
Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/5540--96-7872

The RS-232 Character Repeater
Refinement and Assurance Argument

ANDREW P. MOORE

Center for High Assurance Computer Systems
Information Technology Division

CHARLES N. PAYNE

Secure Computing Corporation
Roseville, MN

July 25,1996

19960726 043
Approved for public release; distribution unlimited.

DTIC QUALITY INSFEC1ED 1

DISCLAIMEI NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden (or this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources.

gsSäsS^jfes^s^^ssssagassgg
1. AGENCY USE ONLY [Leave Blank) 2. REPORT DATE

July 25, 1996

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

The RS-232 Character Repeater Refinement and Assurance Argument

6. AUTHOR(S)

Andrew P. Moore and Charles N. Payne*

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
Washington, DC 20375-5320

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Security Agency COMSPAWARSYSCOM
9800 Savage Road
Ft. Meade, MD 20755

Washington, DC 20363

5. FUNDING NUMBERS

55-3284-0-6
PE: 334710G

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/MR/5540-96-7872

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
♦Secure Computing Corporation
2675 Long Lake Road
Roseville.MN 55113

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 words)

Past experience in system security certification indicates the need for developers of high assurance systems to coherently
integrate the evidence that their system satisfies its critical requirements. This document describes a method based on literate
programming techniques to help developers present the evidence they gather in a manner that facilitates the certification effort.
We demonstrate this method through the implementation and verification of a small but nontrivial, security-relevant example, an
RS-232 character repeater. By addressing many of the important issues in system design, we expect that this example will provide
a model for developing assurance arguments for full-scale composite systems with corresponding gains in the expediency of the
system certification process.

14. SUBJECT TERMS

Assurance
Certification
Literate programming

System documentation
Formal methods

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

124

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500
Standard Form 298 (Rev. 2-89I
Prescribed by ANSI Std 239-18

298-102

Contents

Introduction *■
1.1 Goal l

1.2 Motivation 1
1.3 Approach 2
1.4 Structure of this Document 2

The Repeater Problem 4

Informal Problem Statement and Solution Strategy 5
2.1 Critical Requirements 5
2.2 Solution Strategy 6

2.2.1 Overview of Tools Used 8
2.3 Justification of the Strategy 10

Notation Overview 12
3.1 The CSP Computational Framework 13
3.2 EVES Notation I5

3.2.1 Non-Executable Definitions 15
3.2.2 Executable Definitions 17
3.2.3 Conjectures lg

3.2.4 Proof Commands I9

3.2.5 Library Mechanism 19
3.3 FDR Notation 20

3.3.1 Defining and Loading ML Functions 21
3.3.2 Declaring and Linking ML Functions 21

3.4 FunnelWeb Notation 22

Critical Requirements Specification 24
4.1 Critical Requirements that Derive from Model Assumptions 24

4.1.1 Shared Channel Communication 25
4.1.2 Two-Process Communication 25
4.1.3 Atomic Communication 25
4.1.4 Synchronous Communication 25
4.1.5 Non-Divergent Processes 26

4.2 Specification of the Formal Assertions 26
4.2.1 Top-Level Requirements Structure 28
4.2.2 Repeater Post Condition 29
4.2.3 Repeater Invariant 31

4.3 Summary of the Critical Requirements 31

iii

4.3.1 Assumptions 31
4.3.2 Assertions 31

II The Repeater Logical Design 33

5 Repeater Logical Architecture 34

5.1 Overview of the Logical Architecture 34
5.2 Get Formal Assertions 35

5.2.1 Top-Level Requirements Structure 37
5.2.2 Get Post Condition 38
5.2.3 Get Invariant 39

5.3 Put Formal Assertions 39
5.3.1 Top-Level Requirements Structure 40
5.3.2 Put Post Condition 41
5.3.3 Put Invariant 42

5.4 Summary of the Logical Architecture Critical Requirements 42
5.4.1 Assumptions 42
5.4.2 Assertions 42

5.5 Justification of the Decomposition 43
5.5.1 Assumptions Argument 43
5.5.2 Assertions Argument 43

6 Get Component Refinement 47
6.1 Overview of the Get Design 47
6.2 Formal Specification of the Get Design 48

6.2.1 Inchar design 50
6.2.2 Outchar design 51

6.3 Justification of the Get Design 52
6.3.1 Assertions Argument 52

7 Put Component Refinement 61
7.1 Overview of the Put Design 61
7.2 Formal Specification of the Put Design 62
7.3 Justification of the Put Design 64

7.3.1 Assertions Argument 64

III The Repeater Physical Design 70

8 Repeater Physical Architecture 71
8.1 Overview of the Physical Architecture 71
8.2 Translation of the Logical Design to FDR 72

8.2.1 FDR Process Specification 73
8.2.2 ML Support Definitions 74

8.3 Summary of the Physical Architecture Critical Requirements 75
8.3.1 Assumptions 75
8.3.2 Assertions 75

IV

9 Repeater Detailed Physical Design 77
9.1 Formal Specification of the Physical Design 77
9.2 Justification of the Physical Design 79

9.2.1 Assumptions Argument 79
9.2.2 Assertions Argument 79

9.3 Summary of the Implementation Critical Requirements 81
9.3.1 Assumptions 81
9.3.2 Assertions 82

IV Supporting Definitions 83

10 Character Sequence Theory 84
10.1 Primary Operations 85
10.2 Secondary Operations 86

10.2.1 Definition of has.char 86
10.2.2 Definition of is.char 87
10.2.3 Definition of char-head 87
10.2.4 Definition of char-tail 87

10.3 Set of even parity characters 88

11 Character Storage Module 89

12 Base Machine Interface 94

13 Relevant Library Units 100
13.1 EVES Library 100
13.2 CSP Library 100
13.3 Repeater Application Modules 101

Bibliography 103

A CSP Notation Overview 105
A.l Logical Notation 105
A.2 Integer Function Notation 106
A.3 Ordered Pair Notation 107
A.4 Set Notation 107
A.5 Higher-Order Function Notation 108
A.6 Trace Notation 109
A.7 Process Notation 110
A.8 Miscellaneous Notation 112

B Notational Variations 113

C Notational Comparison with Hoare's CSP 114

Index 114

The RS-232 Character Repeater
Refinement and Assurance Argument

Chapter 1

Introduction

1.1 Goal
The goal of this document is to demonstrate a method for coherently integrating the evidence that
a computing system satisfies its critical requirements. A critical requirement is any requirement
that, if not satisfied, could result in catastrophic behavior such as loss of life or the unauthorized
disclosure of classified information. The method we use is particularly appropriate for systems that
require high assurance of such critical requirements.

1.2 Motivation
The evidence that a system satisfies its critical requirements is typically assessed by an independent
certification team during the accreditation phase of the system's development cycle. Previous expe-
rience [25] developing a high assurance cryptographic controller called the EC A has taught us that,
with respect to independent certification, the presentation of this evidence is at least as important
as the kind of evidence gathered. The evidence should be presented as a coherent and integrated
whole, which we call the assurance argument.

The certification of the EC A was largely unsuccessful. Although the developers had confidence
that the ECA conformed to its security requirements, we were not able to convince the certifiers of
this fact. This is partly due to a late start of the certification effort. The primary reason, however,
was that the evidence, as presented, was not very convincing to those not intimately involved in
the ECA development. The ECA documentation provided (1) inadequate guidance on how to piece
the evidence together into a convincing assurance argument, and (2) inadequate assurance that the
evidence gathered was relevant to the ECA implementation. This made it difficult for the certifiers
to identify potential problems in the implementation. They had little reason to be convinced by the
evidence provided.

Developers need methods to help them present the evidence they gather in a manner convinc-
ing to system certifiers. Documenting a convincing assurance argument is complicated by several
factors. First, non-trivial systems usually require the use of many different methods, both formal
and informal, during the development process, e.g., for requirements analysis, design simulation and
implementation. Disparate notations and methodological paradigms threaten the coherence of the
assurance argument and put its certification at risk. Second, many aspects of an assurance argu-
ment may not be easily formalized, e.g., design decisions, strategies and assumptions. The analysis
of these aspects are necessarily more subjective than those aspects that are formalized. Finally,
although formal methods are more precise, they can also be less intuitive than informal methods.
The documentation must explain and motivate the formalisms used.

Manuscript approved April 26, 1996.

1.3 Approach
Literate programming methods and tools [11] provide a foundation for solving the problems asso-
ciated with documenting and managing a convincing assurance argument. The concept of literate

programming is simple:

A traditional computer program consists of a text file containing program code. Scattered
in amongst the program code are comments which describe the various parts of the code.

In literate programming the emphasis is reversed. Instead of writing code containing doc-
umentation, the literate programmer writes documentation containing code. No longer
does the English commentary injected into a program have to be hidden in comment de-
limiters at the top of the file, or under procedure headings, or at the end of lines. Instead,
it is wrenched into the daylight and made the main focus. The "program" then becomes
primarily a document directed at humans, with the code being herded between "code
delimiters" from where it can be extracted and shuffled out sideways to the language
system by literate programming tools.

The effect of this simple shift of emphasis can be so profound as to change one's whole
approach to programming. Under the literate programming paradigm, the central activ-
ity of programming becomes that of conveying meaning to other intelligent beings rather
than merely convincing the computer to behave in a particular way. It is the difference
between performing and exposing a magic trick. [30]

We extend the use of literate programming beyond traditional programming to encompass the
specification and verification process as well. The application that we choose to demonstrate this
approach, an RS-232 character repeater, was originally posed as a non-trivial, security-relevant ex-
ample on which to determine the feasibility of formal methods [15]. Our use of literate programming
techniques (1) demonstrates how a formal assurance argument can be presented in a clear and intu-
itive manner and (2) ensures that the documentation of the argument is consistent with the actual
specification, implementation, and proof. This document was written using literate programming
techniques and tools and is itself a literate program.

The refinement of the repeater addresses many important issues that commonly arise in the
development of more complex hardware/software systems. We analyze very abstract requirements
of the repeater at the top level. We specify and verify both a logical design and a physical design
of the repeater. We deal directly with concurrency in both the logical and physical designs. This
approach required significant effort, as is evidenced by the length and complexity of this document.
Nevertheless, by addressing these issues we demonstrate the potential scalability of the method.
We expect this document will provide a model for developing assurance arguments for full-scale

composite systems.

1.4 Structure of this Document

This document contains four parts. Part I describes the repeater problem and solution strategy; we
adopt CSP [9] as the computational framework and casts the repeater critical requirements in terms
of this model. Part II describes the repeater logical design, specification, and verification using the
EVES interactive proof system [13]. Part III describes the physical implementation of this design
and the verification that the implementation conforms to the design constraints using the Failures
Divergence Refinement (FDR) model checker [26]. Part IV defines concepts that are used in the first
three parts. This part presents a brief description of EVES library units that comprise the EVES
and CSP background theory and repeater application modules.

Part I contains three chapters. Chapter 2 informally describes the repeater problem and solution.
Chapter 3 presents an overview of the notation used to specify, verify, and implement the repeater

and the notation used to document the repeater assurance argument. This chapter provides enough
detail of the notations used for a fairly thorough overview of the assurance argument. It is organized
for ease of reference with much of the relevant notation summarized in tables in the appendices.
Chapter 3 also provides pointers to relevant documentation (user manuals, tutorials, etc.) for readers
interested in a deeper understanding of the repeater assurance argument. Chapter 4 refines the
critical requirements for the repeater based on the assumptions of the CSP model. A subset of these
requirements expressible as CSP trace specifications are formalized in the EVES syntax. Chapter 4
forms the foundation for the rest of the assurance argument. The argument evolves as the repeater
is refined using the formal techniques where possible and informal techniques where necessary to
ensure full coverage of the critical requirements.

Part II contains three chapters. Chapter 5 specifies the repeater logical architecture as the
concurrent composition of two components. It decomposes the critical requirements described in
Chapter 4 accordingly and justifies the integrity of the decomposition using EVES for the formal
aspects of the argument. Chapters 6 and 7 present the design for each component and verify that
the design satisfies the derived requirements, again using EVES as appropriate.

Part HI contains two chapters. Chapter 8 recasts the repeater design specified in Part II in the
FDR syntax. Chapter 9 implements this design and verifies, using FDR as appropriate, that the
implementation conforms to the requirements of the design. This process generates a set of critical
requirements that must be satisfied by any further refinement. Although this is the extent of the
repeater refinement in this document, this specification is consistent with the repeater specified in
[1], from which a VHDL design and gate-level hardware description were derived.

Part IV contains four chapters describing, respectively, a theory for reasoning about character
sequences, a module for representing character sequences as buffers, an interface to an abstract base
machine providing CSP-like primitives, and an outline of the library units that comprise the repeater

specification.

Part I

The Repeater Problem

Chapter 2

Informal Problem Statement and
Solution Strategy

The RS-232 character repeater, henceforth referred to simply as the repeater, relays all characters
of correct parity until it overflows. More specifically, the repeater has an input data line, an output
data line, and an error port, as shown in Figure 2.1, that can operate at a range of speeds. Characters
(each consisting of a sequence of K bits) received from the input data line are transmitted at the
output data line, possibly after some delay. All characters of correct parity (assume even parity
coding) received by the repeater are stored, until transmission, in an internal buffer that can grow
to a maximum size of N>0 K-bit characters. Characters of odd parity are not retransmitted and
cause an error to be signaled on the error port. If the buffer overflows (grows to a size greater than
N characters), an error is signaled on the error port, nothing more is accepted, all characters in the
buffer received prior to the character causing the error condition are transmitted, and the repeater
halts.

The repeater must be rigorously shown to satisfy the critical requirements described in Section 2.1
We use the strategy outlined in Section 2.2. We justify this strategy in Section 2.3.

2.1 Critical Requirements

Information security is increasingly recognized as a property of an information system as a whole,
rather than a property of its components [31]. This raises the question as to why a low-level
device like a character repeater was viewed as security-relevant by the originators of the problem.
Typically as one focuses on the requirements of smaller and smaller components of a system, those
requirements become less and less identifiable as security-relevant. Nevertheless, certain commonly

Input
Port

Repeater

Output
Port

Error Port

Figure 2.1: The RS-232 Character Repeater

reusable components, such as a memory management unit, have features that are generally useful
in the construction of secure systems [14]. This is true as well for the repeater.

Confidentiality and integrity of information are important concerns for building secure systems.
The primary concern for the repeater is the integrity of the data it processes, i.e., ensuring the data
is not corrupted in some way. The first critical requirement demands that the characters received by
the repeater are transmitted without change. Enforcing a strong notion of integrity might require
using an error-correcting code; that is, however, beyond the scope of this repeater design.

Relay Characters Until Overflow — Exactly those characters of even parity received
by the repeater prior to the reception of the character causing an overflow are transmitted,
K-bit character by K-bit character.

The repeater must also be concerned with ensuring that no new, possibly classified, information
gets inserted into the character stream. The second and third critical requirements address which
characters get transmitted and their ordering. Preserving the order of characters is necessary both
to ensure that no sensitive information is encoded in a re-ordering (confidentiality) and to ensure

that the data goes out as it came in (integrity).

No Spurious Characters — Only received characters are transmitted.

Order Preserved — Characters are transmitted in the order in which they were re-
ceived.

2.2 Solution Strategy
The CSP language [9] forms the basis for the specification of the repeater and the verification that it
satisfies its critical requirements. The EVES Verification System [5, 13] and the FDR model checker
[6, 26] provide mechanical assistance for constructing and verifying the CSP specifications. EVES
is a general purpose interactive verification system that can be used to prove mathematically that
CSP descriptions conform to trace specifications. NRL extended an existing CSP theory [24, 12] to
support such verifications [19]. FDR is a CSP model checker that automatically verifies (through an
exhaustive state space analysis) that a CSP process implementation properly refines a CSP process

specification.
Figure 2.2 illustrates our approach for constructing the assurance argument for the repeater CSP

process implementation. Slanted arrows indicate a refinement of a specification to a more detailed
specification or implementation; vertical arrows indicate a translation of a specification from one
semantic domain to another semantic domain at a comparable specification level. Dashed arrows
indicate a refinement/translation that is informal; solid arrows indicate a refinement that uses a
combination of informal and formal techniques. The increase in width of the argument from top to
bottom illustrates additional detail that is specified at the lower levels. Other work describes the
synthesis of a gate-level hardware description from the repeater CSP physical design using VHDL

synthesis tools [1]. .
The CSP computational paradigm makes a number of assumptions about the environment and

implementation of CSP processes. Since we use this model to derive the repeater physical design,
these assumptions result in critical requirements in addition to those described in the previous
section. These additional critical requirements are not expressible in terms of the CSP model and,
thus, must be verified informally. Tracing all the critical requirements through the levels of repeater
refinement is a key aspect of the assurance argument that is not explicit in Figure 2.2.

Figure 2.3 illustrates the trace of requirements through the repeater logical and physical designs
to the verification that those designs satisfy their derived requirements. An arrow from A to B
means that A contributes to the derivation of B. Critical requirements for the repeater's physical
architecture derive both from the top-level critical requirements and the fact that the detailed logical

6

Problem
Description

Critical
Requiremem

Logical
Architecture

Detailed
Logical Design

Translation

Translated
Logical Design

Physical
Architecture

Detailed
Physical Design

CSP, EVES

FDR

Key
t t

informal translation informal refinement

/ \
combined informal/
formal refinement

Figure 2.2: Repeater Assurance Argument

design satisfies the top-level critical requirements. This latter fact simplifies the physical architecture
requirements since we need to show only that the physical design conforms to the logical design to
guarantee that the requirements of Section 2.1 hold. A set of requirements for further refinement of
the repeater are generated out of the process of refining the physical architecture.

Figure 2.3 provides part and chapter numbers indicating where in this document the primary
elements of the requirements trace reside. Critical requirements are classified as either assumptions
or assertions. Assumptions are those requirements that are necessary to satisfy the requirements
of Section 2.1, but that can only be enforced by the repeater's environment. Assertions are those
critical requirements that can be enforced by the repeater itself. Formal assumptions/assertions can
be stated in the CSP model; informal assumptions/assertions are beyond the expressive power of
the CSP model and are stated in English. We identify new or derived assumptions and assertions
"in-line" during the presentation of a specification and summarize them near the end of the chapter
in which they are identified. We use a numbering scheme similar to the chapter/section numbering
scheme so that critical requirements can easily be traced back to their origin, e.g., "Assert 3.2"
represents the second derived assertion that originated from assertion 3.

Refinement of the repeater design requires justification. Each chapter representing such a refine-
ment concludes with a section that justifies the refinement. Each justification relies on a combination
of formal and informal arguments. Formal arguments are used to justify that a repeater design con-
forms to its formal assertions; informal arguments are used to justify that a repeater design conforms
to its informal assertions. We use narrative text to motivate and outline the formal arguments, but
we rely on the mechanical tools to convince the reader that the details of the formal argument are
correct.

Formal and informal arguments use identical notation to identify exactly what is to be proven
and what facts are needed in the proof. The expression c using al,a2,... ,an describes a theorem
in which al through an are assumptions and c is the conclusion. This expression can be read "c
follows from the assumptions al through an." The justification of each theorem immediately follows

Repeater Critical
Requirements

(1.4)

Repeater Logical Architecture
Critical Requirements

(115)

Repeater Detailed Logical
Design & Verification

(11.6, II.7)

Repeater Physical Architecture |
Critical Requirements

(III.8)

Repeater Detailed Physical
Design & Verification

(HI.9)

Key
A—-B:

A contributes to B Repeater Implementation
Critical Requirements

(HI.9)

Figure 2.3: Repeater Requirements Tracability

the sequent representing the theorem. Each argument ends with symbol D. Critical requirements
that do not change through the decomposition are signified by the name of the requirement followed
by the phrase "No change."

The rest of this section provides an overview of the tools that we use to specify and document
the repeater assurance argument, with pointers to relevant documentation for a more thorough
treatment.

2.2.1 Overview of Tools Used

The question arises why we use both interactive proof and model checking technology to construct
the repeater argument. The use of interactive mathematical proof as a means of gaining assurance
that an implementation conforms to its critical requirements is a (human) labor intensive process.
Model checking can provide a comparable level of assurance for portions of a system verification
at a substantial savings in time and human labor. Unfortunately, model checking currently applies
only to the verification of relatively low-level requirements. FDR, for example, is used to verify that
an implementation conforms to a CSP process specification. We need the EVES interactive prover
to verify that the CSP process specification conforms to a more intuitive statement of the critical
requirements.

CSP: The Computational Framework

CSP allows the description of systems composed of networks of communicating processes. A CSP
process communicates with its environment through named communication channels. Olderog and
Hoare [22] describe a family of increasingly sophisticated models for CSP; less sophisticated members
of the family enable specification and proof of a subset of properties that the more sophisticated
members enable. The Traces Refinement model is useful for ensuring that safety properties are
preserved; the Failures Refinement is useful for ensuring that safety and liveness properties are

preserved; and the Failures-Divergences Refinement model is useful for ensuring that safety and
liveness properties are preserved and that the system does not diverge.1 We chose the Traces
Refinement model as the basis for the repeater assurance argument due to its comparative simplicity
and its ability to prove safety properties of networks of processes.

