 

This macro is invoked in definition 86. 

(buff is empty)[151]M = 
nullp buff 

This macro is invoked in definition 87. 

(tail of buff')[152]M = 
tailp buff 

This macro is invoked in definitions 87 and 88. 

(tail of cAr)[153]M = 
tailp chr 

This macro is invoked in definitions 62 and 179. 
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(Append b onto end of cnr)[154]M = 
chr  '-'   *.<b>.' 

This macro is invoked in definition 58. 

(Append delimited chr onto end of buff)[155]M = 
buff  '**   (startbitp ']-'   (chr  '"'   '.<stopbitp>.')) 

This macro is invoked in definitions 87 and 88. 

(len of buff )[156]M = 
(lenp buff) 

This macro is invoked in definition 87. 

(Jen of chr) [157]M = 
(lenp chr) 

This macro is invoked in definition 58. 

As mentioned there is a one to one correspondence between the operations on buffers and the 
operations on traces of bits. This correspondence is specified as a sequence of rules that are assumed 
without proof. These rules are the natural ones expected. 

(Buffer operation properties)[158]M = 
rule startbitp_is_startbit () = 

begin 
cnv_bit(startbitp) = startbit 

end startbitp_is_startbit; 

rule stopbitp_is_stopbit ()  = 
begin 

cnv_bit(stopbitp) = stopbit 
end stopbitp_is_stopbit; 

rule emptyp_is_empty () = 
begin 

'.<>.'  = rebuff(.<>.) 
end emptyp_is_empty; 

rule nullp_is_null (buff) = 
begin 

typeof(buff) = buffer () 
->  (nullp buff) = null contents(buff) 

end nullp_is_null; 

rule tackp_is_tack (b.buff) = 
begin 

typeof(b) = bit  () 
and typeof(buff) = buffer () 

->  (b  ']-' buff) 
= rebuff(cnv_bit(b) ]- contents(buff)) 

end tackp_is_tack; 

rule headp_is_head (buff) = 
begin 
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typeof(buff) = buffer () 

and not null contents(buff) 

-> cnv_bit (headp buff) = head (contents (buff)) 

end headp_is_head; 

rule tailp_is_head (buff) = 

begin 
typeof(buff) = buffer () 

and not null contents(buff) 
-> (tailp buff) = rebuff(tail contents(buff)) 

end tailp_is_head; 

rule appendp_is_append (buff1,buff2) = 

begin 
typeof(buffi) = buffer () 

and typeof(buff2) = buffer () 
-> (buffi '"' buff2) = rebuff(contents(buffl) * contents(buff2)) 

end appendp_is_append; 

rule lenp_is_len (buff) = 

begin 
typeof(buff) = buffer () 

-> (lenp buff) = len contents(buff) 

end lenp_is_len; 

This macro is invoked in definition 197. 
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Chapter 12 

Base Machine Interface 

The underlying machine on which we model CSP sequential processes keeps track of the status of 
relevant communication channels and the values that have been transmitted over those channels. 
This section describes an SVerdi library unit called mach that characterizes the interface to this 

machine. 

The state of a sequential process is characterized by a machine variable of type state. The only 
way this variable can be accessed or modified is by the facilities provided by mach. The structure of 
the state data type is hidden from any units using mach. 

(State type) [159]M = 
mach!state 

This macro is invoked in definitions 55, 56, 57, 58, 62, 86, 87, and 88. 

(Definition stub for state type)[160]M = 
type state; 

This macro is invoked in definitions 193 and 195. 

{Event type) [161]M = 
mach!event 

This macro is invoked in definitions 55, 56, 57, 58, 62, 86, 87, and 88. 

(Definition stub for event type)[162]M = 
type event; 

This macro is invoked in definitions 193 and 195. 

For specification purposes, mach provides access to the current trace of each sequential process 

given that process's current state. 

(Trace) [163] (ol)M = 
mach!hist(ol) 

,   j •    j c   ■»•        E[   «   KK   ««   fil  fiq   fi<?  79   7?   72   72   76  76   76  86   86, 86, 90, 90, 96, 96, 99, 99, 99, This macro is invoked in definitions 55, 55, 55, 63, bd, bd, bd, u, it, it, <*, 10, ID, IO, ou, ™, ou, *u,      ,      ,      ,      ,      .      , 

99, 99, and 99. 

(Function returning the current process trace)[164]M = 
function hist  (st); 
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grule history_is_trace (st) = 

begin 

istrace hist (st) 

end history_is_trace; 

This macro is invoked in definitions 193 and 195. 

mach provides facilities to send bits over channels. As in the specification, channel identifiers 
are simply represented as integers. The variable cntdwn, which serves as the measure for the loop, 
represents an upper bound on the number of times the channel is to be polled before the communi- 
cation is aborted. Note that the invariant for the loop of snd-bit is the same as the post-condition 
for the polling routine, cntdwn must decrease each iteration and be bounded below by zero. The 
bit is sent only if the variable sent is true and cntdwn is greater than zero; otherwise no change 
to the trace is incurred. The primary difference between snd-bit and poll_snd_bit below is that 
snd-bit guarantees that the bit is sent as long as cntdwn does not reach zero. poll_snd_bit polls 
the channel to determine whether a bit may be sent and, if so, sends it. 

(outbit ! head of buff)[165]M = 
mach!snd_bit(st,outbit,headp buff,cntdwn) 

This macro is invoked in definition 87. 

(snd-bit specification)[166]M = 
initial st_0=st,cntdwn_0=cntdwn 

pre cntdwn > 0 
post    cntdwn < cntdwn_0 

and cntdwn >= 0 
and (if cntdwn>0 then 

hist(st) = hist(st_0) " .<chn.bfr!cnv_bit(b)>. 

else hist(st)=hist(st_0) end if) 

This macro is invoked in definitions 167 and 193. 

(Definition of snd.bit)[167]M = 
procedure snd_bit  (mvar st   :   state, 

lvar chn  :   int, 
lvar b  :   (Bit type)[139], 
pvar cntdwn  :   int) = 

(snd-bit specification) [166] 
begin 

pvar sent   :  bool  := false 
poll_snd_bit(st,chn,b,sent,cntdwn) 
loop 

invariant cntdwn < cntdwn_0 
and cntdwn >= 0 
and if sent and cntdwn>0 

then hist(st) = hist(st.O) "   .<chn.bfr!cnv_bit(b)>. 
else hist(st)=hist(st_0) end if 

measure cntdwn 
exit when sent or cntdwn=0 
poll_snd_bit(st,chn,b,sent,cntdwn) 

end loop 
end snd_bit; 

This macro is invoked in definition 195. 
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(Poll outbit to send ßrst of buff)[168]M = 
mach!poll_snd_bit(st,outbit,headp buff,sent,cntdwn) 

This macro is invoked in definition 88. 

(Definition of pollsnd.bit)[m]M = 
procedure poll_snd_bit (mvar st   :   state, 

lvar chn  :   int, 
lvar b  :   {Bit type)[139], 
pvar sent  :  bool, 
pvar cntdwn  :  int) = 

initial st_0=st,cntdwn_0=cntdwn 
pre cntdwn > 0 
post cntdwn < cntdwn_0 

and cntdwn >= 0 
and if sent and cntdwn > 0 

then hist(st) = hist(st_0)  "   .<chn.bfr!cnv_bit(b)>. 
else hist(st)=hist(st_0) end if; 

This macro is invoked in definitions 193 and 195. 

mach also provides facilities to receive bits. This specification is very similar in structure to 
that of snd_bit above. The primary difference is that rcv_bit and poll_rcv_bit guarantee that 
the object received is in fact a bit. 

(inbit ? b)[170]M = 
mach!rcv_bit(st,inbit,b,cntdwn) 

This macro is invoked in definitions 56, 58, and 62. 

(rcv.bit specification)[171]M = 
initial st_0=st,cntdwn_0=cntdwn 

pre cntdwn > 0 

post    cntdwn < cntdwn_0 

and cntdwn >= 0 

and (if cntdwn > 0 
then hist(st) = hist(st_0) * .<chn.bfr!cnv_bit(b)>. 

else hist(st)=hist(st_0) end if) 

This macro is invoked in definitions 172 and 193. 

(Definition of rcv.bit) [172]M = 
procedure rcv_bit (mvar st  :  state, 

lvar chn  :  int, 
pvar b :   (Bit type) [139], 
pvar cntdwn :   int) = 

(rcv.bit specification) [171] 
begin 

pvar rcvd  :  bool  := false 
poll_rcv_bit(st,chn,b,rcvd,cntdwn) 
loop 

invariant    cntdwn < cntdwn_0 

and cntdwn >= 0 
and if rcvd and cntdwn > 0 

then hist(st) = hist(st_0) 
* .<chn.bfr!cnv_bit(b)>. 
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else hist(st)=hist(st_0) end if 

measure cntdwn 

exit when rcvd or cntdwn=0 

poll_rcv_bit(st,chn,b,rcvd,cntdwn) 

end loop 

end rcv_bit; 

This macro is invoked in definition 195. 