The Traces Refinement model characterizes a process according to it's alphabet and set of traces.
The alphabet of a process specifies all communication events, i.e., channel-value pairs, in which it is
permitted to engage. A trace of a process is an observation of its execution. It consists of a finite
sequence of all communication events in which the process has engaged at some moment in time.
Properties specified about systems described in CSP take the form of restrictions on the traces in
which a process representing the system may engage. If the set of traces associated with the process
actually conform to these restrictions, the system is said to satisfy the properties.

The formal assertions are specified using the Traces Refinement model of CSP to allow formal
specification and proof of the repeater as a network of communicating components. The repeater
architecture is reflected in a CSP description. A decomposition of the Traces Refinement model
requirements (i.e., trace specifications) onto the major components of the architecture is performed
using the CSP proof theory in conjunction with a method developed at NRL [21]. This decompo-
sition is performed down to the level of sequential CSP processes. These CSP processes are then
implemented and proven to conform to their derived requirements using the CSP proof theory.

EVES: An Interactive Proof Assistant

EVES consists of a specification and programming language called Verdi, a proof obligation genera-
tor, and an interactive proof assistant called NEVER. An alternative syntax for Verdi, called Sugared
Verdi (SVerdi), has been developed that is somewhat more conventional (Pascal-like) than the Lisp
s-expression syntax of Verdi. We use SVerdi, rather than Verdi, in the refinement of the repeater
assurance argument for increased readability. SVerdi consists of both executable (programming)
constructs and non-executable (specification) constructs. SVerdi includes imperative statements
(similar to Pascal), types for executable constructs, set theoretic concepts (including the axiom of
choice) [7], first-order logic, and declarations such as mutually recursive procedures and functions,
axioms, and types.

SVerdi development using EVES starts from an initial built-in theory, which is documented in
Appendix C of [4]. The EVES database consists of the initial theory extended as appropriate by any
declarations parsed. Each declaration parsed into EVES extends the database with new symbols
and axioms. To maintain consistency of the database, the proof obligation generator constructs
the formulas that need to be proven for each declaration parsed. The EVES database keeps track
of these proof obligations and requires their proof before the consistency of the database may be
declared. Additions to the database for each class of declaration are described in Appendix D of [4].

FDR: A CSP Model Checker

FDR offers the choice of verification using any of the three models of CSP: Traces Refinement,
Failures Refinement, and Failures-Divergences Refinement. Although the CSP theory developed for
EVES uses only Traces Refinement, the more sophisticated types of refinement are useful for the
repeater argument to ensure that the repeater physical design makes progress processing characters
and does not diverge. We, therefore, perform the more sophisticated types of refinement analysis
during the FDR verification, since the analysis is performed automatically, but limit the EVES
verification to the Traces Refinement, since the supporting theory for the more sophisticated models
has yet to be encoded in SVerdi.

1A system is non-divergent if all recursion is guarded and there is no possibility of the network engaging in an
infinite consecutive sequence of hidden events, i.e. livelock.

We claimed earlier that verification in FDR is automatic. Of course, this is true only if the CSP
implementation described actually refines the CSP specification according to the type of refinement
of interest. If the CSP implementation is in error, it is up to the developer to find and correct the
error. FDR provides a graphical interface for determining the source of errors by analyzing the trace
of events that led up to the error. The information provided depends on the type of refinement
analysis performed.

FunnelWeb: A Literate Programming Tool

Literate programming (LP) tools allow users to produce typeset documentation and compiler-ready
code from the same source document(s). This capability, along with automatic cross-referencing and
the ability to interleave code and documentation in any order, gives the user great flexibility in the

presentation of the program.
The original LP tool was Knuth's WEB toolset [10]2 for writing Pascal. LP tools for other program-

ming languages quickly followed, and eventually programming language-independent tools became
available. FunnelWeb [30], developed by Dr. Ross Williams of the University of Adelaide, Australia,
is a language-independent LP tool. In fact, it supports many, arbitrary languages, which makes it
a good candidate for this exercise. From a single document, we can produce not only the typeset
assurance argument, but also the EVES and FDR specifications.

Except for some notational conventions described in Section 3.4, FunnelWeb's use should be
invisible to the reader. Instead, the reader can be assured that the formal specifications herein are
exactly those specifications processed by EVES and FDR.

2.3 Justification of the Strategy
The repeater problem statement, described in the introduction to this chapter, requires the repeater
to receive and transmit bits at a range of speed. Support for asynchronous input and output suggests
that we use a language suited to reasoning about asynchronously communicating components. Un-
fortunately, few mechanical tools directly support formal reasoning about such systems. The Gypsy
Verification Environment [8] is useful for the verification of a variety of concurrent applications, but
limits on the form of the specification and implementation of concurrent programs make it awkward
to use for the repeater. At this writing, it is difficult, for example to specify in Gypsy program exit
conditions of the form "at the time a message is received over channel A, the history of channel B
satisfies property P."

Process algebras alleviate such problems by interleaving the individual channel histories in the
order in which communications take place. Since the repeater is naturally described as a set of
communicating processes and the repeater requirements are naturally stated as restrictions on traces
of communication events, the process algebraic approach is ideal. While there are many process
algebras documented in the literature, most are related in some way to one of the two early process
algebras: CSP and CCS [17]. The tools that have been developed to aid reasoning about CSP and
CCS are roughly comparable. However, we choose to use CSP because we had ready access to the
CSP tools and we had experience using CSP to specify and verify security properties for a number
of applications. Furthermore, the CSP Traces Refinement model is relatively easy to understand,
allowing a clear exposition of the assurance argument.

Our solution strategy balances the assurance gained with the development cost incurred (includ-
ing both human resources used and time to completion). A number of tools exist that permit users
to graphically depict the simulation of communicating processes, e.g., LOTOS [29], but we decided
to limit the scope of our effort to techniques complementary to testing in the verification process.
This left interactive mathematical proof and model checking.

2 A better description of WEB is provided by Sewell [28].

10

The choice of model checker is critical to achieving the goal of automating as much of the
verification process as possible. FDR and the Concurrency Workbench [3] were the leading model
checker candidates. While these tools are roughly equivalent in terms of functionality, FDR was
chosen for the repeater refinement because of its basis in CSP, rather than CCS, and it's production-
quality environment.

Verifying more intuitive properties of CSP specifications requires interactive proof. A number
of interactive proof assistants in addition to EVES have been extended to support reasoning about
CSP. Previous work at NRL encoded a subset of the CSP Traces Refinement model in the logic
of EHDM [21]; work in the UK encoded the Failure-Divergences Model in the logic of HOL [2].
EVES was chosen for a number of reasons. Only EVES and HOL permit user-defined syntax of
application theories, which is helpful for reasoning in a user-friendly CSP syntax. Only EVES and
EHDM permit verification of actual software programs, which is important for future work involving
literate assurance arguments about code. In the end, EVES was chosen because of its support for
automating, rather than merely mechanizing, the reasoning process. The advent of other tools, e.g.,
PVS [23], may require a re-evaluation of this choice for future efforts.

11

Chapter 3

Notation Overview

The solution that we have proposed to the repeater problem stresses the importance of specifying
the critical requirements in an intuitive manner while automating as much of the verification process
as possible. Unfortunately, requirements stated to promote human understanding are usually not
the easiest to verify automatically. This is exemplified by the low level requirements specification
languages of existing model checkers. Our solution requires combining in a coherent manner the
three tools we described in the last chapter:

• CSP which provides a concise notation and theory, but, by itself, provides no mechanical

support;

• EVES which provides the ability to prove arbitrary properties, but, by itself, only provides a
limited potential for automation; and

• FDR which provides complete automation, but, by itself, does not support specifying properties
in an intuitively appealing manner.

Addressing the goals of our solution through the combined use of CSP, EVES and FDR comes
at a cost. Each of these tools has its own set of notational conventions that often conflict. Our
goal in the presentation of the repeater assurance argument is to use a notation that eases the
understanding of the argument to the lowest levels of abstraction. Fortunately, EVES permits user-
defined syntax for application theories, so that a CSP-like syntax for specifying and reasoning about
CSP can be defined. However, EVES restricts user-defined syntax to certain sequences of ASCII
character symbols; these restrictions do not permit full conformance with the syntax for CSP in [9]
or the ASCII version of CSP on which FDR is based.

We choose a syntax for CSP that is as close as possible to FDR's CSP syntax and that we believe
promotes readability of the repeater assurance argument. We present this syntax in Appendix A; the
index at the end of the document identifies the page number on which specific operators are described.
Appendix B describes variations on the syntax necessary for processing by the mechanical tools. We
explicitly choose not to use a pretty (FlfeX) version of the syntax in the narrative descriptions,
e.g., one which follows more closely the notation described in [9], because we feel this would tend
to confuse rather than clarify the ASCII-restricted SVerdi specifications. We present enough detail
about the relatively small subset of CSP used that additional reading on CSP is probably not
necessary. For readers already familiar with CSP or readers that desire additional background,
Appendix C provides a summary of the correspondence between the syntax of Hoare's CSP and the

syntax we have adopted.
The rest of this section uses the notation of Appendix A to describe in more detail the CSP spec-

ification paradigm and the infrastructure provided by EVES and FDR to specify and mechanically
verify properties about CSP descriptions. We also describe the notational conventions of the literate

12

programming tool that we are using to document and manage the assurance argument. One need
not memorize the notation presented at first reading. Only a small subset of the CSP and EVES
notation is needed for the next chapter. Part II increasingly relies on a more in-depth understanding
of the CSP and EVES notation. We do not use the FDR notation until Part III. An understanding
of FunndelWeb notation is required uniformly through the document. We suggest a cursory review
of the notation to start with followed by a more in-depth study as the need arises.

While progressing through the assurance argument, we hope the reader keeps in mind Hoare's
views on learning a new notation:

Notations are a frequent complaint. ... If it is any consolation, this should be the least of
your worries. After learning the script, you must learn the grammar and the vocabulary,
and after that you must master the idiom and style, and after that you must develop
fluency in the use of the language to express your own ideas. All this requires study and
exercise and time, and cannot be hurried. So it is with mathematics. The symbols may
initially appear to be a serious hurdle; but the real problem is to understand the meaning
and properties of the symbols and how they may and may not be manipulated, and to
gain fluency in using them to express new problems, solutions, and proofs. Finally, you
will cultivate an appreciation of mathematical elegance and style. By that time, the
symbols will be invisible; you will see straight through them to what they mean.

3.1 The CSP Computational Framework

The CSP language permits describing systems as networks of communicating processes. A CSP pro-
cess is an entity that communicates with its environment through named communication channels.
The Traces Refinement model of CSP characterizes a process according to its alphabet and set of
traces. The alphabet of a process P, denoted alpha P, specifies all communication events relevant
to characterizing P. A communication event is described by a pair cm; the alphabet of process P
contains cm if and only if P is permitted to communicate message m over channel c. The trace
of a process is an observation of its execution. It consists of a finite sequence of events in which
the process has engaged at some moment of time. The set of all traces of a process P is denoted
traces P.

The CSP notation allows the description of processes using a variety of process constructors. The
CSP subset used in this document contains nine primary process constructors, STOP, SKIP, the prefix
constructor "->", the choice constructor "[]", the conditional constructor "if then else endif",
the sequential constructor ";", the recursion constructor "=", the concurrent constructor "M", and
the compose constructor " I ? I". STOP is the process with alphabet A that never engages in any
events of A; it describes the behavior of a broken process. The only trace of STOP is the empty trace.
SKIP is the process with alphabet A, which does nothing but terminate successfully; it describes the
behavior of a process that has successfully finished its job. To distinguish STOP and SKIP the event
tick is used to signify successful termination. The only traces of SKIP is .< >. and .<tick>..

The prefix process "e -> P" describes a process that first behaves like e and then like process
P. The trace of this process is e tacked onto the front of t where t is the trace of P. The choice
constructor allows the behavior of a process to be influenced by outside events. If P and Q are
processes and e and / are events, the process "e -> P □ / -> Q" behaves like process P if e is the
first event to occur and behaves like process Q if / is the first event to occur. This generalizes to a
process "[] x:B ® P(x)" where B is a non-empty set of events, x is an arbitrary event from B, and
P is a function from events to processes. A trace of a choice process must be a trace of one of the
alternatives. The conditional process "if b then P else Q endif" is defined as the process P if b
is true, otherwise Q. This can be generalized to allow any number of conditional branches in the
natural way. The trace of a conditional process is simply the trace of the process specified by the
value of the conditional expressions.

13

The sequential composition of processes, "P ; Q", describes a process that acts hke the successful
termination of P followed by Q. UP does not terminate successfully then Q does not start. The
trace of this process is a trace of P and, if this trace ends with the successful termination event, that
event is replaced by a trace of Q. A process successfully terminates only if the process terminates
on a SKIP process. The recursive process "X = P(X)" describes the process X that is the solution,

i.e., fixed point, of the equation X = P(X).
P [I X |] Q describes a process executing process P concurrently with process Q while syn-

chronizing on events in X. Two processes synchronize on an event if and only if they engage in
that event simultaneously. A commonly used abbreviation, P I I Q describes a process executing
process P concurrently with process Q with synchronization on those events that occur in both
alpha P and alpha Q. Events occurring in alpha P but not alpha Q may be engaged m by P
independently of Q. While the concurrency constructor is an operation on two processes, either of
the two processes may itself be a concurrent process. This operator therefore allows the description

of arbitrary networks of processes.
Processes executing concurrently communicate through channels. C ! m denotes the output ot

message m on channel C; C ? x denotes the input of value for x on channel C These operations

are communication events defined by

(C\m->P) = {C.m->P)
(C?x->P(x)) = (D C.n:alpha P(n)-> P(n)).

Although the CSP notation distinguishes between the input and output of values over channels,
the Traces Refinement model uses only the generic dot notation, Cm, to represent communications
over channels. For example, the traces of the output process C\m -> P are simply the traces of

C.m->P. • • 11 i -f
A communication of message m over C can occur between two processes running in parallel it

and only if both processes have the communication event Cm in their alphabets and both processes
simultaneously engage in that event. That is, whenever one process outputs a value onto the channel,
the other process simultaneously inputs the same value from the channel. This implies that

(C!m -> P) I I (C?x -> Q{x)) = Cm -> (P I I Q{m))

where Cm occurs in alpha P and alpha Q(m). If only one process in a network of processes has a
communication event in its alphabet, then that process may communicate over the channel associated
with that event independently of the other processes. To simplify the theory involved, Hoare assumes
that at most two processes in a network of processes can access the same communication channel
and that communication over a channel occurs in only one direction [9]. If only one process m
the network can access the channel, the channel is said to be external; if two processes can access
the channel, the channel is said to be internal. The only way a process can communicate with
another process executing concurrently is by engaging in a communication event; no shared memory

is permitted.
The alphabet and set of traces of a concurrent process are defined in terms of its component

processes. The alphabet of a concurrent process is simply the union of the alphabets of its component
processes. The set of traces of a concurrent process includes any trace that, when restricted to one
of its component alphabets, forms a trace for that component.

The above view of concurrency requires that any trace of a concurrent process P \\ Q include
every event in which P or Q engage. The visibility of the communications over internal channels in
the traces of P I I Q reduces the amount of abstraction possible during the system design process.
Hierarchical design, a proven method for managing the complexity of system design and verification,
requires that the requirements of a component be based solely on the sequence of external commu-
nications in which it may engage. We would like to be able to hide the internal events and describe
requirements of a process's external interface only. The CSP hiding operation "P \ A" describes a

14

process P with the events in set A hidden. Therefore, P I I Q \ (alpha P ** alpha Q) describes
a concurrent process with all internal event hidden. For convenience, we define an abbreviation for
this process using the compose operator, denoted I ? I. P I ? I Q ~ tick is equivalent to the P I I Q
except that the internal communications are hidden. The traces and alphabet of a compose process
are the same as for a concurrent process with the internal events deleted.

The Traces Refinement model of CSP permits specifying safety, i.e., partial correctness, require-
ments of non-divergent processes [22], A process P is non-divergent if P contains no unguarded
recursion (i.e., if every recursive call to P is prefixed by some event) and P cannot engage in an
infinite consecutive sequence of hidden events.1 A requirement in CSP is viewed as a set of traces.
Process P satisfies a requirement R, denoted P sat R, if and only if R contains every trace that
may occur as an observation of P:

{P sat R) = (traces P C R).

The above discussion identifies a number of assumptions that the Traces Refinement model of
CSP makes about the environment and implementation of a CSP process. In summary, these are

Shared Channel Communication — Communication between concurrent processes
(or a process and its environment) can take place only over channels shared by the
alphabets of the processes.

Two-Process Communication — Communication over a channel is unidirectional
involving exactly two processes - one process acting as a sender and the other process
acting as a receiver.

Atomic Communication — Communication over a channel is an atomic event.

Synchronous Communication — Communication over a channel requires syn-
chronous participation of both sender and receiver.

Non-Divergent Processes — Processes are non-divergent, i.e., all recursion is guarded
and there is no possibility of a process engaging in an infinite consecutive sequence of
hidden events.

The validity of the assurance argument for the repeater developed in this document depends on the
validity of these assumptions for the primitives of the repeater logical and physical designs. These
assumptions will be continually refined and interpreted throughout the repeater refinement.

3.2 EVES Notation
We use SVerdi to write definitions, conjectures, and proofs. These entities can be organized using
the built-in library mechanism. This mechanism provides a foundation from which to encode the
CSP Traces Refinement model in EVES, to specify CSP applications and to prove that they satisfy
their critical (trace) requirements.

3.2.1 Non-Executable Definitions

SVerdi can be partitioned into the constructs that permit execution in EVES and those that do not
permit execution in EVES. SVerdi non-executable definitions are for specification purposes only;
they can be stated as functions in the SVerdi Logic. The SVerdi Logic is based on the Predicate
Calculus using an ASCII syntax for predicate logic operators (see Appendix A). Constants may be
defined as functions of zero arguments. The EVES initial theory defines all the built-in functions
including the set-theoretic extensions and operators for the pre-defined types.

User-defined functions in SVerdi have the format
JNote that while all terminating processes are non-divergent, not all non-divergent processes terminate.

15

function F (pi,p2,...,pn) =

measure M(pl,p2 pn)

begin

FDef(pl,p2 pn)

end F;

The measure expression in the above template is required only for recursive functions as a basis for
proof of termination. The measure M must describe an expression associating natural numbers to
recursive calls that is bounded below by zero and decreases each recurrence of the function. The
body of a function may be "stubbed out" to postpone its definition until a later time. A simple
example is integer exponentiation, the stub of which might be

function exp (base,exponent);

and the fully expanded body of which might be

function exp (base,exponent) =

measure exponent

begin
if exponent >= 1
then base * (exponent - 1)

else 1

end exp;

The value of exponent, the measure for this function, decreases each iteration until it reaches a

value less than 1.
SVerdi provides a distinct notation called zf functions for constructing sets. To define, for exam-

ple, the sets
foo(x) = {y£f(x)\P(x,y)}

bar(x) = {g{x,y,z) |y, «€/(*)}

we define in SVerdi

zf function foo (x) =
begin

{ y in f(x) I P(x,y) }
end foo;

zf function bar (x) =

begin
■C g(x.y.z) I y.z in f (x) }

end bar;

One other type of zf function allows you to choose an arbitrary value that satisfies some expression;

for example, the function

zf function foobar (x) =
begin

y I P(x,y)
end foobar;

chooses a y such that P(x,y) holds, provided that one exists. No measures are needed for zf functions
since they may not be defined recursively. These and other set theoretic operators, which do not
require embedding in zf function definitions, are summarized in Appendix A.4.

16

3.2.2 Executable Definitions

SVerdi specifications may use the full power of mathematics to describe the requirements to which
a system must conform. SVerdi code, on the other hand, must be executable on a physical machine
and, therefore, must conform to the constraints ofthat machine. For example, specifications may use
unbounded integers, whereas any code will be constrained to a subset that is representable on the
base machine chosen. The executable subset of SVerdi is strongly typed for representation purposes;
the subset consists of type declarations, typed function declarations, and procedure declarations.
SVerdi types include bool (Booleans), char (characters), int (integers), enumerated types, records
and arrays.

Typed functions have the format

typed function TF (pll,pl2,...,pli : tl,
P21,p22,...,p2j : t2,
■ ■ • ,

pml,pm2,...,pmn : tm,) returns t =

pre P(pll,..•,pmn)
begin

TFDef(pll,...,pmn)
end TF;

where t, tl, t2, tm are pre-declared types and pll, pmn are parameters of the asso-
ciated types. The pre expression in the above template is needed only if the function TF is not total
over the type space; in this case, P(pll pmn) defines the restricted domain of the function.