(Definition of poiLrcv.bit) [173]M = 
procedure poll_rcv_bit (mvar st  :   state, 

lvar chn :   int, 
pvar b  :   {Bit type) [139], 
pvar rcvd  : bool, 
pvar cntdwn  :   int)  = 

initial st_0=st,cntdwn_0=cntdwn 
pre cntdwn>0 
post cntdwn < cntdwn_0 

and cntdwn >= 0 
and if rcvd and cntdwn > 0 

then hist(st) = hist(st.O)  "   .<chn.bfr!cnv_bit(b)>. 
else hist(st)=hist(st_0) end if; 

This macro is invoked in definitions 193 and 195. 

mach provides facilities to send and receive characters very similar to those provided to send 
and receive bits. The primary difference is that, on reception, the character size chsz is passed and 
the predicate cseqüs-char is guaranteed to hold for the character received. 

{mid ? chr)[174]M = 
mach!rcv_char(st,mid,chr,chsz,cntdwn) 

This macro is invoked in definition 87. 

{rcv_char specification)[175]M = 
initial st_0=st,cntdwn_0=cntdwn 

pre cntdwn > 0 
post    cntdwn < cntdwn_0 

and cntdwn >= 0 
and (if cntdwn > 0 

then    cseq!is_char((Contents)[143]('chr'),chsz) 

and hist(st) = hist(st_0) " .<chn.(Contents)[143]('chr')>. 

else hist(st)=hist(st_0) end if) 

This macro is invoked in definitions 176 and 193. 

{Definition of rcv.char)[176]M = 
procedure rcv_char (mvar st  :   state, 

lvar chn :  int, 
pvar chr  :   (Buffer type) [137], 
lvar chsz  :  int, 
pvar cntdwn :   int) = 

(rcv.char specification) [175] 
begin 

pvar rcvd :  bool  := false 
poll_rcv_char(st,chn,chr,chsz,rcvd,cntdwn) 
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loop 
invariant    cntdwn < cntdwn_0 

and cntdwn >= 0 
and if rcvd and cntdwn > 0 

then    cseq!is_char((Contents)[143]('chr'),chsz) 

and hist(st) = hist(st_0) 
- .<chn.(Contents)[143]('chr')>. 

else hist(st)=hist(st_0) end if 

measure cntdwn 
exit when rcvd or cntdwn=0 
poll_rcv_char(st,chn,chr,chsz,rcvd,cntdwn) 

end loop 

end rcv_char; 

This macro is invoked in definition 195. 

(Poll mid to receive chr)[177]M = 
mach!poll_rcv_char(st,mid,chr,chsz,rcvd,cntdwn) 

This macro is invoked in definitions 88 and 88. 

(Definition of polUcv.char)[l78]M = 
procedure poll_rcv_char (mvar st   :   state, 

lvar chn :   int, 
pvar chr  :   (Buffer type) [137], 
lvar chsz  :  int, 
pvar rcvd : bool, 

pvar cntdwn :  int) = 
initial st_0=st,cntdwn_0=cntdwn 
pre cntdwn>0 
post    cntdwn < cntdwn_0 

and cntdwn >= 0 
and if rcvd and cntdwn > 0 

then    cseq!is_char((Conteflts)[143]('chr'),chsz) 

and hist(st) = hist(st_0) " .<chn.(Contents)[143]('chr')>. 

else hist(st)=hist(st_0) end if; 

This macro is invoked in definitions 193 and 195. 

(mid! tail of chr) [179]M = 
mach! snd_char ( st, mid, (tail of chr) [153], cntdwn) 

This macro is invoked in definition 62. 

(snd-char specification)[180]M = 
initial st_0=st,cntdwn_0=cntdwn 
pre cntdwn > 0 
post cntdwn < cntdwn_0 

and cntdwn >= 0 
and (if cntdwn>0 then 

hist(st) = hist(st_0)  "  .<chn.(Contents)[143]('chr')>. 
else hist(st)=hist(st_0) end if) 

This macro is invoked in definitions 181 and 193. 

(Definition of snd.char)[181]M = 
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procedure snd_char (mvar st   :  state, 
lvar chn  :   int, 
lvar chr  :   {Buffer type) [137], 
pvar cntdwn  :   int)  = 

(snd.char specification)[180] 
begin 

pvar sent   :  bool  := false 
poll_snd_char(st,chn,chr,sent,cntdwn) 
loop 

invariant cntdwn < cntdwn_0 
and cntdwn >= 0 
and if sent and cntdwn>0 

then hist(st) = hist(st_0) '   .<chn.(Contents)[143]('chr')>. 
else hist(st)=hist(st_0) end if 

measure cntdwn 
exit when sent or cntdwn=0 
poll_snd_char(st,chn,chr,sent,cntdwn) 

end loop 
end snd.char; 

This macro is invoked in definition 195. 