SVerdi procedure declarations have the format

typed function PR (xvar pll,pl2 pli : tl,
xvar p21,p22,...,p2j : t2,
■ ■ ■,

xvar pml,pm2,...,pmn : tm) =
initial I(pll,...,pmn)
pre PI(pll,...,pmn)
post P2(pll,...,pmn)
measure M(pll,...,pmn)
begin

PRDef(pll,...,pmn)
end PR;

where t, tl, t2 tm are pre-declared types and pll pmn are parameters of the asso-
ciated types, xvar is one of lvar, pvar, or mvar. Logical variable, or lvar, parameters are value
parameters. Program variable, or pvar, parameters are variable parameters. Machine variable, or
mvar, parameters provide restricted access to variables of the base machine, e.g., physical ports.
Their exact value depends, ultimately, on linking the program to the specific observables.

The initial expression in procedure declarations gives names to the initial values of the variables
for reference in later annotations. The pre expression describes the condition that is assumed to hold
on entry to the procedure. The post expression describes the condition that is guaranteed to hold
on exit of the procedure, if it can be shown that execution of statements PRDef (pll,... ,pmn) of the
procedure implies that the condition holds. The measure expression is required only for recursively
defined procedures; M must describe an expression associating natural numbers to recursive calls
that is bounded below by zero and decreases each recurrence of the procedure.

SVerdi statements include assignments, conditionals, procedure calls, loops and loop exits. Each
loop must have the format

17

loop
invariant Inv(pll,...,pmn)
measure m(pll,...,pmn)
LDeKpll,. . . ,pmn)

end loop;

where the invariant expression describes a condition that holds at that point every iteration; the
measure expression describes an integer expression that is bounded below by zero and decreases
each iteration of the loop; and LDef describes the statements executed each iteration.

3.2.3 Conjectures
SVerdi provides several complementary ways to formulate conjectures, i.e., logical predicates, about
SVerdi definitions. The simplest form of conjecture is an axiom:

axiom A (vl,v2,...,vn) =
begin

P(vl,v2,..,vn)
end A;

where P is a predicate stated in terms of the variables vl through vn. Although this type of conjecture
is referred to as an axiom, EVES obligates the developer to prove the predicate submitted. The
EVES prover, which is called NEVER, requires that the axiom definition be explicitly assumed (via
a use command) in order for the predicate defined by the axiom to be used in subsequent proofs.

Three other types of conjecture definitions - rules, grules, and frules - allow the developer to
direct NEVER to use the predicates defined automatically when certain conditions are met. Rules
are rewrite rules of the form

rule R (vl,v2,...,vn) =
begin

C(vl,v2,..,vn)
-> P(vl,v2,..,vn) = E(vl,v2,..,vn)

end R;

where C is a predicate condition, P is a pattern to be matched, and E is an expression to be
substituted. If R is in the EVES database and NEVER encounters the pattern P in the proof of a
formula, then, if condition C can be proven automatically, expression E is substituted for P in the
formula. If C is tautologically true, the definition of a rule can be simplified as expected.

A grule is used in the proof of a formula when a subexpression of the formula matches the trigger
expression for the grule. Grules have the form

grule G (vl,v2,...,vn) =
begin

C(vl,v2,..,vn)
-> P(vl,v2,..,vn)

end G;

where C is a predicate condition, and P is a predicate containing the trigger expression. The trigger
is the first full function applied to zero or more distinct free variables when P is scanned from left
to right. If G is in the EVES database and NEVER encounters G's trigger in the proof of a formula
then, if condition C can be proven, predicate P is assumed. If C is tautologically true, the definition
of a grule can be simplified as expected.

Finally, a frule is used in the proof of a formula when an instance of its condition becomes true.

Frules have the form

18

frule F (vl,v2 vn) =
begin

C(vl,v2,..,vn)
-> P(vl,v2,..,vn)

end F;

where C and P are predicates. If F is in the EVES database and NEVER detects that condition C
is satisfied for some instantiation of vl through vn in the proof of a formula, then predicate P is
assumed.

3.2.4 Proof Commands

SVerdi provides commands to interact with NEVER to prove the proof obligations generated while
parsing definitions and conjectures into the EVES database. These commands can roughly be
classified as to whether they provide coarse-grained control or fine-grained control over NEVER.

Commands providing coarse-grained control include simplify, rewrite, and reduce. Simplifica-
tion uses frules and grules to transform an expression to one that the system considers to be simpler.
Rewriting performs simplification and applies any rewrite rules that match the subexpression being
traversed. Finally, reducing expands function definitions in addition to simplifying and rewriting
the current formula. These coarse-grained commands can use a conjecture or function definition
only if it is enabled. By default conjectures and definitions are enabled; they may be disabled by
adding the keyword disabled in front of the conjecture or function definition. The coarse-grained
commands can be incrementally strengthened/weakened using the with enabled/with disabled
modifiers, specifying the definitions and conjectures to be enabled/disabled during the course of the
command execution.

Commands that provide fine-grained control include commands that allow definitions and con-
jectures to be used manually (e.g., use, invoke, and apply) and commands that perform

• quantifier manipulation (e.g., instantiate and prenex),

• equality reasoning (e.g., equality substitute),

• formula rearranging (e.g., rearrange and split), and

• case splitting (e.g., cases and next).

SVerdi also provides an induction command, induct, which inducts on a recursive function specified
by the user or chosen heuristically based on calls to recursive functions within the current formula.

3.2.5 Library Mechanism

SVerdi descriptions can be organized into library units for configuration and proof management.
Library units are either spec (i.e., specification) units or model units. Each spec unit corresponds
to a unique model unit; EVES requires the model unit to be a model (in the mathematical logic sense)
of its corresponding spec unit. A library can be specified as default by calling the set library
command with the path name of the directory in which the library resides. The current state of the
EVES database can be saved as either a spec or model unit by calling the make command, model
units may only be saved if all the proofs are complete and all the definitions are consistent with its
corresponding spec unit. The definition of new units may be started by resetting the state of the
EVES database using the reset command.

One library unit may load a previously defined spec unit to access the definitions and conjectures
ofthat unit, if no circularities are introduced as a result. The definitions and conjectures loaded are
referenced by prefixing their names with the name of the unit followed by an exclamation mark. For
example, a definition def from the library unit lib is referred to as libldef. The only exception

19

to this naming convention is when the user defines specialized syntax for particular applications,
in which case the user definition overrides the naming convention (see [16] for details on how this
is accomplished). The special syntax used in the repeater refinement is described in Appendix A.
The library distributed with EVES is described in [27]; a brief summary of the portion of the EVES
Library that we use, including the names of the units defined, is presented in Section 1 of Chapter 13.

The SVerdi library mechanism supports abstraction, information hiding, modularization and
reuse in the form of Ada-like package specifications or axiomatic descriptions of mathematical theo-
ries. The spec unit can be used to document the specification portion of a package as a CSP process
stub and the critical requirements of that process. The model unit documents the body portion of
the package as an detailed design of the CSP process and the verification that it satisfies the critical
requirements defined. More important for the CSP theory development is the use of the library
mechanism to formulate axiomatic descriptions of mathematical theories given in the spec unit and
model theoretic proofs of their consistency given in the model unit. The CSP library developed for
EVES and documented in [19] uses this approach to set up the background theory to specify and
verify the repeater. A brief summary of its contents, including the names of the units defined, is

presented in Section 2 of Chapter 13.

3.3 FDR Notation
CSP descriptions in FDR consist of three elements: a low-level process description language, a set
of high-level process combination operators, and a supporting mathematical language. FDR's low-
level process language allows the definition of relatively small finite state sequential components in
terms of relatively complex mathematical objects. FDR's high-level process composition operators
allow low-level process components to be combined into complex system models. FDR enforces two
restrictions on the combination of these elements:

• no high-level operators may be nested inside low level processes, and

• process descriptions that involve high-level operators may not be parameterized.

These restrictions are made to ease the FDR verification process. Since our approach is to translate
a logical CSP design into FDR syntax, we will have to ensure these restrictions are met throughout
the design of the repeater. The FDR parser will reject any specification that does not meet these

criteria. .
Unlike EVES, FDR is tailored specifically to process CSP descriptions. CSP in FDR is strongly

typed and has its own built-in language for defining channels, alphabets and processes. Channels
and the values that may be communicated are declared as

pragma channel cl,c2 en : v

where ci is the name of a distinct channel that may communicate the values in the set v. v may be
either the name of a previously defined set or the set itself. Sets are user-defined finite enumerations
that may include integers or truth values; conventional set notation is used, e.g., MySet = {0,1,2>.

Although the values transmitted over channels are limited to simple atomic values, process
definitions may be parameterized with more complex structures such as sets and sequences. In
particular, the repeater descriptions depend on sequences of bits to represent characters and buffer
contents. These sequences are parameters to recursive processes that represent the current state of

the repeater. .
FDR supports the definition of functions on the CSP complex structures in the Standard ML

(Meta-Language) programming language [18]. To use ML functions in a CSP process description,
the developer must define the ML function, load the function into FDR, declare the name of the
function to be used in the CSP description, and link the function definition with the appropriate

name.

20

3.3.1 Defining and Loading ML Functions

ML functions are denned in a separate file and then loaded into FDR using the ML use command,
e.g., use "filename". The syntax for the subset of ML that we use is similar to that for EVES'
CSP function definitions with extensions to support integration with FDR. ML function definitions
have the form

fun F (vl,v2,...,vn) =
Del(vl,v2,...,vn);;

where Def is an ML expression in terms of F's parameters.
ML functions that pass values to FDR are required to have a rather awkward and unintuitive

structure. Such functions must have type expression list >-» expression or, if it is to be used
as a predicate, expression list >-> bool. To cast ML/FDR interface functions in this form, FDR
provides a set of built-in functions to coerce values to type expression and to interrogate values
contained in a variable of type expression. A sequence of values can be coerced to type expression
by passing the sequence as the first parameter to the EXPseqcomp function:

EXPseqcomp: expression list x expression list H-> expression

Since a parameter list can be viewed as an expression list, ML functions used to directly interface
to FDR have the form

fun f [EXPseqcomp (list, [])]
Def (list);;

ML functions called by Def use the more general syntax for ML function definitions described above.
The first argument of EXPseqcomp is the list of parameters being passed; the second argument is
always empty. The elaboration of Def requires the use of other coercion and interrogation functions,
the signatures of which follow:

CheckAtom : expression •-► atomvalue

Atom : atomvalue ►-► expression

InjectNum : int >-> atomvalue

NumberOf : atomvalue ►-► int

3.3.2 Declaring and Linking ML Functions

FDR is instructed that a function call in a CSP description is supplied by an ML function definition
using the command

pragma opaque "ML" fdr-name

where fdr-name is the name of the function in the CSP description. The function call is linked to
the ML definition by the command

DefineMLFunction "fdr-name" ml-name

or, if the function is a predicate, by the command

DefineMLPredicate "fdr-name" ml-name.

21

3.4 FunnelWeb Notation
As we mentioned earlier, a literate programming (LP) tool allows the user to interleave documen-
tation and code in whatever order is most appropriate for presentation. However, the tool must
be able to extract and reorder the code "chunks" properly for the compiler. Like other LP tools,
FunnelWeb accomplishes this feat with macros and automatic cross-referencing.

Each macro may contain some code as well as references to other macros. During the code
extraction phase, FunnelWeb, starting at the "root" macro2, extracts any code from the macro and
expands all references to other macros. The process continues until there are no more references to
expand and all of the code is extracted. The macros and their cross-references also appear in the
typeset documentation so the reader can see how the code chunks fit together.

We use two types of FunnelWeb macros:

Simple Macro: The simple macro, by far the most common, has the following format. (The
typographical conventions are consistent with FunnelWeb's output.)

{macro name)[definition number]=
The code to be processed appears here
(caii to another macro} [called macro's definition number]

This macro is invoked in definition n.

The letters M and Z may follow the definition number, indicating that the macro may be
called many times or zero times, respectively. The numbers of the definitions that use a macro
are listed in the last line. Macros that are invoked in a macro that is not defined in this
document are invoked in external files as described by Section 3 of Chapter 13.

Here is an example of a simple macro.

(procedure exampie)[5]=
procedure example is

(Constants) [4]
begin

lor i in 1..n loop
(Write out first p powers of i)[8]

end loop;
end example;

This macro is invoked in definition 7.

Additive Macro: This macro is like the simple macro except that its definition may be distributed
throughout the document. Each extension of an additive macro has the same name. The only
syntactic difference between an additive macro and a simple macro is that = is replaced with

+ =.
Parameterized Macro: As its name implies, the parameterized macro accepts one or more

parameters for its definition. While not widely used in this report, this facility is useful in
certain cases. Here is a simple example.

(add) [6] (o2)M=
ol +o2

This macro is invoked in definitions 3, 4 and 9.

2 There may be more than one root macro as each root macro names an output file.

22

This macro takes two parameters and the second is added to the first. The small diamonds
(o) distinguish the quantity of parameters and the parameter numbers from the definition
numbers and ordinary code. Since it makes little sense to define a parameterized macro to
be invoked only once, the M will usually appear after the definition number. An invocation
of add is illustrated below in the definition of another parameterized macro! The parameter
list is enclosed in parentheses and the individual parameters are enclosed in single quotes and
delimited by commas.

(double) [3](ol)M=
(add)[6]('ol7ol')

This macro is invoked in definitions 10 and 11.

23

Chapter 4

Critical Requirements Specification

This chapter specifies the critical requirements for a CSP process called Rptr that represents the
repeater. Rptr's critical requirements derive from both the requirements introduced in Section 2.1
and the assumptions of the CSP Traces Refinement model introduced in Section 3.1. We start with
the model assumptions since, in some sense, they lay the foundation for the specification of the other
critical requirements. Section 4.1 discusses and motivates the definition of critical requirements that
derive from the model assumptions. Section 4.2 presents the Rptr formal assertions in the literate
style. Although the requirements derived from the model assumptions are critical they cannot be
expressed in the CSP Traces Refinement model and, thus, are not formalized. Section 8.3 lists the
collection of informal and formal Rptr critical requirements as a basis for future refinement.

4.1 Critical Requirements that Derive from Model Assump-
tions

As depicted in Figure 4.1, the channel inbit represents Rptr's input port and the channel
outbit represents Rptr's output port. The inbit and outbit channels are limited to single-bit
transmissions per communication event. In this chapter, we model only that portion of the repeater
function necessary to describe its critical requirements. The omitted function, e.g., error processing
and signaling over the error port, will be introduced during later refinement.

We derive critical requirements for Rptr by interpreting each Traces Refinement model assump-
tion of Section 3.1 in terms of the primitives of the Rptr.

inbit outbit

Figure 4.1: The Repeater: CSP External View

24

4.1.1 Shared Channel Communication

This assumption imposes a restriction on the way a CSP process description may be implemented
in software or hardware. The Traces Refinement model assumes that the only way a process can
communicate is through channels defined in it's alphabet. The proof theory associated with the
model enforces this constraint on the CSP process description, but any refinement of the description
to software or hardware is outside scope of the CSP theory and must be shown to satisfy the intent
of the constraint independently.

Although this model assumption primarily imposes a requirement on the mapping of a CSP
process description to an implementation, it is also helpful to identify assumptions of the environment
during the CSP refinement process. The only assumption at this level is that power is continuously
supplied to Rptr. This simplification is made so that it is not necessary to model a power channel
explicitly. Although from a formal perspective the arguments made about Rptr are invalidated by
a loss of power, practically speaking power loss only violates the guaranteed delivery aspect of the
Relay Characters Until Overflow requirement.

Assump 1 Power is continuously supplied to Rptr.

Assert 1 If Rptr is continuously powered, Rptr and its environment can communicate only via ex-
ternal channels; communication between Rptr sub-processes can take place only over channels
shared by the alphabets of the sub-processes.

4.1.2 Two-Process Communication

This assumption requires that the environment does not send data over outbit and that Rptr does
not send data over inbit. Decomposing Rptr into sub-processes must ensure that communications
are uni-directional involving exactly two processes.

Assump 2 The environment does not send data over outbit.

Assert 2 Rptr does not send data over inbit.

Assert 3 Communication between Rptr sub-processes must be uni-directional and involve exactly
two sub-processes.

4.1.3 Atomic Communication

The assumption that communication events are atomic makes reasoning about the behavior of CSP
processes simpler. This assumption appears to be inconsistent with the fact that transmission of
data over a physical channel requires some finite, non-zero amount of time to complete. The intent
of the assumption, however, is not to force instantaneous communication, but rather to ensure
that the existence of arbitrary transmission delay does not affect the truth or falsity of the critical
requirements of interest. Since the Traces Refinement model of CSP is limited to specifying and
proving safety properties of CSP processes, the time it takes for communications to occur has no
impact on the truth of a property specified in the Traces Refinement model. This assumption,
therefore, implies no additional requirement for Rptr.

4.1.4 Synchronous Communication

This assumption imposes a restriction on the way a CSP process description may be implemented
in software or hardware. The Traces Refinement model assumes synchronous communication in its
theory for reasoning about CSP processes; any implementation of a CSP process description must

25

ensure the synchrony of processes communicating via the CSP input and output operators. : Values
sent over channels may not be lost due to mis-timed transmissions.

Assert 4 The implementation of communications over a channel in the Rptr process description
must synchronize sender and receiver.

4.1.5 Non-Divergent Processes

This assumption imposes a restriction on the form of CSP process descriptions. The restriction
ensures that CSP recursive process descriptions have a single solution, i.e., a unique meaning. In
general, process descriptions must be fully refined to ensure non-divergence. Nevertheless, the
assumption provides important guidance for the refinement process to ensure non-divergence can be
proven of the final implementation.

Assert 5 Rptr must not engage in unguarded recursion nor engage in an infinite sequence of hidden

events.

4.2 Specification of the Formal Assertions

The process representing Rptr has three parameters:

• chsz represents the length in bits of a character processed. All characters processed by Rptr
are delimited by a startbit/stopbit combination. In terms of the variable K introduced in
Chapter 2, chsz is just K reduced by two bits, one bit for each delimiter (i.e., chsz equals K-2).

• buff sz represents the capacity in characters of the internal buffer. From an external viewpoint,
we have to interpret the size of the internal buffer referred to in Chapter 2 as the difference
between the number of even parity characters received over inbit and the number of characters
transmitted over outbit. Rptr may be processing a character in addition to those stored in
the internal buffer; buf f sz represents the actual maximum number of characters that can be
stored by Rptr in addition to the one being processed, i.e., the value N-l. The maximum size
of the internal buffer, N, referred to in Chapter 2 is therefore mapped to the maximum capacity
of Rptr. This somewhat awkward interpretation is necessitated by the desire to start from an
external specification of the critical requirements.

• tick represents the event representing successful termination. We use the variable tick, by
convention, to represent a special event that occurs automatically when (and only when) a
process terminates successfully. Rptr terminates successfully after it halts due to receiving
a character that causes an overflow; otherwise, Rptr continues to process characters that it

receives.

(Definition Stub ofRptr)[l] =
function Rptr(chsz, buffsz, tick);

This macro is invoked in definition 219.

Rptr is a CSP process if it is constructed from legal CSP process operators. The fact that Rptr
is actually a process is specified as an axiom at this level of specification since Rptr has yet to be

defined.

(Rptr is a CSP process)[2]M =

'Note, however, that asynchronous communication can be modeled in CSP, for example, by inserting a buffer
process or implementing a handshaking protocol between communicating processes.

26

grule is_process_rep (chsz, buffsz, tick) =

begin
chsz >= 0

and buffsz >= 0
and not iscomm tick

-> isprocess Rptr(chsz, buffsz, tick)
end is_process_rep;

This macro is invoked in definitions 219 and 221.

Assert 6 Rptr is a CSP process.

The alphabet of the repeater consists of communication of bits over the external channels inbit
and outbit. A CSP channel is represented in EVES simply as a function with no parameters, i.e.,
a constant. Since these values are really constants we define nilf ix aliases for each to make them
easier to use, e.g., inbit for inbit ().

(Channels)[3]M =
typed function in_bit 0 returns int;
nilfix inbit in_bit;

typed function out.bit () returns int;
nilfix outbit out_bit;

This macro is invoked in definition 203.

These are actually just names of channels representing the medium for transmission that will
be implemented at some lower level. The values of these constants are irrelevant as long as they are
distinct. We make this assumption explicit in the EVES specification by adding an axiom stating
that the values returned by these functions are different. This axiom is trivially satisfied by any
unique scheme for assigning values to the channels.

(Unique channels)[4]M =
grule in_not_eq_out () =
begin

not inbit = outbit
end in_not_eq_out;

This macro is invoked in definitions 203 and 205.