(Definition of polljsnd-char)[l82]M = 
procedure poll_snd_char (mvar st   :   state, 

lvar chn  :   int, 
lvar chr  :   (Buffer type) [137], 
pvar sent  :  bool, 
pvar cntdwn  :   int) = 

initial st_0=st,cntdwn_0=cntdwn 
pre cntdwn > 0 
post cntdwn < cntdwn_0 

and cntdwn >= 0 
and if sent and cntdwn > 0 

then hist(st) = hist(st.O)  *   .<chn.(Contents)[143]('chr')>. 
else hist(st)=hist(st_0) end if; 

This macro is invoked in definitions 193 and 195. 
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Chapter 13 

Relevant Library Units 

13.1 EVES Library 

The library distributed with EVES includes the following units that we have used in the repeater 
refinement. The EVES library is documented fully in [27]. 

fn — a theory of first-class functions 

nat — a theory of the Natural numbers 

pair — a theory of ordered pairs and cross products 

rel — a theory of binary relations 

setrules — axioms about the primitive functions on sets 

13.2 CSP Library 

The library containing the extensions to EVES to allow specification and verification of CSP pro- 
cesses using the Traces Refinement model contains the following units. This library is documented 

fully in [19]. 

nset — a theory of finite sets containing up to five elements 

tr — a theory of traces (or sequences) of some object 

pr — a theory of a subset of the CSP processes 

fpt — a theory of parameterized recursive processes 

reqs — a theory of CSP alphabets and trace specifications 
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13.3    Repeater Application Modules 

This section outlines the library units containing the repeater specification, implementation and 
proof. Because of their size, these units are not included in their entirety in this document. Instead, 
we selected certain functions and rules from each theory to elaborate. FunnelWeb helps us maintain 
consistency between the functions and rules as they are defined in this document and in the external 
unit. These units are specified fully in [20]. 

If the reader encounters a FunnelWeb macro definition whose definition invocation number is 
higher than any FunnelWeb macro presented in this document (e.g., the reader sees "This macro is 
invoked in definition 203.", and the highest macro definition number presented here is 191), then that 
macro definition is invoked in an external unit. The names of the files containing these macros are 
listed below in the context of aFunnelWeb additive macro. Files ending with "s" contain specification 
units; files ending with "m" contain model units. 

bfr — a buffer data type 

(List of external fiies)[183]Z + = 
(bfrs) [197] 

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191. 
This macro is NEVER invoked. 

mach — an interface to the base machine 

(List of external fiies)[184]Z + = 
(machs)[193] 
(machm)[195\ 

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191. 
This macro is NEVER invoked. 

cseq — a theory for reasoning about sequences of bits as sequences of characters 

(List of external fiies)[185]Z + = 
(cseqs) [199] 
(cseqm) [201] 

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191. 
This macro is NEVER invoked. 

defs — the definition of the alphabet relevant to the repeater description and some rules for rea- 
soning about the alphabet 

(List of external flies) [186] Z + = 
(defss) [203] 
(defsm) [205] 

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191. 
This macro is NEVER invoked. 

rep — the specification and implementation of the repeater in terms of its two components, Get 
and Put 

(List of external fiJes)[187]Z + = 
(reps) [219] 
(repm) [221] 

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191. 
This macro is NEVER invoked. 
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get — the specification and implementation of the repeater's Get component 

(List of external files) [188]Z + = 
(gets) [207] 
(getm)[209] 

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191. 

This macro is NEVER invoked. 

put — the specification and implementation of the repeater's Put component 

(List of external files) [189]Z + = 
(puts) [211] 
(putm)[213] 

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191. 

This macro is NEVER invoked. 

rptr.fdr — The FDR physical design of Rptr. 

(List of external fiies)[190]Z + = 
(fdr) [215] 

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191. 
This macro is NEVER invoked. 

rptr.ml — Supporting ML definitions for the FDR physical design of Rptr. 

(List of external fiJes)[191]Z + = 
<mJ)[217] 

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191. 

This macro is NEVER invoked. 
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Appendix A 

CSP Notation Overview 

This appendix summarizes the notation that we use to write CSP specifications and process descrip- 
tions. This notation subsumes relevant notation provided by SVerdi in [16], by CSP in [9], and by 
FDR in [6]. The degree to which we could maintain compatibility was limited by the constraints on 
user-extensible syntax of SVerdi. Appendix B describes the variations on this notation required by 
the constraints of the mechanical tools. 

In addition to briefly describing the meaning of the fundamental operators, information im- 
portant for parsing CSP is presented in a tabular format. For each operator presented, its type, 
relative precedence, and full SVerdi function name, if any, is indicated. The type indicates whether 
the operator is 

nilfix — a constant, e.g., true; 

prefix — a unary operator occurring before its parameter, e.g., -1; 

infix — a binary operator occurring between two parameters, e.g., 1+2; 

postfix — a unary operator occurring after its parameter, e.g., 5!; 

list — an n-ary operator representing a list, e.g.,  a pair represented  in Verdi as 
pair!pair(a,b) is represented as -<a, &>-; 

plist — an n-ary operator representing a paired list, e.g., a set represented in Verdi as 
(setadd a (setadd 6 (setadd c (nullset)))) is represented as {a,b,c} and corresponds 
to the Verdi functions setadd and nullset; and 

multifix — a more flexible n-ary operator that allows internal operator symbols to vary, 
e.g., the concurrent process denoted P [I  X  |] Q. l 

The precedence of each operator is given on a scale of 0 to 24 where the higher numbers indicate 
higher precedence. Finally, the full function name, when written in prefix form, is provided so that 
the properties that the SVerdi operator inherits from Verdi, if any, are apparent from the Verdi 
Language Definition [4]. The function name is also needed when performing the invoke prover 
command, so that the parser can easily resolve which (potentially overloaded) operator should be 
expanded. 

A.l    Logical Notation 

'This type of operator is not supported in SVerdi. 
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Operator Type Verdi name Precedence 

not prefix not 14 

and infix and 14 

or infix or 12 

-> infix implies 8 

true nilfix true — 

false nilfix false — 

some prefix some — 

all prefix all — 

Table A.l: Logical Notation Operators 

Notation 

not p 

p and q 

p or q 

p-> q 

true 

false 

some x : p(x) 

all x : p(x) 

Meaning 

-ip (see Appendix B for variations) 

p A q (see Appendix B for variations) 

p V q (see Appendix B for variations) 

p implies q 

truth 

falsity 

there exists an x such that p(x) 

for every x, p(x) 

A.2    Integer Function Notation 

Keyword Type Verdi name Precedence 
- prefix - 24 
* infix * 20 

mod infix mod 20 

div infix div 20 
+ infix + 18 
- infix - 18 
< infix < 16 
<= infix <= 16 
> infix > 16 
>= infix >= 16 

Table A.2: Integer Function Notation Operators 

Notation Meaning 

the negation of i 
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*J 

mod j 

div j 

+ j 

- j 

<j 

<=j 

>j 

i >= j 

the multiplication of i and j 

i integer modulus j\ j not equal 0 

the integer division of i by j with roundoff towards 0; j not equal 0 

the addition of i and j 

the subtraction of j from i 

i is less than j 

i is less than or equal to j 

i is greater than j 

i is greater than or equal to j 

A.3    Ordered Pair Notation 

Keyword Type Verdi name Precedence 

lit 
rgt 
ispair 
>< 

-<, >" 

prefix 
prefix 
prefix 
infix 
list 

pair list 
pair!snd 
pair!is-pair 
pair!cross 
pair!pair 

20 
20 
18 
16 

Table A.3: Ordered Pair Notation Operators 

Notation 

lltp 

rgtp 

ispair p 

51 >< 52 

-<e,f>- 

Meaning 

the left element of the pair p 

the right element of the pair p 

p is an ordered pair 

the set of pairs formed by pairing elements from set 51 with elements from 

52 

the pair with left element e and right element / 

A.4    Set Notation 

Notation 

unit a 

AA   Sl 

++S 

Meaning 

the singleton set containing a 

the power set of 51, i.e., the set of all subsets of 51 

the union of all sets in 5 
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Keyword Type Verdi name Precedence 

unit prefix unit 24 
AA prefix powerset 24 
++ prefix cup 24 

adj infix setadd 18 
« infix subset 18 
++ infix union 18 
** infix inter 18 
— infix diff 18 

II infix prlsetjdiv 18 

in infix in 16 

-{.}- list nset!two-set — 

{,} plist setadd, nullset — 

Table A.4: Set Notation Operators 

a adj 5 

51 « 52 

51 ++ 52 

51 ** 52 

51 — 52 

51 // 52 

a in 5 

-{«./}- 

{yin/(x) I P(x,y] 

{g(x,y,z) I y,z in f(x)} 

e I P(e) 

a added to set 5 

51 is a subset of 52 

the union of 51 and 52 

the intersection of sets 51 and 52 

the elements in 51 not in 52 

the set of elements in 51 or 52 but not in both 

a in set 5 

the set containing e and / that is restricted to exactly two elements, 
i.e., no other set operators operate on these restricted sets - this 
construct is used to ease the proof process 

the set of all values y in f(x) such that P(x, y) 

the set of all values g(x, y, x) such that y, z is in f(x) 

choose an element e such that P(e), if one exists 

A.5    Higher-Order Function Notation 

Keyword Type Verdi name    Precedence 
<- infix fnlapply 20 
dom prefix relldom 20 
ran prefix rellran 20  