The alphabet of Rptr can now be defined as tick and the set of all communications of bits over
the external channels. We use abstract bit values of 0 and i to represent the voltages over lines.

(Alphabet)[b]M =
function Rep_alpha_ext(tick) =
begin

reqs!seq_buff_alpha(-{inbit, outbit}-, -{0, 1}-, tick)
end Rep_alpha_ext;

This macro is invoked in definitions 203 and 205.

That this is the alphabet for Rptr is specified as an axiom at this level of specification since
the details of Rptr's design have yet to be defined. We assume that chsz is a natural number and
tick is not a communication event. The latter assumption is made so that we do not need to worry
about tick being indistinguishable from a communication event relevant to Rptr's description.

(Rptr's alphabet is defined by Rep_aipha_ext)[6]M =

27

rule Rep_alphabet(chsz, buffsz, tick) =

begin
chsz >= 0

and buffsz >= 0

and not iscomm tick

-> alpha Rptr(chsz, buffsz, tick)
= defs!Rep_alpha_ext(tick)

end Rep_alphabet;
This macro is invoked in definitions 219 and 221.

Assert 7 Rptr's alphabet is defined by Rep-alpha_ext

4.2.1 Top-Level Requirements Structure

Our goal is to specify formally as trace specifications the critical requirements for Rptr. Assuming
valid-relay is the name for these requirements, our specification is

(Rptr satisfies vaiid_reJay)[7]M =
axiom Rep_sat_spec(chsz, buffsz, tick) =

begin
chsz >= 0

and buffsz >= 0

and not iscomm tick

-> Rptr(chsz, buffsz, tick)
sat valid_relay((Rptr universe of events) [27], chsz, buffsz, tick)

end Rep_sat_spec;
This macro is invoked in definitions 219 and 221.

Assert 8 Rptr satisfies valid-relay.

A trace specification like validjrelay is simply a set of traces. Elements of the set are chosen
from the universe of possible traces of events and must conform to valid_relay_spec:

(vaiicLreJay)[8]M =
zf function valid_relay(a, chsz, buffsz, tick) =

begin
{ trl in a"* I valid_relay_spec(trl, chsz, buffsz, tick) }

end valid_relay;
This macro is invoked in definitions 219 and 221.

We split validjrelay-spec into two pieces: one when Rptr has successfully terminated (i.e.,
tick is the last event of Rptr's trace) and one when it has not. Traces of Rptr that end with
tick must satisfy Rptr's post condition; traces of Rptr that do not end with tick must satisfy
Rptr's invariant. This forms a natural partition of validjrelay since we can say more about the
requirements of Rptr when it has terminated. At termination we can say that all even parity
characters received by Rptr before the buffer overflows have been successfully transmitted. Before
termination, all we can say is that some subsequence of those characters have been transmitted.
Henceforth, the phrase valid characters refers only to those characters of even parity received before

an overflow.

(Constraints on Rptr's trace)[9]M =

28

function valid_relay_spec(trl, chsz, buffsz, tick) =
begin

if (Rptr terminates)[10]
then (All valid characters were transmitted over outbit)[ll]
else (A subsequence of valid characters were transmitted over outbit)[22]
end if

end valid_relay_spec;

This macro is invoked in definitions 219 and 221.

(Rptr terminates) [10] =
not null trl

and last(trl) = tick
This macro is invoked in definition 9.

4.2.2 Repeater Post Condition

Under the assumption that Rptr has terminated, the three logical requirements taken together
require that up to the point at which an overflow occurs, the output stream of characters must be
identical to the input stream of characters with characters of odd parity removed. Also, nothing
other than identifiable and complete characters may be transmitted over outbit.

(All valid characters were transmitted over outbit)[11] =
(Character sequence transmitted over outbit)[12]

= (Valid character sequence received over inbit)[13]
and (Only whole characters were transmitted over outbit)[21]

This macro is invoked in definition 9.

Character sequence transmitted over outbit

The sequence of bits traversing outbit, i.e., trl I = outbit, is a flat representation of the characters
processed by Rptr. The following formats this bit sequence into the character sequence it represents:

(Character sequence transmitted over outbit) [12]M
(Bits to cnars)[122]('tri 1= outbit')

This macro is invoked in definitions 11 and 22

Valid character sequence received over inbit

valid_input_chars returns the sequence of even parity characters received over inbit in trace trl
before an overflow occurs. This sequence is calculated by restricting the bits received before an
overflow occurs to those characters of even parity.

(Valid character sequence received over inbit)[13]M =
valid.input_chars(trl, chsz, buffsz, tick)

This macro is invoked in definitions 11 and 22.

(DeRnition of vaJidJnput.ciiars)[14]M =
function valid_input_chars(trl, chsz, buffsz, tick) =
begin

29

(Characters received over inbit before overflow)[15]
I " (Set of even parity characters) [133]
end valid_input_chars;

This macro is invoked in definitions 219 and 221.

The sequence of characters received over inbit before an overflow are derived by transforming
to characters the sequence of bits received over inbit before an overflow.

{Characters received over inbit before overflow)[15] =
(Bits to chars)[122]('(Trace before overflow)[16] 1= inbit')

This macro is invoked in definition 14.

The trace before an overflow occurs is derived by choosing the longest prefix of trl for which the
predicate no .error .condition holds. This operation is performed by the function filter of the tr
library unit. Intuitively, no .error .condition describes the condition under which no overflow of

the internal buffer has occurred.

(Trace before overflow)[16] =
tr!filter(trl,

def s!Rep_alpha(chsz,t ick),
no_error_condit ion (.{Rptr universe of events) [27],

chsz, buffsz))
This macro is invoked in definition 15.

Functions to be passed as parameters in SVerdi are represented as a set of ordered pairs where
the first elements of the pairs form the domain and the second elements form the range. Since
no.error_condition is a boolean function, we define it as a set of ordered pairs with domain equal
to the set of traces of the alphabet passed in and the range equal to the set of Boolean values. Each
trace is mapped to the value returned when passed to the predicate no-over .flow.

(Definition of nojerror.condition) [17]M =
zf function no_error_condition(a, chsz, buffsz) =
begin

{ -<trl, no_over_flow(trl, chsz, buffsz)>- I trl in a"* }
end no_error_condition;

This macro is invoked in definitions 219 and 221.

An overflow occurs when the difference between the number of even parity characters received
over inbit and the number of characters transmitted over outbit exceeds buffsz + 1, at any point
during execution, buffsz is incremented by 1 since Rptr may be processing a character in addition
to the buffsz characters possibly held by the internal buffer.

(Definition of no.overJlow)[18]M =
function no_over_flow(trl, chsz, buffsz) =

begin
all tr2:

tr2 .<=. trl
-> (len (Sequence of even parity inbit chars over tr2) [19])

- (len (Sequence of outbit chars over tr2)[20])
<= buffsz + 1

end no_over_flow;
This macro is invoked in definitions 219 and 221.

(Sequence of even parity inbit chars over tr2)[19]M =

30

(Bits to chars)[122]('tr2 1= inbit')
I" (Set of even parity characters) [133]

This macro is invoked in definitions 18 and 33.

(Sequence of outbit chars over tr2)[20]M =
(Bits to chars)[122]('tr2 1= outbit')

This macro is invoked in definition 18.

Only whole characters were transmitted over outbit

Specifying that no spurious bits were transmitted is a simple matter of stating that the sequence of
bits that traversed outbit is a multiple of the character size, chsz, plus 2 for the start and stop bits
delimiting each character transmitted.

(Only whole characters were transmitted over outbit)[21] =
(len trl 1= outbit) mod (chsz + 2) = 0

This macro is invoked in definition 11.

4.2.3 Repeater Invariant

Before Rptr terminates, we cannot guarantee that every even parity character received has been
transmitted. We can guarantee, however, that the sequence of characters transmitted over outbit
must be a prefix of the sequence of even parity characters received over inbit before the overflow
occurred. This is easily specified in terms of the primitives already defined.

(A subsequence of valid characters were transmitted over outbit) [22] =
(Character sequence transmitted over outbit)[12]

. <=. {Valid character sequence received over inbit) [13]
This macro is invoked in definition 9.

4.3 Summary of the Critical Requirements

The assumptions and assertions of Rptr given the use of the CSP Traces Refinement model and the
above trace specification are summarized below.

4.3.1 Assumptions

1 Power is continuously supplied to Rptr.

2 The environment does not send data over outbit.

4.3.2 Assertions

Informal Assertions

1 If Rptr is continuously powered, Rptr and its environment can communicate only via external
channels; communication between Rptr sub-processes can take place only over channels shared
by the alphabets of the sub-processes.

31

2 Rptr does not send data over inbit.

3 Communication between Rptr sub-processes must be uni-directional and involve exactly two

sub-processes.

4 The implementation of communications over a channel in the Rptr process description must

synchronize sender and receiver.

5 Rptr must not engage in unguarded recursion nor engage in an infinite sequence of hidden

events.

Formal Assertions

6 Rptr is a CSP process.

7 Rptr's alphabet is defined by Rep^alpha.ext.

8 Rptr satisfies valid-relay.

32

Part II

The Repeater Logical Design

33

Chapter 5

Repeater Logical Architecture

This chapter presents the logical CSP architecture for Rptr including the decomposition of Rptr crit-
ical requirements onto the components of this architecture. The goal of the logical architecture (and
subsequent logical component refinement) is to describe the most abstract CSP process description
that embodies the critical requirements of Rptr elaborated in the previous chapter. This process
description will be used as the basis for the FDR refinement and verification described in Part III.
By making the semantic gap between the Rptr critical requirements and its logical architecture as
small as possible, we can minimize the extent to which the Rptr verification depends on interactive
proof and maximize the extent to which it depends on automatic model checking. As mentioned
previously, this approach minimizes the human resources needed to carry out a rigorous verification
of intuitively appealing properties of Rptr.

Decomposition of the Rptr formal assertions onto the components of the logical architecture was
carried out using the method described in [21]. We present only the final results of the application
of this method; the process by which we reached these results are not particularly important for
understanding the refinement and verification of Rptr. Section 5.1 presents an informal overview of
the Rptr logical architecture and the primary responsibilities of its components. Sections 5.2 and 5.3
describe the alphabet and the critical formal assertions of each component. Section 5.4 summarizes
the critical requirements of the logical architecture. Finally, Section 5.5 outlines the proof that the
combination of the component formal assertions imply the Rptr formal assertions.

5.1 Overview of the Logical Architecture

Figure 5.1: Repeater Logical Architecture

As depicted in Figure 5.1, Rptr is specified as the composition of two processes: Get, which receives
and checks the parity of incoming characters, and Put, which maintains the internal buffer and

34

transmits those characters that passed the parity check. The internal channel mid is used to pass
valid characters for output.

Assump 3L The environment does not send or receive data over mid.

Assert 2.1L Get does not send data over inbit.

Assert 3.2L Put does not send data over mid.

Intuitively, Rptr operates as follows. The bit stream received over inbit and transmitted
over outbit can be partitioned according to the delimited character sequence that the bit stream
represents. Each segment of the bit stream representing a delimited character contains the startbit
at the beginning of the segment and the stopbit at the end of the segment. For each such segment
received over inbit, Get determines the parity of the character that the segment represents. If
the character is of odd parity it is thrown out and the reception of a new character is initiated.
Otherwise, the startbit and stopbit are stripped off and the character is sent in parallel form
over mid to Put. Put serializes the data, adds the startbit and stopbit delimiters and stores the
data until ready for transmission over outbit. Rptr's components are tightly synchronized; Get can
be processing a character and the internal buffer can store a maximum of buff size characters. Get
delays the reception of a new character until the transmission of the previous character to Put. At
this level of specification, we have not indicated how or when errors are to be signaled over err.

Assert 3.1L Communication between Get sub-processes must be unidirectional and involve exactly
two processes.

Assert 3.3L Communication between Put sub-processes must be unidirectional and involve exactly
two processes.

A few characteristics of this partitioning of the problem are worth emphasizing. The black box
view of the problem, described in Chapter 2, defines an overflow to occur when the number of bits
received over inbit exceeds the number of bits transmitted over outbit by more than K*N (i.e.,
(chsz + 2) * (buffsz + 1) in terms of the formal Rptr specification). While errors can occur in
this refinement due to the reception of characters of odd parity, the tight synchronization of Rptr's
components prohibits the occurrence of an overflow. Rptr can hold a maximum of N delimited
characters, one from Get and N-l (i.e., buffsz) from Put. Once this maximum is reached, no more
characters can be received until a character is transmitted.

5.2 Get Formal Assertions

This section presents the critical formal assertions for Get. The alphabet of Get consists of commu-
nication of bits over the previously defined channel inbit and the new channel mid. The fact that
Get is actually a sequential process is specified as an axiom at this level of specification since Get has
yet to be defined. We assume that chsz is a natural number and tick is not a communication event.
The latter assumption is made so that we do not need to worry about tick being indistinguishable
from a communication event relevant to Get's description.

(Definition Stub of Get) [23] =
function Get(chsz tick);

35

This macro is invoked in definition 207.

(Get is a sequential CSP process)[24]M =
grule Get_is_seqpr (chsz, tick) =
begin

not iscomm tick
and chsz >= 0

-> pr!is_seqpr (Get (chsz, tick), tick)
end Get_is_seqpr;

This macro is invoked in definition 207.

Assert 6.1L Get is a sequential CSP process.

As before, a CSP channel is represented as a function with no parameters, i.e., a constant, so
we define a nilfix alias for mid to make it easier to use, e.g., mid for mid (). mid is actually just
a name of a channel representing the medium for transmission that will be implemented at some
lower level. Its value is irrelevant as long as it is different than previously defined channels. We
make this assumption explicit in the EVES specification by adding a series of axioms stating that
the value returned by mid is different than that returned by any other channel. These axioms are
trivially satisfied by any unique scheme for assigning values to the channels.

(mid channei)[25]M =
typed function mid () returns int;
nilfix mid mid;

This macro is invoked in definition 203.

(Unique mid cnannei)[26]M =
grule in_not_eq_mid () =
begin

not inbit = mid

end in_not_eq_mid;

grule mid_not_eq_out () =

begin
not mid = outbit

end mid_not_eq_out;

This macro is invoked in definitions 203 and 205.

The universe of all events relevant to Rptr can now be defined as the externally visible events
and the set of all communications of chsz-length characters over the mid.

(Rptr universe of events) [27]M =
defs!Rep_alpha(chsz,tick)

This macro is invoked in definitions 7 and 16.

(Definition of Rptr universe of events) [28]M =
function Rep_alpha (chsz,tick) =

begin
Rep_alpha_ext (tick)
++ reqs!seq_buff_alpha ({mid}, cseq!char_set(chsz), tick)

end Rep_alpha;

36

This macro is invoked in definitions 203 and 205.

The alphabet of Get can be defined as tick, the set of all communications of bits over inbit,
and the set of all communications of characters over outbit.

(Get alphabet)[29]M =
function Get_alpha (chsz.tick) =
begin
reqs!seq_buff_alpha ({inbit}, -{0, 1}-, tick)
++ reqs!seq_buff_alpha ({mid}, cseq!char_set(chsz), tick)

end Get_alpha;
This macro is invoked in definition 207.

That this is the alphabet for Get is specified as an axiom at this level of specification since the
details of Get's design have yet to be defined.

(Get's alphabet is defined by Get_aJpJia)[30]M =
rule Get_alphabet(chsz, tick) =
begin

chsz >= 0
and not iscomm tick

-> alpha Get(chsz, tick)
= Get_alpha(chsz,tick)

end Get_alphabet;
This macro is invoked in definition 207.

Assert 7.1L Get's alphabet is defined by Get_alpha.

5.2.1 Top-Level Requirements Structure

Our goal is to specify formally as trace specifications the critical requirements for Get. Assuming
valid_Get is the name for these requirements, our specification is

(Get satisfies valid-Get)[31]M =
grule Get_sat_spec (chsz, tick) =
begin

chsz >= 0
and not iscomm tick

-> Get (chsz, tick)
sat valid_Get (defs!Rep_alpha (chsz.tick), chsz, tick)

end Get_sat_spec;
This macro is invoked in definition 207.

Assert 8.1L Get satisfies valid_Get.

valid-Get is simply a set of traces, the elements of which are chosen from the universe of possible
traces of events from Get.alpha (chsz.tick) and must conform to Get-not_over.capacity and
valid.char_Get:

(vaiid.Get) [32] M =
zf function valid.Get (a, chsz, tick) =

37

begin
{ trl in a **

I Get_not_over_capacity (trl, chsz, tick)
and valid.char_Get (trl, chsz, tick) }

end valid_Get;
This macro is invoked in definition 207.

We must know the capacity of every component of Rptr to determine whether an overflow
occurs. Get is constrained to process one character at a time. Therefore, at any point in Get's
execution, the number of even parity characters received over inbit can be at most one more than
the number of characters transmitted over mid.

(Definition of Get_jjot_over_capacity)[33]M =
function Get_not_over_capacity(trl, chsz, tick) =

begin
all tr2:

tr2 .<=. trl
and tr2 "*? defs!Rep_alpha(chsz,tick)

-> (len (Sequence of even parity inbit chars over tr2)[19])
- (len tr2 1= mid)

<= 1
end Get_not_over_capacity;

This macro is invoked in definitions 207 and 209.

valid_char_Get can be specified much like the Rptr-level critical requirements, except that we
need not worry about overflow. We split the specification of valid_char_Get into two pieces: one
when Get has successfully terminated (i.e., tick is the last event of Get's trace) and one when it has
not. Traces of Get that end with tick must satisfy Get's post condition; traces of Get that do not
end with tick must satisfy Get's invariant. This forms a natural partition of valid.Get since we can
say much more about the requirements of Get when it has terminated. At termination we can say
that all even parity characters received by Get have been successfully transmitted over mid. Before
termination, all we can say is that some subsequence of those characters have been transmitted.

(Definition of valid.char.Get)[M]M =
function valid_char_Get (trl, chsz, tick) =

begin
if (Get terminates)[35]
then (AH even parity characters were transmitted over mid) [36]
else (A subsequence of even parity characters were transmitted over mid) [38]

end if
end valid_char_Get;

This macro is invoked in definitions 207 and 209.

(Get terminates)[35] =
not null trl

and last(trl) = tick
This macro is invoked in definition 34.

5.2.2 Get Post Condition

Under the assumption that Get has terminated, the critical requirements for Rptr taken together
require that the output stream of characters must be identical to the input stream of characters
with characters of odd parity removed.

38

(AU even parity characters were transmitted over mid)[36] =
trl 1= mid

= (Character sequence received over inbit)[37]
I* {Set of even parity characters) [133]

This macro is invoked in definition 34.

The sequence of characters received over inbit before an overflow are derived by transforming
to characters the sequence of bits received over inbit before an overflow.

(Character sequence received over inbit)[37]M =
{Bits to chars)[122]('trl 1= inbit')

This macro is invoked in definitions 36 and 38.

5.2.3 Get Invariant

Before Get terminates, we cannot guarantee that every even parity character received has been
transmitted. We can guarantee, however, that the sequence of characters transmitted over outbit
must be a prefix of the sequence of even parity characters received over inbit. This is easily specified
in terms of the primitives already defined.

(A subsequence of even parity characters were transmitted over mid) [38] =
trl 1= mid

. <=. ((Character sequence received over inbit) [37]
I* {Set of even parity characters) [133])

This macro is invoked in definition 34.

5.3 Put Formal Assertions

This section presents the critical formal assertions for Put in much the same manner as those specified
for Get. The alphabet of Put consists of communication of bits over the previously defined channels
outbit and mid. The fact that Put is actually a sequential process is specified as an axiom at
this level of specification since Put has yet to be defined. Again, we assume that chsz is a natural
number and tick is not a communication event. We also assume that the buffer can hold at least
one character.

{Definition Stub of Put)[39] =
function Put(chsz tick);

This macro is invoked in definition 211.

{Put is a sequential CSP process) [40]M =
rule Put_is_seqpr (chsz, buffsz, tick) =

begin
chsz >= 0

and buffsz >= 1
and not iscomm tick

-> pr!is_seqpr (Put (chsz, buffsz, tick), tick)
= true

end Put_is_seqpr;
This macro is invoked in definition 211.

39

Assert 6.2L Put is a sequential CSP process.

The alphabet of Put can be defined as tick, the set of all communications of bits over inbit,
and the set of all communications of chsz-length characters over outbit.

(Put alphabet)[41]M =
function Put_alpha (chsz.tick) =

begin
reqs!seq_buff.alpha ({outbit}, -{0, 1}-, tick)
++ reqs!seq_buff.alpha ({mid}, cseq!char_set(chsz), tick)

end Put_alpha;

This macro is invoked in definition 211.

Assert 7.2L Put's alphabet is defined by Put .alpha.

(Put's alphabet is defined by Put.alpha)[A2]M =
rule Put_alphabet(chsz, buffsz, tick) =

begin
chsz >= 0

and buffsz >= 1
and not iscomm tick

-> alpha Put(chsz, buffsz, tick)
= Put_alpha(chsz,tick)

end Put_alphabet;
This macro is invoked in definition 211.

5.3.1 Top-Level Requirements Structure

Our goal is to specify formally as trace specifications the critical requirements for Put. Assuming
valid-Put is the name for these requirements, our specification is

(Put satisfies validJPut)[43]M =
grule Put.sat.spec (chsz, buffsz, tick) =

begin
chsz >= 0

and buffsz >= 1
and not iscomm tick

-> Put (chsz, buffsz, tick)
sat valid.Put (defs!Rep_alpha (chsz.tick), chsz, buffsz, tick)

end Put_sat_spec;
This macro is invoked in definition 211.

Assert 8.2L Put satisfies valid-Put.

valid-Put is simply a set of traces, the elements of which are chosen from the universe of possible
traces of events from Put.alpha (chsz.tick) and must conform to Put-not-over.capacity and

valid.char_Put:

(vaii<LPut)[44]M =

40

zf function valid_Put (a, chsz, buffsz, tick) =
begin

{ trl in a "*
I Put_not_over_capacity (trl, chsz, buffsz)
and valid_char_Put (trl, chsz, tick) }

end valid_Put;
This macro is invoked in definition 211.

Put is responsible for maintaining the internal buffer which can hold a maximum of buffsz
characters. Therefore, at any point in Put's execution, the number of characters received over mid
can be at most buffsz more than the number of characters transmitted over outbit.

(Definition of Put_noLover_capacitj)[45]M =
function Put_not_over_capacity (trl, chsz, buffsz,tick) =

begin
all tr2:

tr2 .<=. trl
and tr2 **? defs!Rep_alpha(chsz,tick)

-> (len tr2 1= mid) - (len cseq!char_seq (tr2 |= outbit, chsz))
<= buffsz

end Put_not_over_capacity;
This macro is invoked in definitions 211 and 213.

As we did for valid_char_Get, we split the specification of validjchar_Put into two pieces:
one when Put has successfully terminated and one when it has not. Traces of Put that end with
tick must satisfy Put's post condition; traces of Put that do not end with tick must satisfy Put's
invariant. At termination we can say that all characters received by Put have been successfully
transmitted over outbit. Before termination, all we can say is that some subsequence of those
characters have been transmitted.

(Definition of valid.char.Put)[46}M =
function valid.char_Put (trl, chsz, tick) =
begin

if (Put terminates)[47]
then (All characters were transmitted over outbit)[A8]
else (A subsequence of characters were transmitted over outbit)[49]
end if

end valid_char_Put;
This macro is invoked in definitions 211 and 213.

(Put terminates) [47] =
not null trl

and last(trl) = tick
This macro is invoked in definition 46.

5.3.2 Put Post Condition

Under the assumption that Put has terminated, the critical requirements for Rptr require that the
output stream of characters must be identical to the input stream of characters. To ensure that no
extraneous bits were transmitted we also specify that the length of the sequence of bits transmitted
over outbit be divisible by the length of a delimited character.

41

(AU characters were transmitted over outbit)[48] =
trl 1= mid = (Bits to chars)[122]('trl 1= outbit')

and (len trl 1= outbit) mod (chsz + 2) = 0
This macro is invoked in definition 46.

5.3.3 Put Invariant

Before Put terminates, we cannot guarantee that every character received has been transmitted. We
can guarantee, however, that the sequence of characters transmitted over outbit must be a prefix
of the sequence of characters received over mid.

(A subsequence of characters were transmitted over outbit) [49] =
(Bits to chars)[122]('trl 1= outbit') .<=. trl 1= mid

This macro is invoked in definition 46.

5.4 Summary of the Logical Architecture Critical Require-
ments

5.4.1 Assumptions

1 Power is continuously supplied to Rptr.

2 The environment does not send data over outbit.

3L The environment does not send or receive data over mid.

5.4.2 Assertions

Informal Assertions

2.1L Get does not send data over inbit.

3.1L Communication between Get sub-processes must be unidirectional and involve exactly two
processes.

3.2L Put does not send data over mid.

3.3L Communication between Put sub-processes must be unidirectional and involve exactly two
processes.

Formal Assertions

6.1L Get is a sequential CSP process.

7.1L Get's alphabet is defined by Get Jilpha.

8.1L Get satisfies valid.Get.

6.2L Put is a sequential CSP process.

7.2L Put's alphabet is defined by Put ..alpha.

8.2L Put satisfies valid-Put.

42

5.5 Justification of the Decomposition

This section presents an intuitive justification that the Rptr logical architecture and the critical
requirements imposed on the components of that architecture are sufficient to imply the critical
requirements of Rptr described in Chapter 4. More specifically we must show that the requirements
listed in Section 4.3 follow from the requirements listed in Section 5.4 and the following elaboration
ofRptr:

(Definition of Rptr) [50]M =
function Rptr (chsz, buffsz, tick) =
begin

get!Get (chsz, tick) |?l put!Put (chsz, buffsz, tick) " tick
end rptr;

This macro is invoked in definition 221.

5.5.1 Assumptions Argument

Assump 1:

No change.

Assump 2:

No change.

5.5.2 Assertions Argument

Assert 1 using Assert 6.1L-6.2L, Assert 7.1L-7.2L:

Since this is a logical design only, no implementation of CSP communication is given. Each process
may communicate only over channels identified in its alphabet. D

Assert 2 using Assert 2.1L, Assert 7.2L:

Assert 2.1L ensures that Get does not send data over inbit. The alphabet of Put defined by Assert
7.2L ensures that Put cannot access inbit. Since Rptr is composed solely of Get and Put, Rptr
cannot send data over inbit. D

Assert 3 using Assert 7.1L-7.2L, Assert 3.1L-3.3L, Assump 3L:

Assert 7.1L and Assert 7.2L ensure that the only communication path between Get and Put is the
channel mid. By Assert 3.2L Put does not send data over mid, so the communication path is uni-
directional. The facts that Rptr is composed solely of Get and Put and that the environment cannot
access mid (by Assump 3L) implies that all communication between the first level decomposition of
Rptr into sub-processes is uni-directional and involves exactly two sub-processes. Assert 3.1L and
3.3L ensure that any further decomposition conforms to these restrictions as well. D

43

Assert 4:

Since this is a logical design only, no implementation of CSP communication is given. This assertion,
therefore, implies no requirement at this level. D

Assert 5:

This assertion is proven during the FDR verification of the physical architecture. D

Assert 6 using Assert 6.1L-6.2L:

The pr library unit guarantees that a process is a CSP process if its components are processes. Since
sequential processes are by definition CSP processes, Assert 6 trivially follows from Assert 6.1L-6.2L.

D

Assert 7 using Assert 6.1L-6.2L, Assert 7.1L-7.2L:

The pr library unit guarantees that the alphabet of a compose process includes tick and any event
that is in one of the component's alphabet and not in the other component's alphabet. Assert 7,
thus, trivially follows from Assert 6.1L-6.2L, Assert 7.1L-7.2L. D

Assert 8 using Assert 6.1L-6.2L, Assert 7.1L-7.2L, Assert 8.1L-8.2L:

As mentioned in the introduction of this chapter we used the method described in [21] to decom-
pose the requirements for Rptr into requirements on its components. The proof obligations that
correspond to a requirements decomposition are also described in [21]. These proof obligations arise
through the application of two inference rules that reside in the reqs library unit:

rule compose_sat_rule (p, q, tick, r) =
begin

pr!is_seqpr (p, tick)
and pr!is_seqpr (q, tick)
and (p I I q) sat r)
and compose_restriction_condition (p, q, tick, r)

-> ((p l?l q " tick) sat r) = true
end compose_sat_rule;

rule parallel_sat_rule (p, q, s, r, t, a) =
begin

isprocess p
and isprocess q
and a = (alpha p) ++ (alpha q)
and p sat s
and q sat r
and concurrent_restriction_condition_conjunct (p, s, a)
and concurrent_restriction_condition_conjunct (q, r, a)
and conjunction_condition (s, r, t, a)

-> ((p II q) sat t) = true
end parallel_sat_rule;

44

compose-satjrule describes a sufficient set of conditions for proving that a compose process
satisfies some requirement given that the corresponding process with visible internal communications
satisfies that requirement. The primary condition, the compose restriction condition, requires that
the truth of the requirement be independent of the internal communications.

function compose_restriction_condition (pi, p2, tick, r) =
begin

all trl: not (tick -[(nlast tri))
and trl in traces ((alpha pi) ++ (alpha p2))
and trl in r

-> (trl I" (tick adj ((alpha pi) \\ (alpha p2)))) in r
end compose_restriction_condition;

parallel_sat.rule describes a sufficient set of conditions for proving that a concurrent process
satisfies some requirement given that its component processes satisfy some sub-requirements. The
primary conditions are the concurrent restriction condition and the conjunction condition. The con-
current restriction condition requires the truth of each component's sub-requirement be independent
of the events not in that component's alphabet.

function concurrent_restriction_condition_conjunct (p, s, a) =
begin

all trl: trl in a"*
and (trl I" (alpha p)) in s

-> trl in s
end concurrent_restriction_condition_conjunct;

The conjunction condition requires that every trace that satisfies both of the component sub-
requirements also satisfies the requirement of the concurrent composition.

function conjunction_condition (s, r, t, a) =
begin

all trl: trl in a"*
and trl in s
and trl in r

-> trl in t
end conjunction_condition;

Each of the proof obligations of the requirements decomposition process is stated and proven
as a distinct SVerdi rewrite rule.

{Rptr Compose Restriction Condition) [51]M =
rule compose_restriction_condition_rep (chsz, buffsz, tick) =

begin
chsz >= 0

and buffsz >= 0

and not isconun tick
-> reqs!compose_restriction_condition

(get!Get (chsz, tick),

put!Put (chsz, buffsz, tick),

tick,

45

valid_relay (defs!Rep_alpha (chsz.tick), chsz, buffsz, tick))

= true
end compose_restriction_condition_rep;

This macro is invoked in definition 221.

(Get Concurrent Restriction Condition)[52] =
rule concurrent_restriction_condition_conjunct_get (chsz, tick) =

begin
chsz >= 0

and not isconun tick
-> reqs!concurrent_restriction_condition_conjunct

(get!Get (chsz, tick),
get!valid_get (defs!rep_alpha (chsz.tick), chsz, tick),

defs!rep_alpha (chsz.tick))

= true
end concurrent_restriction_condition_conjunct_get;

This macro is invoked in definition 221.

{Put Concurrent Restriction Condition)[53] =
rule concurrent_restriction_condition_conjunct_Put (chsz, buffsz, tick) =

begin
chsz >= 0

and buffsz >= 0
and not isconun tick

-> reqs!concurrent_restriction_condition_conjunct

(putlPut (chsz, buffsz, tick),
put!valid_Put (defs!rep_alpha (chsz.tick), chsz, buffsz, tick),

defs!rep_alpha (chsz.tick))

= true
end concurrent_restriction_condition_conjunct_Put;

This macro is invoked in definition 221.

{Rptr Conjunction Condition) [54] =
rule conjunction_condition_rep (chsz, buffsz, tick) =

begin
chsz >= 0

and buffsz >= 0
and not isconun tick

-> reqs!conjunction_condition
(get!valid_get (defs!rep_alpha (chsz.tick), chsz, tick),
put!valid_Put (defs!rep_alpha (chsz.tick), chsz, buffsz, tick),
valid_relay (defs!rep_alpha (chsz.tick), chsz, buffsz, tick),
defs!rep_alpha (chsz.tick)) = true

end conjunction_condition_rep;
This macro is invoked in definition 221.

The proofs of these rules are given in the rep model library unit. D

46

Chapter 6

Get Component Refinement

We considered two approaches to define and verify sequential CSP processes in SVerdi: a functional
approach and a procedural approach. The functional approach uses the theory specified in the CSP
library, documented in [19], to construct sequential processes using EVES function declarations.
Specification and verification proceeds in a manner similar to that documented for concurrent pro-
cesses in the last chapter. The procedural approach models sequential CSP processes as SVerdi
procedures. The critical (trace) requirements are specified much as they are in the functional ap-
proach, but they appear in the post condition of the SVerdi procedure that represents the CSP
process. EVES's proof obligation generator constructs the conditions under which the process con-
forms to its requirements.

The procedural approach requires modeling an interface to a base machine on which the CSP
described system executes. This interface, described in the mach library unit in Chapter 12, provides
a set of communication routines very similar to the input and output primitives provided by CSP. An
SVerdi procedure that communicates using these routines builds up a trace of its execution recorded
in a machine variable parameter that represents the internal state. This trace forms the basis for
the specification of the procedure's critical requirements.

The functional approach is more rigorous than the procedural approach since it does not rely
on an informal interpretation of CSP processes as SVerdi procedures. Nevertheless, we adopt the
procedural approach in the refinement of the Rptr sequential processes. The procedural approach
reduces the complexity of specifying and verifying sequential processes by exploiting EVES's ap-
proach to decompose the requirements of SVerdi procedures and automatically generate the proof
obligations required. We believe that this reduced complexity results in a more intelligible assurance
argument than possible using the functional approach.

This chapter begins in Section 6.1 by describing an overview of the design of Get in CSP.
Section 6.2 recasts this design in SVerdi by modeling CSP processes as SVerdi procedures and CSP
operations as SVerdi statements. Critical requirements Assert 7.1L and Assert 8.1L are cast as a post
condition on the procedure representing Get. Finally, Section 6.3 decomposes these requirements
onto the primary procedures of the design and argues that the design satisfies the set of critical
requirements of Get.

6.1 Overview of the Get Design

Get is a recursive non-terminating CSP process. Once Get receives the initiating startbit over
channel inbit, processing of the next character may begin. One bit arrives over inbit with each

47

iteration of Get until the whole character has been received, i.e., chsz + 2 bits including the delim-
iters. If the character received is of even parity and the final bit received is stopbit, the character
is transmitted over mid; otherwise, Get ignores the character and initiates reception of the next
character. The design of Get in CSP follows. Inchar is responsible for receiving the character once
the startbit has arrived. A character has odd parity if the exclusive or of the bits that constitute
the character holds true, where a 1 bit value represents true and a 0 bit value represents false.

Get(chsz, tick) =
inbit ? b -> if b = startbit

then Inchar(.<startbit>..chsz.tick);Get(chsz,tick)

else Get(chsz.tick) end if

Inchar(ch,chsz,tick) =

if (len ch) <= chsz then
then inbit ? b -> Inchar(ch " ..,chsz,tick)

else inbit ? b -> (if not odd_parity (tail ch)

and b = stopbit

then mid ! tail ch -> SKIP

else SKIP end if)

end if

function odd_parity (ch) =

measure len ch

begin

if null ch

then false
else xor (head ch = 1, odd_parity (tail ch)) end if

end odd_parity;

function xor (x, y) =

begin

(x or y)

and not (x and y)

end xor;

6.2 Formal Specification of the Get Design

The machine variable st representing internal state provides a means to transmit of values over
channels and, for specification purposes, to store a record of the sequence of values transmitted.
The current trace of Get during execution is evaluated from st and must be restricted to Get's
alphabet. The process trace is the basis for the specification of Get's two primary requirements:
Get -not ^over-capacity and valid_char_Get. Showing that these requirements hold for every prefix
of the final trace ensures that they hold invariantly during Get's execution. Although the CSP
process representing Get does not terminate, EVES requires termination. We, therefore, force the
SVerdi representation to terminate at an arbitrary point, i.e., after the variable cntdwn reaches zero,
cntdwn starts at the value of the maximum integer, int'last(). Later refinement will reveal how

and when cntdwn decreases.

(Get design)[55] =

48

procedure Get (ntvar st : (State type) [159],
lvar chsz : int,
lvar tick : (Event type)[161]) =

pre chsz >= 0
sind not iscomm tick
and (7>ace)[163]('st') = .<>.

post (I>ace)[163]('st') "*? Get_alpha(chsz,tick)
and all tr2:

(tr2 .<=. (7Yace)[163]('st')
and tr2 **? Get_alpha(chsz,tick))

-> (Get_not_over_capacity (tr2, chsz, tick)
and valid.char.Get (tr2, chsz, tick))

begin
pvar cntdwn : int := int'last()
Get_step(st,chsz,tick,cntdwn)

end Get;
This macro is invoked in definition 209.

Put's buffer buff is represented as a first-in first-out queue of bits. An iteration of Put-step
depends on the current state of buff. If buff is empty the only option is to receive the next character
over mid. If the current length of buff will not accommodate storing another character the only
option is to send the next bit stored in buff. Finally, if buff is not empty and there is room for
storing another character, either of the above options may occur.

Get_step receives at most one character, stored in the variable chr. Character variables can be
thought of as a trace of bits. Once Inchar has received the character, Out char determines whether
the character is appropriate for transmission over mid and, if so, transmits it. Note that an input
or output operation is successful if and only if cntdwn remains greater than zero.

{Getstep design)[56]M =
procedure Get_step (mvar st : (State type)[159],

lvar chsz : int,
lvar tick : (Event type)[161],
pvar cntdwn : int) =

(Get^step specification)[63]
begin

pvar b : {Bit type) [139]
pvar chr : (Buffer type) [137] := (Trace of single startbit)[U7]
(inbit ? b)[170]
if cntdwn > 0

and (b is startbit)[148] then
InOutChar(st,chr,chsz,tick,cntdwn)
if cntdwn > 0 then Get_step(st,chsz,tick,cntdwn) end if

end if
end Get_step;

This macro is invoked in definition 209.

(InOutchar design)[57]M =
procedure InOutchar (mvar st : (State type) [159],

pvar chr : (Buffer type) [137],
lvar chsz : int,
lvar tick : (Event type)[161],

49

pvar cntdwn : int) =
(InOutchar specification)[68]
begin

Inchar(st,chr,chsz,tick,cntdwn)
if cntdwn > 0 then

Out char(st,chr,chsz,tick,cntdwn)
end if

end InOutChar;
This macro is invoked in definition 209.

6.2.1 Inchar design

Inchar is a recursive process that iteratively accepts another bit over inbit and appends it to the
end of chr. The recursion bottoms out when the length of chr becomes greater than chsz, i.e., the
length of the character plus 1 for the startbit. cntdwn must decrease each iteration of Inchar
since it will be used as the measure to prove the termination of Get_step.

(Inchar design) [58]M =
procedure Inchar(mvar st : (State type)[159],

pvar chr : (Buffer type) [137],
lvar chsz : int,
lvar tick : (Event type)[161],
pvar cntdwn : int) =

(Inchar specification) [72]
begin

pvar b : (Bit type)[139]
if (len of chr) [157] <= chsz then

(inbit ? b)[170]
if cntdwn > 0 then

chr := (Append b onto end of chr)[154]
Inchar(st,chr,chsz,tick,cntdwn)

end if
else cntdwn := cntdwn - 1
end if

end Inchar;
This macro is invoked in definition 209.

EVES requires that executable recursive definitions be specified in terms of procedures. The
function odd_parity specified previously in the overview of the Get design is defined as an EVES
procedure odd_parity_check. The proof that this procedure terminates with is_odd equal to the
value returned by odd-parity is trivial.

(Definition of odd.parity.check) [59]M =
procedure odd_parity_check (lvar chr : bfrlbuffer,

pvar is_odd : bool) =

pre true
post is_odd = odd_parity(bfr!contents(chr))

measure lenp chr
begin

if nullp chr
then is_odd := false

50

else odd_parity_check(tailp ehr,is_odd)
is_odd:=xor(bfr!cnv_bit(headp chr)=l,is_odd)

end if
end odd_parity_check;

This macro is invoked in definition 209

(Get's definition of xor)[60]M =
typed function xor (a, b : bool) returns bool =

begin
(a or b)

and not (a and b)
end xor;

This macro is invoked in definition 209.

(Definition of odd.pa.rity) [61]M =
function odd.parity (chr) =

measure len chr
begin

if null chr
then false
else xor (head chr = 1, odd_parity (tail chr)) end if

end odd_parity;
This macro is invoked in definition 209.

6.2.2 Outchar design

Out char receives the final delimiter and checks the parity of the character. If the final delimiter is
stopbit and the character is of even parity, the non-delimited character is transmitted over mid.

(Outchar design)[62]M =
procedure Outchar (mvar st : (State type)[159],

lvar chr : (Buffer type) [137],
lvar chsz : int,
lvar tick : (Event type)[161],
pvar cntdwn : int) =

(Outchar specification)[76]
begin

pvar b : (Bit type) [139]
pvar is_odd : bool
(inbit ? b)[170]
odd_parity_check((taiJ of chr)[153], is_odd)
if cntdwn > 0

and not is_odd
and (b is stopbit)[149] then

(mid! tail of chr) [179]
end if

end Outchar;
This macro is invoked in definition 209.