Table A.5: Higher-Order Function Notation Operators 

Notation Meaning 
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/ <- X 

dorn / 

ran / 

function / evaluated at x 

the domain of function / 

the range of function / 

A.6    Trace Notation 

Keyword Type Verdi name Precedence 

]- infix trStack 24 

iscomm prefix pr!is_comm 24 

chan prefix pr!channel 24 

msg prefix pr!message 24 

tail prefix tr!tl 22 

nlast prefix trlbut.last 22 
A infix tr!append 22 

lA infix tr!restrict 22 
1 AA infix pr!set-restrict 22 

1 = infix prlvals 22 

head prefix tr!hd 20 

last prefix trllastjevent 20 
A* postfix tr!trace .of 20 
A*? infix trlis-trace^of 20 
istrace prefix tr! is-trace 18 
null prefix tr!is_empty 18 

-c infix tr!occurs 18 

.<=. infix tr!subseq 18 

len prefix tr!length 16 

.<, >. plist tritack, tr!empty — 

Table A.6: Trace Notation Operators 

Notation 

el-t 

iscomm e 

chan c 

msg c 

tail* 

nlast t 

t\ M2 

t \* A 

TS   |AA  A 

Meaning 

e tacked onto the front of t 

e is a communication event 

the channel associated with communication event c 

the message associated with communication event c 

all but the first element of trace t (see Appendix B for variations) 

all but the last element of trace t 

(between traces) t\ followed by 12 (see Appendix B for variations) 

trace t with elements not in set A removed 

the set of traces in TS, each restricted to events in A 
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t \=c 

head t 

last t 

A** 

t A*? A 

istrace t 

null* 

e-lt 

tl .<=.12 

len t 

.<el,e2,...,en>. 

sequence of values sent over channel C in trace t 

the first element of trace t (see Appendix B for variations) 

the last element of trace t 

the set of all traces of events in a (Kleene star) 

t in A"* 

t is a trace 

t is either not a trace or is empty 

e in trace t 

t\ is a prefix of <2 

the length of t 

the trace with event el through en in sequence (see Appendix B for varia- 

tions) 

A.7    Process Notation 

Keyword Type Verdi name Precedence 

STOP nilfix None 24 

SKIP nilfix None 24 

e->P infix None 24 

C?x -> P(x) multifix None 24 

C\v-> P multifix None 24 

[] x:B<t>P(x) multifix None 24 

e->PÜ f->Q — None — 

P;Q multifix None 24 

X = P(X) multifix None 24 

P [1  X   |] Q multifix None 24 

PWQ infix pr!parallel(P,Q) 24 

P \ A infix None 24 

P l?l Q~ c multifix pr!compose(P,Q,c) 24 

traces prefix pr!process-traces 20 

{\cl,c2,...,cn\} list — 
alpha prefix pr!process-alphabet 20 

isprocess prefix pr!is_process 20 

sat infix reqs!satpr 20 

Table A.7: Process Notation Operators 

Notation 

STOP 

Meaning 

do nothing but terminate unsuccessfully with alphabet A 
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SKIP do nothing but terminate successfully with alphabet A and 
termination event c 

e -> p event e then process P 

C.x -> P(x) from channel C input value in variable x   and then act like P 
evaluated at x 

C\v -> P on channel C output value v and then act like P 

[] x:B « P(x) from B choose x engage in x then process F evaluated at x 

e-> P [] / ->Q for e not equal to /, an abbreviation for [] x : {e, /} -> F(x) 
where F(e) = P and F(f) = Q 

p ■ Q P and, if terminated by c, followed by Q 

X = P{X) process PROC such that PROC = F(PROC) and aPROC = A 

P CI  X   I ] Q P composed in parallel with Q synchronizing on events in set 
X. 

p | | Q P in parallel with Q synchronizing on events in common to 
both alpha P and alpha Q 

p \ A Process P while hiding the events in set A from external view. 
Internal transitions occur without synchronization. 

P I ? I Q ~ c P parallel with Q with termination event c, hiding internal 
events 

traces P the traces of process P 

{|cl,c2, ...,cn\} the set of communication events possible with channels c\ 
through en as defined by the channel declarations 

alpha P the alphabet of process P 

isprocess P P is a CSP process 

p sat S process P satisfies specification S 
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A.8    Miscellaneous Notation 

Keyword 
mless 
typeof 

Type Verdi name Precedence 
infix m< 16 
prefix typeof 16 
infix = 16 

nat nilfix      nat! nat 
if b then el else e2 endif    infix       (if b el e2) 

Notation 

imless j 

typeof e 

el =e2 

nat 

Table A.8: Miscellaneous Notation Operators 

Meaning 

true if 0 <=i <=j 

the set of values corresponding to the type of e 

equality between expressions el and e2 (see Appendix B for variations) 

the set of Natural numbers 

if b then el else e2 endif       expression el if b otherwise expression e2 
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Appendix B 