51

6.3 Justification of the Get Design

This section presents an intuitive justification that the design of Get satisfies the assertions of Get
described in Chapter 5. More specifically, we must show that the requirements listed in Section 5.4
follow from the design of Get described in the last section.

6.3.1 Assertions Argument

Assert 2.1L:

By inspection of the Get design, the only way Get can access external channels is through the mach
library unit interface. The only calls Get makes are to send a character over mid using snd-chr
and to receive a bit over inbit using rcv_bit. Of course, any refinement of these calls must be
shown not to send any information over inbit. However, since we are using this model for design
verification only, this level of analysis suffices. D

Assert 3.1L:

Get is not decomposed into concurrent sub-processes so no internal communication channels exist.

D

Assert 6.1L using Assert 7.1L, Assert 8.1L:

We must argue that the procedural model of the Put CSP process has certain critical properties
required of sequential processes. This argument is necessarily informal since the correspondence
between our procedural model and CSP is informal. First we show that Get is a CSP process and
then we show that it is sequential.

From the definition of isprocess in the pr model library unit, we must show that

1. the empty trace is a trace of Put,

2. the traces of Get are restricted to events in Get_alpha(chsz,tick), and

3. any prefix of a trace of Get is also a trace of Get.

We define the traces of the procedural design of Get so that these properties hold. By inspection
of this design, the trace of Get is constructed as it executes by appending to its end the commu-
nication event associated with every communication in which it engages. Viewing Get's execution
symbolically, we define the set of traces of Get as the set of all possible traces constructed up to
any point in its execution. Clearly this ensures that (3) holds. (1) holds since the pre-condition
for Get ensures that the trace is initially empty. (2) holds as a consequence of Assert 7.1L and the
portion of the post-condition for Get that requires all traces generated to be confined to events in
Get ..alpha (chsz, tick). We delay proof of the post-condition until the argument for Assert 8.1L.

From the definition of is-seqpr from the pr model library unit, a sequential process must have
the successful termination event in its alphabet. The only place this event may appear in a trace of
a sequential process is as the last event. The parameter tick represents the successful termination
event for Get. tick is in the alphabet of Get as shown in Assert 7.1L. tick does not occur m any
trace of Get since Get does not terminate successfully.1 D

1 The SVerdi procedural model of Get does complete execution, but only because EVES requires proof of termina-
tion. This may be considered unsuccessful termination in the CSP sense.

52

Assert 7.1L:

We define the alphabet of the procedural model for Get as the set of events in which it may engage.
The post-condition for Get requires that this set be restricted to Get_alpha(chsz,tick). We delay
proof of the post-condition until the argument for Assert 8.1L. D

Assert 8.1L:

Assert 8.1L requires that all traces of Get be members of the set defined by valid-Get. This requires
that every trace of Get satisfy Get jiot-over_capacity and valid.char.Get. The post-condition
for Get requires these properties of the Get design. The rest of this section presents an overview of
the proof of the post-condition.

Proof Structure of Get The first task is to derive a set of valid requirements for Get_step
that allows us to prove that Get satisfies its post-condition. The recursive nature of Get_step
suggests that its specification is invariantly true before and after execution. We call this invariant
valid_Get_step.

(Get-step specification)[63]M =

pre cntdwn > 0
and cntdwn <= int'lastO
and (len cseq!char_seq ((Trace)[163]('st') 1= inbit, chsz)

I" cseq!even_parity_chars (chsz))
<= (len (2>ace)[163]('st') 1= mid)

and valid_Get_step((Trace)[163]('st'),chsz,tick,cntdwn)
post valid_Get_step((Trace)[163]('st'), chsz,tick, cntdwn)

measure cntdwn
This macro is invoked in definition 56.

valid_Get-step preserves the truth of both Get_notjover_capacity and valid_char_Get. In
addition, it requires that only characters be permitted over mid and that no partial characters be
accepted over inbit. Recall that this requirement must hold before and after each iteration of
Get .step; clearly, during execution partial characters can be accepted.

(Definition of valid-Getstep)[64]M =
function valid_Get_step (trl,chsz,tick,cntdwn) =
begin

chsz >= 0
and chsz + 2 <= int'lastO
and not iscomm tick
and trl "*? Get_alpha(chsz,tick)
and not (tick -[trl)
and (mid allows only chars) [121]
and (cntdwn > 0 -> (Partial char over inbit)[124]('trl') = .<>.)
and Get_not_over_capacity (trl, chsz, tick)
and all tr2: (tr2 .<=. trl

and tr2 "*? Get_alpha(chsz,tick))
-> valid_char_Get (tr2, chsz, tick)

end valid_Get_step;

53

This macro is invoked in definition 209.

Showing that the specification for Get follows from the specification for Get_step requires

showing that

1. the pre-condition and initial assignments for Get imply the pre-condition for Get_step, and

2. the post-condition for Get_step implies the post-condition for Get.

The first proof obligation follows trivially from the definitions involved:

(Get lemma #l)[6b)M =
rule valid_Get_step_empty_empty (chsz.tick.cntdwn) =

begin
chsz >= 0

and not iscomm tick
-> valid_Get_step(.<>.,chsz.tick.cntdwn) = true

end valid_Get_step_empty_empty;
This macro is invoked in definition 209.

The second proof obligation is split according to the structure of the post-condition for Get.
Note that the requirement that the trace be restricted to Get_alpha(chsz,tick) follows trivially
from the definition of valid_Get_step.

(Get lemma #2>[66]M =
rule Get_step_Get_not_over_capacity (trl,tr2,chsz.tick.cntdwn) =

begin
tr2 .<=. trl

and tr2 "*? Get_alpha(chsz,tick)
and valid_Get_step (trl,chsz.tick.cntdwn)

-> Get_not_over_capacity (tr2,chsz,tick) = true
end Get_step_Get_not_over_capacity;

This macro is invoked in definition 209.

(Get lemma #3}[67]M =
rule Get_step_valid_char_Get (trl,tr2,chsz.tick.cntdwn) =

begin
tr2 .<=. trl

and tr2 "*? Get_alpha(chsz,tick)
and valid_Get_step (trl,chsz.tick.cntdwn)

-> valid.char.Get (tr2,chsz,tick) = true
end Get_step_valid_char_Get;

This macro is invoked in definition 209.

Proof Structure of Get_step This level requires us to derive a set of requirements for InOutchar
that allows us to prove that Get_step satisfies its post-condition. The post condition requires that
Get-step!s post condition holds. The pre condition is similar to Get step's precondition except
that the startbit has already been received. Furthermore, to prove that Get-Step terminates,
InOutchar must ensure that cntdwn decreases to a value no less than zero.

(InOutchar specification)[68]M =

54

initial cntdwn_0=cntdwn
pre cntdun > 0

and cntdwn <= int'last()
and InOutchar_pre(bfr!contents(ehr),mach!hist(st),chsz,tick)

post cntdwn < cntdwn_0
and cntdwn >= 0
and (cntdwn > 0

-> ((len cseq!char_seq (mach!hist(st) 1= inbit, chsz)
I" cseq!even_parity_chars (chsz))

<= (len machihist(st) 1= mid)))
and valid_Get_step(mach!hist(st),chsz,tick,cntdwn)

measure cntdwn
This macro is invoked in definition 57.

(Definition of InOutchar-pre)[69]M =
function InOutchar_pre(cchr,trl,chsz,tick) =

begin
chsz >= 0

and not iscomm tick
and chsz + 2 <= int'lastQ
and trl **? Get_alpha(chsz,tick)
and (mid allows only chars)[12l]
and not (tick -[trl)
and cchr = .<startbit>.
and cseq!current_char(trl 1= inbit,chsz) = cchr
and (len cseq!char_seq (trl 1= inbit, chsz)

I* cseq!even_parity_chars (chsz)) <= (len trl 1= mid)
and Get_not_over_capacity (trl, chsz, tick)
and all tr2: (tr2 .<=. trl

and tr2 "*? Get_alpha(chsz, tick))
-> valid.char_Get (tr2, chsz, tick)

end InOutchar_pre;
This macro is invoked in definition 209.

Four cases are identified in the proof of Get_step's post-condition:

1. while trying to accept the initial bit, cntdwn becomes zero, in which case Put .step terminates
with no change to the buffer or trace;

2. the initial bit is received but is not startbit, in which case Get_step recurs with the bit
appended to the end of the trace;

3. the initial startbit is received and InOutchar executes unsuccessfully with cntdwn equal to
zero, in which case Get_step terminates;

4. the initial startbit is received and is InOutchar executes successfully, in which case Get-Step

recurs.

Each of these cases generates a proof obligation in addition to that generated for proof of
termination. That these are all of the cases can be seen by inspection of the post-condition of the
procedures involved. We deal with each case in turn. Termination follows directly from the fact
that cntdwn decreases each iteration and is bounded below by zero.

55

The first case (1) is trivial since no change to the buffer or trace requires only that
valid.Get.step hold initially, which is guaranteed by Get-Step's pre-condition.

The second case (2) requires us to prove the following theorem, which is trivial from the defi-
nitions involved since initial delimiters that are not staxtbit are ignored by cseq!char_seq.

(Getstep lemma #J)[70]M =
rule valid_Get_step_tack_inbit_skip (b.trl,chsz,tick,cntdwn.O,cntdwn) -

begin
cntdwn_0 > 0

and cntdwn > 0
and not (b = startbit)
and b in -{0, 1}-
and valid_Get_step(trl,chsz,tick,cntdwn.O)

-> valid_Get_step(tri " .<inbit.b>.,chsz,tick,cntdwn) = true

end valid_Get_step_tack_inbit_skip;

This macro is invoked in definition 209.

The third and fourth cases (3,4) requires us to prove that InOutchar's pre condition is met and
that its post condition implies Get .step's post condition. The latter of these is trivial; the former
is stated as the following theorem. This theorem's proof follows by noticing that InOutchar^re is
a simple restatement of valid_Get_step with the contents of chr as .<startbit>..

(Getjstep lemma #2)[71]M =
rule valid_Get_step_tack_startbit_pre (bs.trl,chsz,tick,cntdwn) =

begin
cntdwn > 0

and bs = .<startbit>.
and (len cseq!char_seq (tri 1= inbit, chsz)

I" cseq!even_parity_chars (chsz)) <= (len trl 1= mid)
and valid_Get_step(trl,chsz.tick,cntdwn)

-> InOutchar_pre(bs,trl * .<inbit.startbit>.,chsz,tick) = true
end valid_Get_step_tack_startbit_pre;

This macro is invoked in definition 209.

Specification of InOutChar This level requires us to derive a set of requirements for Inchar and
Outchar that allows us to prove that InOutchar satisfies its post-condition. Just as for Get_step, the
recursive nature of Inchar suggests that its specification, called validJnchar, must be invariantly

true before and after execution.

(Inchar specification) [72]M =
initial cntdwn_0=cntdwn,st_0=st,chr_0=chr
pre cntdwn > 0

and cntdwn <= int'lastQ
and valid Inchar ({Contents}[143]('chr'), (Contents)[143]Cchr'),

(Trace)[163]('st'),(Trace)[163]('st'), chsz, tick)

post cntdwn < cntdwn_0
and cntdwn >= 0
and (cntdwn > 0 -> (len (Contents)[143]('chr')) = chsz+1)
and valid Inchar ((Contents)[143]('chr_0'),(Contents)[143]('chr'),

(Trace)[163]('st_0'),(Trace)[163]('st'), chsz, tick)

measure cntdwn

56

This macro is invoked in definition 58.

Discovering the invariant for Inchar requires understanding the crucial role that the partially
received character chr plays, cchr represents the final contents of chr. trl represents the final
trace after execution of Inchar. cchr.O and trl.O represent the initial contents of chr and the
initial trace, respectively, cchr invariantly contains the partial character (including the startbit)
that was received over inbit.

(Definition of validJnchar)[73]M =
function valid_Inchar (cchr_0,cchr,trl_0,trl,chsz,tick) =

begin
chsz >= 0

and not iscomm tick
and chsz + 2 <= int'lastO
and trl "*? Get_alpha(chsz,tick)
and not (tick -[trl)
and {mid allows only chars)[121]
and cchr_0 "*? -{0,1}-
and not null cchr_0
and (Partial char over inbit)[124]('trl_0') = cchr_0
and cchr_0 .<=. cchr
and trl.O .<=. trl
and not null cchr
and cchr "*? -{0,1}-
and {Partial char over inbit)[124]('trl') = cchr
and (Inchar prefix invariant) [74]

end valid_Inchar;
This macro is invoked in definition 209.

The specification for Inchar must also describe the required properties of every prefix of the
final trace. Let pcchr and ptrl represent some intermediate value of cchr and trl, respectively.
ValidJEnchar must ensure that communications that occur during execution of Inchar, i.e., those
in the trace tr!removeJirst_n(ptrl,len trl_0), contain only communications over inbit. The
number of these communications must be bounded above by chsz + 1 - (len cchr_0).

(Inchar prefix invariant)[74]M =
all ptrl: some pcchr:

invariant_over_char(cchr_0,pcchr,trl.O,ptrl,trl,chsz,tick)

This macro is invoked in definition 73.

(Definition of invariant.over_char)[75]M =
function invariant_over_char (cchr_0,pcchr,trl.O,ptrl,trl,chsz,tick) =

begin
(ptrl "*? defs!Rep_alpha(chsz,tick)

and ptrl .<=. trl

and trl_0 .<=. ptrl)

-> (not null pcchr

and pcchr "*? -{0,1}-
and (Partial char over inbit)[124]('ptrl') = pcchr
and (trl_0 1= mid) = (ptrl 1= mid)
and tr!remove_first_n(ptrl,len trl_0)

-*? reqs!buffer_alpha({inbit},-{0, 1}-)

57

and (len trlremove.first_n(ptrl,len trl_0))

<= chsz + 1 - (len cchr_0))

end invariant_over_char;

This macro is invoked in definition 209.

The specification of Outchar is much simpler than that of Inchar since it is not recursively
defined. In the case that the character to be transmitted has even parity and the correct final
delimiter is received, the specification requires that the trace be appended only by the stopbit
communication over inbit and the character transmission over mid. Otherwise, at most one bit is

received over inbit.

(Outchar specification)[76]M =
initial cntdwn_0=cntdwn,st_0=st

pre cntdwn > 0
and Outchar_pre((Contents)[143]('chr'),(I>ace)[163]('st'),chsz,tick)

post cntdwn < cntdwn_0

and cntdwn >= 0
and valid.Outchar ((Cojitents)[143]('chr'),{T>ace)[163]('st_0'),

(Trace)[163]('st'), chsz, tick, cntdwn)

measure cntdwn
This macro is invoked in definition 62.

{Definition of Outchar.pre)[77]M =
function Outchar.pre (cchr.trl,chsz,tick) =

begin
chsz >= 0

and not iscomm tick

and not null cchr
and cseq!is_char(tail cchr,chsz)

and trl "*? Get_alpha(chsz,tick)

end Outchar.pre;

This macro is invoked in definition 209.

(Definition of valid.Outchar)[78]M =
function valid.Outchar (cchr,trl_0,trl,chsz,tick,cntdwn) =

begin
trl "*? Get_alpha(chsz,tick)

and if cntdwn > 0
and not odd_parity(tail cchr)

and last (trl 1= inbit) = stopbit
then trl = trl_0 * .<inbit.stopbit,mid.tail cchr>.

else trl = trl_0 * .<inbit.last (trl 1= inbit)>.

or (cntdwn <= 0 and trl = trl_0)

end if

end valid.Outchar;

This macro is invoked in definition 209.

Proof Structure of InOutchar Two cases are identified in the proof of InOutchar's post-

condition:

1. Inchar executes unsuccessfully with cntdwn = 0;

58

2. Inchar executes successfully;

The first case (1) follows directly from the following two theorems, the first of which guarantees
satisfaction of Inchar's pre condition and the second of which guarantees satisfaction of its post

condition:

(InOutchar lemma #J)[79]M =
rule valid_Inchar_tack_startbit_pre (cchr,trl,chsz,tick) =

begin
InOut char_pre(cchr,tr1,chsz,t ick)

-> valid_Inchar(cchr,cchr,trl,trl,chsz,tick) = true

end valid_Inchar_tack_startbit_pre;

This macro is invoked in definition 209.

{InOutchar lemma #2)[80]M =
rule valid_Get_step_Inchar_timeout (cchr_0,cchr,trl_0,trl,chsz,tick,cntdwn) =

begin
cntdwn = 0

and InOutchar_pre(cchr_0,trl_0,chsz,tick)
and valid_lnchar(cchr_0,cchr,trl_0,trl,chsz,tick)

-> valid_Get_step(trl,chsz,tick,cntdwn) = true

end valid_Get_step_Inchar_timeout;

This macro is invoked in definition 209.

The second case (2) requires us to show that the pre condition for Outchar holds and that
the post condition for Outchar guarantees that the post condition for Get_step holds. These facts
follow directly from the following two theorems.

(InOutchar Jemma #3)[81]M =
rule valid_Inchar_Outchar_pre (cchr.O,cchr,trl_0,trl,chsz,tick,cntdwn) =

begin
(len cchr) = chsz+1

and InOutchar_pre(cchr_0,trl_0,chsz,tick)
and valid_lnchar(cchr_0.cchr,trl_0,trl,chsz,tick)

-> Outchar_pre (cchr,trl,chsz,tick) = true

end valid_Inchar_Outchar_pre;

This macro is invoked in definition 209.

(InOutchar lemma #4)[82]M =
rule valid_Get_step_InOutchar (cchr_0,cchr,trl_0,trl,

tr2,chsz,tick,cntdwn) =

begin
InOutchar_pre(cchr_0,trl_0,chsz,tick)

and valid_lnchar(cchr_0,cchr,trl_0,trl,chsz,tick)

and Outchar_pre(cchr,trl,chsz,tick)
and valid_0utchar(cchr,trl,tr2,chsz,tick,cntdwn)

-> valid_Get_step(tr2,chsz,tick,cntdwn) = true

end valid_Get_step_InOutchar;

This macro is invoked in definition 209.

59

Proof Structure of Inchar Three cases are identified in the proof of Inchar's post-condition:

1. the entire character (except the final delimiter) has been received, in which case Inchar ter-

minates;

2. only part of the character has been received and reception of the next bit causes cntdwn
decrease to zero, in which case Inchar terminates;

3. only part of the character has been received and the next bit is successfully received, in which

case Inchar recurs.

The first case (1) is trivial since Inchar's post condition follows trivially from the precondition

and that fact that cntdwn is decremented.

The second case (2) follows from the following theorem:

(Inchar lemma #1) [83]M =
rule valid_Inchar_tack_inbit_timeout (b,cchr,trl,chsz,tick) =

begin
(len cchr) <= chsz

and b in -{0, 1}-
and valid_Inchar(cchr,cchr,trl,trl,chsz,tick)

-> valid_Inchar(cchr,cchr " ..,trl,
trl " .<inbit.b>.,chsz,tick) = true

end valid_Inchar_tack_inbit.timeout;

This macro is invoked in definition 209.

The third case (3) requires us to show that the pre condition for Inchar holds and that the post
condition for the recurrence of Inchar guarantees that the post condition for Inchar holds. These
facts follow directly from the following two theorems.

(Inchar lemma #2)[84]M =
rule valid_Inchar_tack_inbit_pre (b,cchr,trl,chsz,tick) =

begin
(len cchr) <= chsz

and b in -{0, 1}-
and valid.Inchar(cchr,cchr,trl,trl,chsz,tick)

-> valid_Inchar(cchr * ..,cchr " ..,trl " .<inbit.b>.,
trl " .<inbit.b>.,chsz,tick) = true

end valid_Inchar_t ack_ inbit _pre;

This macro is invoked in definition 209.

(Inchar lemma #3)[85]M =
rule valid_Inchar_tack_inbit_step (b,cchr,pcchr,trl,tr2,chsz,tick) -

begin
b in -{0, 1}-

and valid_Inchar(cchr,cchr,trl,trl,chsz.tick)
and valid.Inchar(cchr " ...pcchr.tr1 " .<inbit.b>.,

tr2,chsz,tick)
-> valid_Inchar(cchr,pcchr,trl,tr2,chsz,tick) = true

end valid_Inchar_tack_inbit_step;

This macro is invoked in definition 209.

60

Chapter 7

Put Component Refinement

This chapter uses the same procedural approach to the design of Put as used in the last chapter in
the design of Get (see the introduction to Chapter 6 for a description of the approach). We begin in
Section 7.1 by describing an overview of the design of Put in CSP. Section 7.2 recasts this design in
SVerdi by modeling CSP processes as SVerdi procedures and CSP operations as SVerdi statements.
Critical requirements Assert 7.2L and Assert 8.2L are cast as a post condition on the procedure
representing Put. Finally Section 7.3 decomposes these requirements onto the primary procedures
of the design and argues that the design satisfies the set of critical requirements of Put.