Notational Variations 

EVES Syntax FDR Syntax ML Syntax 
p and q 
p or q 
el = e2 

p and g 
p or q 
el == e2 

p andalso 9 
p orelse «7 
el =e2 

not (el = e2) 
sl A s2 

el !=e2 
sl A s2 sl @s2 

head s head s hds 
tail s tail s tl s 
len s 
.<vl, v2, ...,vn>. 
if b then el eise e2 endif 

#s 
< vl,v2, ...,vn > 
if b then el eise e2 

[ul,i>2, ...,vn] 
if 6 then el else e2 
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Appendix C 

Notational Comparison with 
Hoare's CSP 

Our Hoare's Primary 
CSP Syntax CSP Syntax Difference(s) 
STOP STOPA Syntax of STOP 

SKIP SKIPA Syntax of SKIP 
e->P e-+P Syntax of prefix operator 

C?x -> P(x) Clx -+ P(x) Syntax of prefix operator 

C\v->P C\v-*P Syntax of prefix operator 

[] x:B$P(x) x:B^ P(x) Syntax of choice operation 
Syntax of prefix operator 

e->Püf~>Q e-P|/-Q Syntax of choice operator 
Syntax of prefix operator 

P ;Q P ;Q None 

X = P(X) X = P{X) None 

P [1 X  |] Q None - 
P \ A P \ A None 

P II Q PWQ None 

P l?l Q~ c P\\Q\ P**Q Syntax of internal event hiding 
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=,1H chan, 108 
<=, 105 Channels, 27 
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>=, 105 Character sequence transmitted over outbit, 
>, 105 29, 31 
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Characters received over inbit before overflow, 
30 

Constraints on Rptr's trace, 28 
Contents, 56, 58, 65, 67, 68, 90, 97-99 
cseqm, 101 
cseqs, 101 
cup, 107 

Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit: 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit 
Definit: 
Definit 
Definit 
Definit: 

on for equality of bits, 89 
on of char.head, 87 
on of char-seq, 85 
on of char-set, 84 
on of char .tail, 88 
on of current.char, 86 
on of even, 88 
on of even_parity_chars, 88 
on of flatten, 86 
on of Get_not_over_capacity, 38 
on of has_char, 87 
on of InOutchar.pre, 55 
on of invariant_over_buffer, 66 
on of invariant_over_char, 57 
on of is.char, 87 
on of is_char_seq, 85 
on of no_error_condition, 30 
on of no_over_flow, 30 
on of odd-parity, 51 
on of odd-parity .check, 50 
on of Outchar.pre, 58 
on of poll_rcv_bit, 97 
on of poll_rcv_char, 98 
on of poll-snd_bit, 96 
on of poll-snd_char, 99 
on of prty_xor, 78 
on of Put_not_over_capacity, 41 
on of Rev, 77 
on of rev .bit, 96 
on of rcv.char, 97 
on of Rptr, 43 
on of Rptr universe of events, 36 
on of snd.bit, 95 
on of snd.char, 98 
on of Stop_bit, 78 
on of Str, 78 
on of sum, 88 
on of Tx, 78 
on of valid.char.Get, 38 
on of valid_char_Put, 41 
on of valid_Get-step, 53 
on of valid Jnchar, 57 
on of validJnput.chars, 29 

Definition of valid.Outchar, 58 
Definition of valid_Put_step, 65 
Definition stub for bit type, 89 
Definition stub for buffer type, 89 
Definition stub for cnv.bit, 89 
Definition stub for event type, 94 
Definition stub for state type, 94 
Definition Stub of Get, 35 
Definition Stub of Put, 39 
Definition Stub of Rptr, 26 
Definitions of startbit/stopbit, 84 
defsm, 101 
defss, 101 
diff, 107 
div, 105 
dorn, 107 

else, 111 
Empty buffer, 62, 91 
endif, 111 
Event type, 49-51, 62, 63, 94 

false, 105 
fdr, 102 
FDR definition of inchar, 73 
FDR Get specification, 73 
FDR Put specification, 74 
FDR Rptr specification, 73 
fn 

apply, 107 
Function returning the current process trace, 

94 

Get alphabet, 37 
Get Concurrent Restriction Condition, 46 
Get design, 48 
Get is a sequential CSP process, 36 
Get lemma #1, 54 
Get lemma #2, 54 
Get lemma #3, 54 
Get satisfies valid-Get, 37 
Get terminates, 38 
Get's alphabet is defined by Get_alpha, 37 
Get's definition of xor, 51 
Getjstep design, 49 
Get-step lemma #1, 56 
Get_step lemma #2, 56 
Get-step specification, 49, 53 
getm, 102 
gets, 102 