7.1 Overview of the Put Design

Put is a recursive non-terminating CSP process. Each recurrence chooses either to send a bit from
the internal buffer, i.e., buff, over outbit or receive a character over mid. A bit can be sent whenever
there is one available to send; a character can be received only if the buffer has enough room to
store it.

The buffer has sufficient capacity to store a character if the buffer is empty, since we assume
buffsz >= 1, or if buffsz*(chsz+2) >= (len buff)+chsz+2, since the two delimiting'bits are
stored along with each chsz-length character. Characters received are stored at the right end of the
buffer; bits transmitted are taken from the left end of the buffer. The design of Put in CSP follows:

Put (chsz, buffsz, tick,buff) =
if null buff
then mid ? ch -> Put(chsz,buffsz,tick,

buff " (startbit]- (ch " .<stopbit>.)))
elseif buffsz*(chsz+2) < (len(buff) + chsz + 2)
then outbit ! head(buff) -> Put (chsz, buffsz, tick, tail(buff)
else outbit ! head(buff) -> Put (chsz, buffsz, tick, tail(buff)

□ mid ? ch -> Put(chsz,buffsz,tick,
buff " (startbit]- (ch " .<stopbit>.)))

end if

61

7.2 Formal Specification of the Put Design

As in the design of Get, the machine variable st representing internal state provides a means to
transmit values over channels and, for specification purposes, to store a record of the sequence of
values transmitted. The current trace of Put during execution is evaluated from st and must be
restricted to Put's alphabet. The process trace is the basis for the specification of Put's two primary
requirements: Put_not_over .capacity and valid-char .Put. Showing that these requirements hold
for every prefix of the final trace ensures that they hold invariantly during Put's execution. Although
the CSP process representing Put does not terminate, EVES requires termination. We, therefore,
force the SVerdi representation to terminate at an arbitrary point, i.e., after the variable cntdwn
reaches zero, cntdwn starts at the value of the maximum integer, int•last(). Later refinement

will reveal how and when cntdwn decreases.

(Put design)[86] =
procedure Put (ravar st : (State type) [159],

lvar chsz, buffsz : int,
lvar tick : (Event type)[161]) =

pre chsz >= 0
and buffsz >= 1
and buffsz*(chsz+2) + chsz + 2 <= int'last()
and not iscomm tick
and (I>ace)[163]('st') = .<>.

post (l>ace)[163]('st') **? Put_alpha(chsz,tick)
and all tr2:

tr2 .<=. (I>ace)[163]('st')
-> (Put_not_over_capacity (tr2, chsz, buffsz, tick)

and valid_char_Put (tr2, chsz, tick))

begin
pvar buf f : (Buffer type) [137] := (Empty buffer) [150]
pvar cntdwn : int := int'last()
Put_step(st,chsz,buffsz,tick,buff.cntdwn)

end Put;
This macro is invoked in definition 213.

Put's buffer buff is represented as a first-in first-out queue of bits. An iteration of Put .step
depends on the current state of buff. If buf f is empty the only option is to receive the next character
over mid. If the current length of buff will not accommodate storing another character the only
option is to send the next bit stored in buff. Finally, if buff is not empty and there is room for
storing another character, either of the above options may occur. Note that an input or output
operation is successful if and only if cntdwn remains greater than zero.

(Putstep design) [87]M =
procedure Put_step (mvar st : (State type)[159],

lvar chsz, buffsz : int,
lvar tick : (Event type)[161],
pvar buff : (Buffer type) [137],
pvar cntdwn: int) =

(Putstep specification)[90]
begin

pvar chr : (Buffer type) [137]
if (buff is empty) [151.[then

(mid ? chr) [174]

62

if cntdwn > 0 then
buff:= {Append delimited chr onto end of buff)[155]

end if
elseif buffsz*(chsz+2) < ((len of buff)[156]+chsz+2) then

(outbit ! head of buff)[165]
if cntdwn > 0 then

buff:= (tail of buff)[152]
end if

else poll_mid_and_outbit(st,chsz,buffsz.tick,buff,cntdwn)
end if
if cntdwn > 0 then

Put_step(st,chsz,buffsz,tick,buff.cntdwn)
end if

end Put_step;
This macro is invoked in definition 213.

When both receiving a character over mid and sending a bit over outbit is possible, mid and
outbit must be iteratively polled to determine whether a communication can take place. Once one
of the communications occurs buff is updated as appropriate.

(polljjiidjand.outbit design)[88]M =
procedure poll_mid_and_outbit (mvar st : (State type) [159],

lvar chsz, buffsz : int,
lvar tick : {Event type)[161],
pvar buff : {Buffer type) [137],
pvar cntdwn : int) =

(poll-mid-and-outbit specification) [96]
begin

pvax sent.rcvd : bool := false
pvar chr : (Buffer type) [137]
(Poll mid to receive chr) [177]
loop

(poll-mid^and-outbit loop specification) [99]
exit when xor(sent.rcvd) or cntdwn=0
(Poll outbit to send first of buff) [168]
if (not sent) and cntdwn > 0 then

(Poll mid to receive chr) [177]
end if

end loop
if sent and cntdwn > 0 then

buff:= (tail of buff)[lb2]
elseif rcvd and cntdwn > 0 then

buff := (Append delimited chr onto end of buff)[155]
end if

end poll_mid_and_outbit;
This macro is invoked in definition 213.

(Put's definition ofxor)[89]M =
typed function xor (a, b : bool) returns bool =

begin
(a or b)

and not (a and b)

63

end xor;
This macro is invoked in definition 213.

7.3 Justification of the Put Design

This section presents an intuitive justification that the design of Put satisfies the assertions of Put
described in Chapter 4. More specifically, we must show that the requirements listed in Section 5.4
follow from the design of Put described in the last section.

7.3.1 Assertions Argument

Assert 3.2L:

By inspection of the Put design, the only way Put can access external channels is through the mach
library unit interface. The only calls Put makes are to send a bit over outbit using snd-bit and
poll-snd-bit and to receive a character over mid using rcv.char and poll_rcv_char. Of course,
any refinement of these calls must be shown not to send any information over mid. However, since
we are using this model for design verification only, this level of analysis suffices. D

Assert 3.3L:

Put is not decomposed into concurrent sub-processes so no internal communication channels exist.

D

Assert 6.2L using Assert 7.2L, Assert 8.2L:

We must argue that the procedural model of the Put CSP process has certain critical properties
required of sequential processes. This argument is necessarily informal since the correspondence
between our procedural model and CSP is informal. First we show that Put is a CSP process and
then we show that it is sequential.

From the definition of isprocess in the pr model library unit, we must show that

1. the empty trace is a trace of Get,

2. the traces of Put are restricted to events in put .alpha (chsz, tick), and

3. any prefix of a trace of Put is also a trace of Put.

We define the traces of the procedural design of Put so that these properties hold. By inspection
of this design, the trace of Put is constructed as it executes by appending to its end the commu-
nication event associated with every communication in which it engages. Viewing Put's execution
symbolically, we define the set of traces of Put as the set of all possible traces constructed up to
any point in its execution. Clearly this ensures that (3) holds. (1) holds since the pre-condition
for Put ensures that the trace is initially empty. (2) holds as a consequence of Assert 7.2L and the
portion of the post-condition for Put that requires all traces generated to be confined to events in
put .alpha (chsz, tick). We delay proof of the post-condition until the argument for Assert 8.2L.

64

From the definition of is-seqpr from the pr model library unit, a sequential process must have
the successful termination event in its alphabet. The only place this event may appear in a trace of
a sequential process is as the last event. The parameter tick represents the successful termination
event for Put. tick is in the alphabet of Put as shown in Assert 7.2L. tick does not occur in any
trace of Put since Put does not terminate successfully.1 D

Assert 7.2L:

We define the alphabet of the procedural model for Put as the set of events in which it may engage.
The post-condition for Put requires that this set be restricted to put .alpha (chsz, tick). We delay
proof of the post-condition until the argument for Assert 8.2L. D

Assert 8.2L:

Assert 8.2L requires that all traces of Put be members of the set defined by valid-Put. This requires
that every trace of Put satisfy Put_not-over_capacity and valid-char-Put. The post-condition
for Put requires these properties of the Put design. The rest of this section presents an overview of
the proof of the post-condition.

Proof Structure of Put The first task is to derive a set of valid requirements for Put-Step
that allows us to prove that Put satisfies its post-condition. The recursive nature of Put_step
suggests that its specification is invariantly true before and after execution. We call this invariant
valid-Put .step.

(Putstep specification)[90]M =
pre cntdwn > 0

and buffsz*(chsz+2) + chsz + 2 <= int'lastO
and valid_Put_step ((Contents)[143]('buff'),(Trace)[163]('st'),

chsz,buffsz,tick)
post valid_Put_step ((Contents)[143]('buff'),(Trace)[163]('st'),

chsz,buffsz,tick)

measure cntdwn
This macro is invoked in definition 87.

Discovering the invariant for Put-step requires understanding the crucial role that the internal
buffer buff plays. We refer to the contents of buff as cbuff. cbuff invariantly contains the
delimited characters, or parts of characters, received over mid buf not yet transmitted over outbit.
The length of cbuff, i.e., len cbuff, plus the number of bits of the last non-complete character
transmitted over outbit, i.e., (len trl 1= outbit) mod (chsz+2), must be bounded above by
the maximum capacity of the buffer, i.e., buffsz* (chsz+2).

{Definition of vaiid_Put-step) [91]M =
function valid_Put_step (cbuff,trl, chsz, buffsz,tick) =

begin
chsz >= 0

and buffsz >= 1
and not iscomm tick

1 The SVerdi procedural model of Put does complete execution, but only because EVES requires proof of termina-
tion. This may be considered unsuccessful termination in the CSP sense.

65

and trl "*? put_alpha(chsz,tick)
and not (tick -[trl)
and (mid allows only chars) [121]
and invariant_over_bnffer(cbuff,TR1, CHSZ, buffsz.tick)
and ALL TR2: some cbuff2:

TR2 .<=. TR1
-> invariant_over_buffer(cbuff2,TR2, CHSZ, buffsz.tick)

end valid_Put_step;
This macro is invoked in definition 213.

(Definition of invariant-over-buffer)[92]M =
function invariant_over_buffer(cbuff,TR1, CHSZ,buffsz,tick) =

begin
cbuff "*? -{0,1}-

and (mid chars to bits)[123] = ((TR1 1= OUTBIT) * cbuff)
and buffsz*(chsz+2) >= (len cbuff)

+ ((len TR1 1= OUTBIT) mod (chsz+2))

end invariant_over_buffer;

This macro is invoked in definition 213.

Showing that the specification for Put follows from the specification for Put-step requires

showing that

1. the pre-condition and initial assignments for Put imply the pre-condition for Put-step, and

2. the post-condition for Put-step implies the post-condition for Put.

The first proof obligation follows trivially from the definitions involved:

(Put lemma #i)[93]M =
rule valid_Put_step_empty_empty (chsz,buffsz.tick) =

begin
chsz >= 0

and buffsz >= 1
and not iscomm tick

-> valid_Put_step(.<>.,.<>.,chsz, buffsz.tick) = true

end valid_Put_step_empty_empty;

This macro is invoked in definition 213.

The second proof obligation is split according to the structure of the post-condition for Put.
Note that the requirement that the trace be restricted to put^alpha(chsz.tick) follows trivially
from the definition of valid-Put_step.

(Put lemma #2)[94]M =
rule Put_step_Put_not_over_capacity (cbuff,trl,tr2,chsz,buffsz,tick) =

begin
tr2 .<=. trl

and valid_Put_step (cbuff, trl, chsz, buffsz.tick)
-> Put_not_over_capacity (tr2, chsz, buffsz, tick) = true

end Put_step_Put_not_over_capacity;

This macro is invoked in definition 213.

(Put lemma #3) [95] M =

66

rule put_step_valid_char_Put (cbuff,trl,tr2,chsz,buffsz,tick) =

begin
tr2 .<=. trl

and valid_Put_step (cbuff,trl, chsz,buffsz, tick)
-> valid_char_Put (tr2, chsz, tick) = true

end put_step_valid_char_Put;
This macro is invoked in definition 213.

Proof Structure of Putjstep This level requires us to derive a set of requirements
for poll-mid^and-outbit that allows us to prove that Put-Step satisfies its post-condition.
poll-mid-and_outbit can assume that either a character reception or a bit transmission is possible;
thus, the buffer is not empty and there is room to store a character. We know that valid-Put_step
must remain invariant in either case. Furthermore, to prove that Put_step terminates, cntdwn must
decrease to a value no less than zero.

(poll-mid^ind-outbit specification)[96]M =
initial buff_0=buff, st_0=st,cntdwn_0=cntdwn
pre cntdwn > 0

and not nullp buff
and buffsz*(chsz+2) >= (len (Contents)[143]('buff')) + chsz + 2
and valid_Put_step ((Contents)[143]('buff'),(Trace)[163]('st'),

chsz,buffsz,tick)
post cntdwn < cntdwn.0

and cntdwn >= 0
and valid.Put.step ((Contents)[143]('buff'),(?Vace)[163]('st'),

chsz.buffsz,tick)
This macro is invoked in definition 88.

Put-step may receive a character over mid or transmit the head of the buffer over outbit
depending, in part, on the status of the internal buffer. The cases are identified in the proof of
Put_step's post-condition:

1. cntdwn becomes zero, in which case Put_step terminates with no change to the buffer or trace;

2. cntdwn remains greater than zero and a character is received over mid, in which case Put_step
terminates with the delimited character appended to the end of the buffer and the associated
communication event appended to the end of the trace; and

3. cntdwn remains greater than zero and a character is transmitted over outbit, in which case
Put_step terminates with the head of the buffer deleted and the associated communication
even appended to the end of the trace.

Each of these cases generates a proof obligation in addition to that generated for proof of termination.
That these are all of the cases can be seen by inspection of the post-condition of the procedures
involved. We deal with each case in turn. Termination follows directly from the fact that cntdwn
decreases each iteration and is bounded below by zero.

The first case (1) is trivial since no change to the buffer or trace requires only that
valid_Put_step hold initially, which is guaranteed by Put_step's pre-condition.

The second case (2) requires us to prove the following theorem. We can assume that there is
room for storing a character in the internal buffer since Put-step only permits receiving characters
over mid when this is the case.

67

{valid JPut step lemma #J)[97]M =
rule valid_Put_step_tack_mid (cbuff,trl,chsz,buffsz,tick,chr) =

begin
buffsz*(chsz+2) >= (len cbuff) + chsz + 2

and cseq!is_char(chr,chsz)
and valid_Put_step(cbuff,trl,chsz,buffsz,tick)

-> valid_Put_step(cbuff " (startbit]- (chr " .<stopbit>.)),
trl " .<mid.chr>.,chsz,buffsz,tick) = true

end valid_Put_step_tack_mid;
This macro is invoked in definition 213.

The third case (3) requires us to prove the following theorem. We can assume that the buffer
is not empty since Put_step only permits transmitting bits over outbit when this is the case.

(vaJitLPut-step iemma #2)[98]M =
rule valid_Put_step_tack_outbit (b,cbuff,trl,chsz, buffsz,tick) -

begin
not null cbuff

and (head cbuff) = b
and valid_Put_step(cbuff,trl,chsz, buffsz,tick)

-> valid_Put_step(tail cbuff,trl * .<outbit.b>.,
chsz, buffsz,tick) = true

end valid_Put_step_tack_outbit;
This macro is invoked in definition 213.

Proof Structure of poll_mid-andjoutbit The proof of poll.mid.and_outbit is similar to the
proof of Put-step since the same two communications are possible during its execution: sending a
bit over outbit and receiving a character over mid. The invariant for the loop hinges on the boolean
variables sent and rcvd, which indicate which if either communication has occurred.

(poiLmicLaiid-outbit loop specification) [99]M =
invariant cntdwn < cntdwn_0

and cntdwn >= 0
and chsz >= 0
and buffsz >= 1
and not iscomm tick
and buff_0=buff
and not (sent and rcvd)
and if rcvd and cntdwn > 0 then

cseq!is_char((Contents)[143]('chr'),chsz)

and (Trace)[163]('st')
= <Trace)[163]('st_0')

- .<mid.(Contente)[143]('chr')>.

elseif sent and cntdwn > 0 then
<Trace)[163]('st')

= (Trace)[163]('st_0')
- .<outbit.head (Contents)[143]('buff')>•

else (Trace)[163]('st') = (Trace)[163]('st_0') end if

measure cntdwn
This macro is invoked in definition 88.

68

The loop in pollJnid.and_outbit terminates when the polling process results in a successful
communication. Proof of the post-condition on termination relies on the same two lemmas as the
proof of Put .step: (valid.Pui.siep lemma #1) and (valid.Pui.siep lemma #£).

The EVES proof of lemmas cited in this justification are documented in the put library model
unit. D

69

Part III

The Repeater Physical Design

70

Chapter 8

Repeater Physical Architecture

This chapter presents the physical CSP architecture for Rptr. The target for the physical architecture
and design is the CSP design specified in [1]. We present in Section 8.1 an overview of the physical
architecture including the primary responsibilities of the components ofthat architecture. Section 8.2
translates the Rptr logical design described in SVerdi in Part II of this document to the syntax
required by FDR. The FDR logical design is the CSP process specification to which the physical
design must conform. Section 8.3 summarizes the critical requirements of the physical architecture.
These requirements are derived from the top-level critical requirements described in Chapter 4. This
derivation uses the fact that the Rptr logical design conforms to the requirements of Section 2.1 to
simplify the physical architecture critical requirements. The critical requirements of the physical
architecture were not derived directly from the logical architecture requirements since the logical
architecture has a different structure than the physical architecture.

8.1 Overview of the Physical Architecture

outbit

Figure 8.1: Repeater Physical Architecture

As depicted in Figure 8.1, the Rptr physical architecture composes three processes: Rev, which
receives and checks the parity of incoming characters; Str, which maintains the internal buffer; and
Tx, which transmits those characters that passed the parity check. The internal channels datal and
data2 are used to pass characters of even parity for transmission over outbit. The channels errl
and err2 are used to relay status information, such as parity or framing error, to the operator.

Assert 2.IP The environment does not send data over outbit, errl, or err2.

71

At the external interface, the Rptr physical design behaves the same as the Rptr design if you
ignore communications over the error channel. This fact is, of course, the subject of the justification
that the physical design conforms to the design constraints. From an internal perspective, the
behavior of the Rptr physical design is a refinement of the the behavior of the Rptr logical design.
For each delimited character received over inbit, Rev determines the parity of the character that
the segment represents. A signal is sent over the error channels indicating whether the character
received had a parity error (not even parity), a framing error (improper stopbit delimiter), or if
no error occurred. If the character is of odd parity it is thrown out, and the reception of a new
character is initiated. Otherwise, the startbit and stopbit are stripped off and the character is
sent as an integer encoding over datal to Str.

Assert 3.IP The environment does not send or receive data over datal or data2.

Str has the capacity to store only a single character at a time. When Tx is ready, Str relays the
character encoded as an integer over data2 to Tx. Tx decodes the character, adds the startbit and
stopbit delimiters, and transmits the character in serial for over outbit. As in the logical design,
Rptr's physical components are tightly synchronized. Rev cannot receive a new character until it
has transmitted the character it is processing to Str. Str cannot accept another character from Rev
until its buffer is empty. Finally, Tx cannot receive a character from Str until it has transmitted
the character that it is processing over outbit. Note that this design implies that the size of the
buffer, N, specified in the initial problem description equals three; each component has a capacity of
one character.

8.2 Translation of the Logical Design to FDR

FDR places certain constraints on CSP descriptions to which the Rptr design currently does not

conform:

• Process descriptions that involve high level operators may not be parameterized. This implies
that the parameters of low level process descriptions must be concrete.

• The set of events that synchronize concurrent components must be explicit. Processes are
composed with the [I X |] operator (where X is the set of events synchronized) rather than
the II or the I ? I operators.

• The set of events hidden for abstraction purposes must be explicit. The hiding operator \ is
used to hide internal events rather than the I ? I operator.

• Values that may be transmitted over channels are limited to integers or truth values. The char-
acters transmitted over mid in the Rptr design must be encoded as integers before transmission
by Get and decoded before transmission by Put.

• The successful termination event in FDR is implicit. The parameter tick in the Rptr design
is suppressed in the FDR specification.

• Functions returning something other than a CSP process must be defined in ML.

This section recasts the logical design of Part II to conform to these constraints in the syntax
required by FDR and ML. The CSP process called Rptr in Part II is renamed RptrSpec in the FDR
specification. The CSP process Rptr now represents the repeater physical design. The goal of the
FDR verification will be to show that Rptr refines RptrSpec.