head, 108 
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if, 111 
implies, 105 
in, 107 
inbit ? b, 49-51, 96 
Inchar design, 50 
Inchar lemma #1, 60 
Inchar lemma #2, 60 
Inchar lemma #3, 60 
Inchar prefix invariant, 57 
Inchar specification, 50, 56 
InOutchar design, 49 
InOutchar lemma #1, 59 
InOutchar lemma #2, 59 
InOutchar lemma #3, 59 
InOutchar lemma #4, 59 
InOutchar specification, 50, 54 
inter, 107 
iscomm, 108 
ispair, 106 
isprocess, 109 
istrace, 108 

len, 108 
lenofbuff, 63, 92 
len of chr, 50, 92 
lft, 106 
List of external files, 101, 102 

machm, 101 
machs, 101 
mid 

tail of chr, 51, 98 
mid ? chr, 62, 97 
mid allows only chars, 53, 55, 57, 66, 85 
mid channel, 36 
mid chars to bits, 66, 85 
ml, 102 
ML definition of cnv.to.char, 75 
ML definition of cnv_to_int, 74 
ML definition of odd-parity, 74 
mless, 111 
mod, 105 
msg, 108 

nat, 111 
nat 

nat, 111 
nlast, 108 
not, 105 
nset 

two-set, 107 
null, 108 

nullset, 107 

Only whole characters were transmitted over 
outbit, 29, 31 

or, 105 
outbit 

head of buff, 63, 95 
Outchar design, 51 
Outchar specification, 51, 58 

pair 
cross, 106 
fst, 106 
is-pair, 106 
pair, 106 
snd, 106 

Partial char over inbit, 53, 57, 85 
Poll mid to receive chr, 63, 98 
Poll outbit to send first of buff, 63, 96 
poll_mid^and-outbit design, 63 
poll_mid-and-outbit loop specification, 63, 68 
poll_mid-and_outbit specification, 63, 67 
powerset, 107 
pr 

channel, 108 
compose, 109 
is-comm, 108 
is.process, 109 
message, 108 
parallel, 109 
process-alphabet, 109 
process-traces, 109 
set.div, 107 
set-restrict, 108 
vals, 108 

Put alphabet, 40 
Put Concurrent Restriction Condition, 46 
Put design, 62 
Put is a sequential CSP process, 39 
Put lemma #1, 66 
Put lemma #2, 66 
Put lemma #3, 66 
Put satisfies valid-Put, 40 
Put terminates, 41 
Put's alphabet is defined by Put_alpha, 40 
Put's definition of xor, 63 
Put-step design, 62 
Put-step specification, 62, 65 
putm, 102 
puts, 102 

ran, 107 
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rcv.bit specification, 96 
rcv.char specification, 97 
rel 

dorn, 107 
ran, 107 

repm, 101 
reps, 101 
reqs 

satpr, 109 
rgt, 106 
Rptr Compose Restriction Condition, 45 
Rptr Conjunction Condition, 46 
Rptr is a CSP process, 26 
Rptr physical architecture, 77 
Rptr satisfies valid-relay, 28 
Rptr specification channel declarations, 73 
Rptr terminates, 29 
Rptr universe of events, 28, 30, 36 
Rptr's alphabet is defined by Rep_alpha_ext, 

27 

sat, 109 
Sequence of even parity inbit chars over tr2, 

30,38 
Sequence of outbit chars over tr2, 30, 31 
Set of even parity characters, 30, 31, 39, 88 
setadd, 107 
SKIP, 109 
snd.bit specification, 95 
snd.char specification, 98, 99 
some, 105 
State type, 49-51, 62, 63, 94 
STOP, 109 
subset, 107 

tail, 108 
tail of buff, 63, 91 
tailofchr, 51, 91,98 
then, 111 
tr 

append, 108 
buUast, 108 
empty, 108 
hd,108 
is.empty, 108 
is_trace, 108 
is.trace.of, 108 
last.event, 108 
length, 108 
occurs, 108 
restrict, 108 

subseq, 108 
tack, 108 
tl, 108 
trace.of, 108 

Trace, 49, 53, 56, 58, 62, 65, 67, 68, 94 
Trace before overflow, 30 
Trace of single startbit, 49, 91 
traces, 109 
true, 105 
type.of, 111 
typeof, 111 

union, 107 
Unique channels, 27 
Unique mid channel, 36 
unit, 107 

Valid character sequence received over inbit, 
29,31 

valid.Get, 37 
valid-Put, 40 
valid_Put-step lemma #1, 68 
valid_Put-step lemma #2, 68 
valid-relay, 28 
Values transmitted over external channels, 73 
Values transmitted over mid, 73 
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