Assert 8.1P traces Rptr .<=. traces RptrSpec

72

8.2.1 FDR Process Specification

The alphabet of a CSP process in FDR is implicitly specified as the union of the set of communication
events associated with all channels declared via the channel pragma declarations.

(Rptr specification channel declarations)[100]M =
pragma channel inbit, outbit : bit
pragma channel mid : max_vals

This macro is invoked in definition 215.

The values that may be transmitted over a channel are strictly defined by the set of values
specified in the channel pragma declarations. We limit the values that may flow over mid to integers
between zero and fifteen, which restricts Rptr to process characters of at most four bits long, i.e., K
<= 4.

Assert 9P K <= 4.

(Values transmitted over external dianneis)[101]M =
bit = {0,1}

This macro is invoked in definition 215.

(Vaiues transmitted over mid)[102]M =
max_vals = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}

This macro is invoked in definition 215.

The Rptr design was specified in Section 5.5 as the concurrent composition of Get and Put with
internal event hiding, mid is the only channel on which Get and Put are synchronized and, thus, is
the only internal channel whose communications are to be hidden. Note that we use the concrete
values K and N-l as the character size and internal buffer size respectively. These values will be
identified during later refinement.

(FDR Rptr specification}[103]M =
RptrSpec = Get(K) [|{mid}|] Put(K,N-l,<>) \ {I mid 1}

This macro is invoked in definition 215.

The primary difference between the FDR process specification of Rptr's components and the
design specified in Sections 6.1 and 7.1 is the transmission of integers, rather than characters, over
mid. Characters are encoded as integers by Get via a function cnv_to_int and decoded by Put via
a function cnv_to_int.

(FDR Get specification)[104]M =
Get(chsz) =

inbit ? b -> if b == startbit
then Inchar(,chsz);Get(chsz)
else Get(chsz)

This macro is invoked in definition 215.

(FDR definition of inciiar)[105]M =
Inchar(ch,chsz) =

if #(ch) <= chsz then
inbit ? b -> Inchar(ch",chsz)

else inbit ? b -> if not odd_parity(ch)

73

and b == stopbit
then mid ! cnv_to_int(tail(ch)) -> SKIP

else SKIP

This macro is invoked in definition 215.

(FDR Put specification)[106]M =
Put(chsz,buffsz,buff) =

if null(buff) then
mid ? i -> Put(chsz,buffsz,

buff"(<startbit>"(cnv_to_char(<i,chsz>)*<stopbit>)))
else if buffsz*(chsz+2) < #(buff) + chsz + 2

then outbit ! head(buff) -> Put(chsz,buffsz,tail(buff))

else
outbit ! head(buff) -> Put(chsz,buffsz,tail(buff))

[] mid ? i -> Put(chsz,buffsz,
buff"(<startbit>

"(cnv_to_char(<i,chsz>)"<stopbit>)))

This macro is invoked in definition 215.

8.2.2 ML Support Definitions

Recall that FDR requires that support functions, such as odd-parity and the character coercion
functions, to be denned in ML. These functions are rather awkward to specify since FDR requires
that the parameters to ML functions be of type ML expression and the return type be either ML
expression or bool. FDR provides functions that allow coercion of expressions to/from atoms
and atoms to/from int as described in Section 3.3.1 Using these coercion functions, odd-parity is
specified as follows:

(ML definition of odd.pa.nty)[107]M =
fun xor(x.y) = ((x orelse y)

andalso not(x andalso y));;

fun is_odd ch =
if null ch then false
else (xor ((CheckAtom(hd ch)=InjectNum(l)),

is_odd (tl ch)));;

fun odd_parity [EXPseqcomp(ch,[])] =

is_odd(ch);;

This macro is invoked in definition 217.

Characters are converted to integers by simply calculating the decimal value of the binary
representation of the bit sequence representing the character.

(ML definition of cnv_to_int)[108]M =
fun char_to_int ch =

if null ch then 0
else NumberOf(CheckAtom(hd ch))

+ 2*char_to_int(tl ch);;

fun cnv_to_int [EXPseqcomp(ch,[])] =

74

(Atom(InjectNum(char_to_int(ch))));;
This macro is invoked in definition 217.

Converting integers to characters is the inverse of the above operation.

(ML definition oi"cnv.to.char)[109]M =
fun int_to_char (i.sz) =

if i<l andalso sz<l then []
else if i<l then ([Atom(InjectNum(0))] «I int_to_char(i,sz-l))
else ([Atom(InjectNum(i mod 2))] 0 int_to_char(i div 2,sz-l));;

fun cnv_to_char [EXPseqcomp([i,sz],[])] =
EXPseqcomp(int_to_char(NumberOf(CheckAtom(i)),

KumberOf(CheckAtom(sz))), □);;

This macro is invoked in definition 217.

8.3 Summary of the Physical Architecture Critical Require-
ments

The following critical requirements were derived from the top-level Rptr critical requirements of
Chapter 4 and the assumptions and assertions identified in throughout this chapter.

8.3.1 Assumptions

1 Power is continuously supplied to Rptr.

2.IP The environment does not send data over outbit, errl, or err2.

3.IP The environment does not send or receive data over datal or data2.

8.3.2 Assertions

Informal Assertions

1 If Rptr is continuously powered, Rptr and its environment can communicate only via external
channels; communication between Rptr sub-processes can take place only over channels shared
by the alphabets of the sub-processes.

2 Rptr does not send data over inbit.

3 Communication between Rptr sub-processes must be uni-directional and involve exactly two
sub-processes.

4 The implementation of communications over a channel in the Rptr process description must
synchronize sender and receiver.

5 Rptr must not engage in unguarded recursion nor engage in an infinite sequence of hidden

events.

75

Formal Assertions

6 Rptr is a CSP process.

7 Rptr's alphabet is defined by Repjilpha.ext.

8.IP traces Rptr .<=. traces RptrSpec

9P K <= 4

76

Chapter 9

Repeater Detailed Physical Design

This chapter describes the Rptr CSP process implementation in FDR and the justification that this
physical design satisfies the critical requirements identified in the last chapter. This justification
generates a set of critical requirements that must be satisfied of any further refinement of Rptr.

9.1 Formal Specification of the Physical Design

The Rptr physical design requires defining four new channels: two for passing characters between the
components and two one-bit channels representing the two-bit error channel. We use two channels
to represent the error channel for simplicity. We hide these four channels in the Rptr process
implementation since they did not occur in the Rptr design. The models of refinement in CSP all
require that the set of traces of the process implementation be a subset of the set permitted by the
process specification.

(Additional channels of the Rptr physical design)[110]M =
pragma channel datal, data2 : max_vals
pragma channel errl, err2 : bit

This macro is invoked in definition 215.

(Rptr physical architecture) [111]M =
Rptr = Rev [I {datal} I] (Str [Kdata2}|] Tx)

\ {| datal,data2,errl,err2 |}
This macro is invoked in definition 215.

Once the Rev component receives a startbit it begins processing the next K-bit character. The
process Data receives all but the startbit and first bit of the character eh. Once Data has received
K-2 bits (making a total of K bits received including startbit), Data initiates reception of the last
bit of the character.

{Definition of Rev) [112]M =
Rev =

inbit ? b -> if b != startbit then Rev
else inbit ? b -> Data(,0,b == 1)

Data(ch,cnt,parity_err) =

77

if cnt < K-2 then
{Accept the next bit and continue)[113]

else {Accept the last bit and continue)[115]
This macro is invoked in definition 215.

A running tally of the parity status of the incoming character is maintained by Data using a
function of zero arguments called prty_xor. The Boolean variable parity.err is true if and only if
the character thus far received has odd parity.

{Accept the next bit and continue)[113]M =
inbit ? b -> Data(ch~,cnt+l,prty_xor)

This macro is invoked in definition 112.

{Definition of prtj_xor)[l 14]M =
prty_xor = (parity.err or (b == 1))

and (not (parity.err and (b == 1)))
This macro is invoked in definition 215.

Once the last bit of the character has been received, the final delimiting bit is received and
stored in the variable f rame_err, is received. Output signals the error status of the character just
received and transmits the character over mid if no error is indicated.

{Accept the last bit and continue)[115]M =
inbit ? b -> Stop_bit(ch",prty_xor)

This macro is invoked in definition 112.

{Definition of Stop.bit)[ll6]M =
Stop_bit(ch,parity.err) =

inbit ? frame.err -> Output(ch,parity.err,frame.err)

Output(ch,parity_err,frame.err) =
if parity.err then ErrOut(0,l);Rcv
else if frame.err != stopbit then ErrOut(l.O);Rcv
else ErrOut(O.O); datal!cnv_to_int(ch) -> Rev

Err0ut(bl,b2) =
errl ! bl -> err2 ! b2 -> SKIP

This macro is invoked in definition 215.

Str is a simple one-place buffer.

{Definition of Str)[U7]M =
Str = datal ? i -> data2 ! i -> Str

This macro is invoked in definition 215.

Tx begins at Input by waiting to input an integer over data2, after which it decodes the integer
returning the character. Input recursively transmits the delimited character bit by bit over outbit.

Once complete Input starts over again.

{Definition of Tx)[118]M =
Tx = Input(<>,K+2)

Input(ch,outct) =

78

if outet == K+2 then data2?i -> Input(cnv_to_char(<i,K>),0)

else if outct == 0 then outbit ! startbit -> Input(ch,outct+l)

else if outct == K+l then outbit ! stopbit -> Input(ch,outct+1)

else outbit ! head(ch) -> Input(tail(ch),outct+l)

This macro is invoked in definition 215.

9.2 Justification of the Physical Design

This section presents an intuitive justification that the FDR Rptr physical design satisfies the critical
requirements of Rptr as described in Section 8.3. We argue informally that the physical design
satisfies the informal assertions. We use a combination of informal and formal techniques to argue
that the physical design satisfies the formal assertions. In particular we use the FDR model checker
to demonstrate that the Rptr physical design satisfies the constraints of the Rptr specification.

9.2.1 Assumptions Argument

Assump 1:

No change.

Assump 2.1P:

No change.

Assump 3.1P:

No change.

9.2.2 Assertions Argument

Assert 1:

By inspection of the Rptr physical design, the only way that Rptr can communicate with its en-
vironment is through the inbit, outbit, errl and err2 channels. Likewise, the components can
communicate only through the channels defined. This requirement must be true of any refinement
of the physical design and so remains in the list of critical requirements.

Assert 2:

By inspection, Rev is the only component with access to inbit and Rev does not transmit data over

inbit. D

Assert 3:

Trivial by inspection. D

79

Assert 4:

This requirement must be true of any refinement of the physical design and so remains in the list of

critical requirements.

Assert 5:

The non-divergence of Rptr is verifiable either through inspection of the physical design or, more
formally, using FDR. FDR verification proceeds by showing that the process Rptr is a proper
refinement of the process CHAOS({ I inbit.outbit I}. This process is the most non-deterministic non-
divergent process over the alphabet of bit communications over inbit and outbit. This verification
proceeds fully automatically. For completeness, we also verified that RptrSpec is non-divergent. D

Assert 6:

We must argue that the FDR model of CSP processes has the properties that our EVES theory
requires of those processes. This argument is necessarily informal since the correspondence between
the EVES theory and the FDR model of CSP is informal.

From the definition of isprocess in the pr model library unit, we must show that

1. the empty trace is a trace of Rptr,

2. the traces of Rptr are restricted to events in Repj.lpha_ext(chsz,tick), and

3. any prefix of a trace of Rptr is also a trace of Rptr.

The traces of a CSP process are the same in FDR as they are in the EVES theory. Thus, the empty
trace is a trace of every process (1) and all prefixes of a trace of a process is also a trace of that
process (3). (2) holds as a consequence of Assert 7.1P which is proved next. D

Assert 7:

Rptr hides all events that are not communications of bit values over inbit or outbit. Since
the successful termination event tick is implicit in FDR, the alphabet of Rptr is exactly
Repjilpha_ext(tick). D

Assert 8.1P:

This assertion is verified fully automatically by FDR but the result depends on the values of the
character size K and the maximum character storage capacity N. The FDR Traces Refinement checks
are successful for values in the range 2<=K<=4 and N>=3.

Assert 9.1P 2<=K<=4

The upper bound on K is due to the need in the FDR specification to permit the communication
of only a finite set of values over individual channels. Thus, values communicated over mid were
constrained to lie between zero and fifteen. The algorithm used to convert between integers and
characters implies that this constraint limits the character size to a maximum of four bits. Although

80

this limit may seem rather arbitrary, the larger the character size the longer and the more memory it
takes for the FDR verification to terminate. A character size of four was the longest possible before
the state explosion exhausted memory on the machine on which the verification was performed.

The lower bound on K is due to the structure of the design of Rev. Rev requires that at least one
bit of the character be received immediately after the startbit and that an additional character be
received immediately before the stopbit. A Traces Refinement check fails for values 0<=K<2 since
the design always receives at least two bits (in addition to the startbit and stopbit) whereas the
specification receives exactly K bits. There exist traces of the process implementation that are not
traces of the process specification.

N is a parameter only of the Rptr process specification. The process implementation assumes
that the maximum capacity of Rptr is exactly three characters - each component can be process-
ing/storing at most one character at a time. The specification, on the other hand, assumes only
that the buffer be able to store at least one character. For values of K less than three, the process
implementation exhibits behavior not permitted by the process specification — the Traces Refine-
ment check in this range fails. The Traces Refinement check succeeded for N = 3 and N = 4 before
the state explosion caused FDR to exhaust memory.

To test the limits of the Rptr physical design we applied the more sophisticated Failures Diver-
gences Refinement check as well. The check succeeded for the same values of K as before but only
for N = 3. The reason for this is clear. The Failures Divergences Refinement model requires that
the implementation not refuse to engage in any event in which the specification may engage. For
values of H greater than three, the implementation refuses to receive greater than three characters
before transmitting a character. The specification does not refuse to receive characters in these
circumstances. This is as one would expect for models of CSP that permit verification of liveness as
well as safety properties. D

Assert 9P using Assert 9.IP:

As described above the FDR verification of Rptr succeeded for values 2<=K<=4. This generates
Assert 9.IP. D

9.3 Summary of the Implementation Critical Requirements

The following assumptions must be validated of any environment in which Rptr is embedded. The
following assertions must be proven of any refinement of the Rptr physical design.

9.3.1 Assumptions

1 Power is continuously supplied to Rptr.

2.IP The environment does not send data over outbit, errl, or err2.

3.IP The environment does not send or receive data over datal or data2.

81

9.3.2 Assertions

Informal Assertions

1 If Rptr is continuously powered, Rptr and its environment can communicate only via external
channels; communication between Rptr sub-processes can take place only over channels shared
by the alphabets of the sub-processes.

4 The implementation of communications over a channel in the Rptr process description must
synchronize sender and receiver.

9.IP 2<=K<=4

82

Part IV

Supporting Definitions

83

Chapter 10

Character Sequence Theory

The formalization of the repeater critical requirements is based on a theory, called cseq, for par-
titioning a bit stream into a sequence of characters and for reasoning about the bit stream in an
abstract manner. The theory also includes facilities for reasoning about the parity of characters.
Characters include all chsz-length sequences of bits.

{Definition of charset)[119]M =
function char_set(chsz) =
measure chsz

begin
if chsz > 0
then pr!map_tack(0, char_set(chsz - 1))

++ pr!map_tack(l, char_set(chsz - 1))

else unit .<>.
end if

end char_set;
This macro is invoked in definition 201.

All characters processed by Rptr are delimited by a startbit/stopbit combination. These
values are implemented as SVerdi functions, startJbit and stopJbit, with no parameters. Since
these values are really constants we define nilf ix aliases for each to make them easier to use. To
avoid confusion, henceforth, we refer to a character that is delimited appropriately as a delimited
character, the term character simply refers to the entity between the delimiters.

{Definitions of startbit/stopbit) [120] =
function start_bit () =
begin

0
end start_bit;
nilfix startbit start_bit;

function stop_bit () =
begin

1
end stop_bit;
nilfix stopbit stop_bit;

This macro is invoked in definition 201.

84

10.1 Primary Operations

The primary operations provided by cseq are to identify character sequences (is_char_seq), to
convert between bit streams and character sequences (char_seq and flatten), and to determine
the current (partial) character being processed (current.char). These functions are used many
times in the definition and decomposition of the repeater critical requirements.

(mid allows only chars) [121]M =
cseq!is_char_seq(trl 1= mid.chsz)

This macro is invoked in definitions 64, 69, 73, and 91.

(Bits to chars)[122](ol)M =
cseq!char_seq(ol,chsz)

This macro is invoked in definitions 12, 15, 19, 20, 37, 48, and 49.

(mid chars to bits)[123]M =
cseq!flatten(trl |= mid.chsz)

This macro is invoked in definition 92.

(Partial char over inbit)[124](ol)M =
cseq!current_char(ol |= inbit,chsz)

This macro is invoked in definitions 64, 73, 73, and 75.

We begin by defining each of the above functions in terms of a set of secondary operations.
is.char.seq describes a trivial predicate that holds if and only if each element of the sequence that
it is passed is a character, via the is_char call.

(Definition of is_diar_seq)[125]M =
function is_char_seq (s, chsz) =

measure len s
begin

if null s then true
else is_char(head s.chsz)

and is_char_seq(tail s.chsz)
end if

end is_char_seq;
This macro is invoked in definition 199.

char_seq begins by searching through the bit stream for the first startbit. Once found,
a decision must be made whether the bit sequence starting at that startbit begins with a valid
delimited character, i.e., whether has_char (s, chsz) returns true. If so, the character is retrieved,
via the char Jiead call, and the search continues by recurring on all but the first delimited character,
via the first char-tail call. Otherwise, the malformed delimited character (which may be merely
an incomplete delimited character) is discarded, via the second char-tail call, and the search
continues. The recursion bottoms out when the bit sequence is null, returning the empty sequence.
This process constructs the chsz-length character sequence formed from the bit sequence s.

(Definition of charseq)[126]M =
function char_seq(s, chsz) =

measure len s
begin

if not null s

85

and not head(s) = startbit

then char_seq(tail s, chsz)

elseif has_char(s, chsz)
then char_head(s, chsz)]- char_seq(char_tail(s, chsz), chsz)

elseif not null s
then char_seq(char_tail(s, chsz), chsz)

else .<>. end if

end char_seq;
This macro is invoked in definitions 199 and 201.

If flatten is passed a valid character sequence, it should reverse the effect of char_seq. This
is done by appropriately delimiting each character of the sequence it is passed.

(Definition of flatten)[127]M =
function flatten (cs.chsz) =

measure len cs
begin

if null cs
or not is_char(head cs.chsz) then .<>.

else (startbit]- (head cs)) * (stopbit]- flatten(tail cs, chsz))

end if
end flatten;

This macro is invoked in definition 199.

current .jchar traverses a bit sequence until it gets to a delimited character that is only partially
specified. It ignores all false starts and fully specified characters. If no partial character remains at
the end of the bit sequence after its traversal, the empty sequence is returned.

(Definition of current-char) [128]M =
function current_char (s.chsz) =

measure len s
begin

if not null s
and not head(s) = startbit

then current_char(tail s, chsz)

elseif not null s
and (len s) >= chsz+2

then current_char(char_tail(s, chsz), chsz)

elseif not null s

then s
else .<>. end if

end current_char;

This macro is invoked in definitions 199 and 201.

10.2 Secondary Operations

10.2.1 Definition of has_char

has_char determines whether a bit sequence begins with a valid delimited character. It does this by
asking whether there is some character that when delimited by a startbit/stopbit forms a prefix

of the bit sequence.

86

(Definition of has.char)[l29] =
function has_char (s, chsz) =
begin

some c: is_char (c, chsz)
and startbit]- (c " .<stopbit>.) .<=. s

end has_char;
This macro is invoked in definition 201.

10.2.2 Definition of is_char

is_char determines whether a given sequence c is a chsz-length character. This requires only that
c be a sequence of only 0's and l's and be exactly chsz in length.

(Definition of is.char) [130] =
function is_char (c, chsz) =

measure len c
begin

if chsz > 0
and not null c

then head c in -{0, 1}-
and is_char (tail c, chsz - 1)

else c = .<>.
and chsz = 0 end if

end is_char;
This macro is invoked in definition 201.

10.2.3 Definition of char_head

char .head returns the first character of a bit sequence whether the delimited character representing
the character is valid or not. char .head (s, chsz) simply returns all but the delimiters of the first
chsz + 2 bits of the bit sequence s. By default, we return the empty sequence for all values of chsz
less than 0.

(Definition of char-head) [131] =
function char_head (s, chsz) =
begin

if chsz >= 0
then tail (nlast tr!get_first.n (s, chsz +2))
else .<>. end if

end char_head;
This macro is invoked in definition 201.

10.2.4 Definition of char_tail

char .tail returns all but the first character of a bit sequence (including delimiters) independent
of the first character's validity, char-tail (s, chsz) removes the first chsz + 2 bits of the bit
sequence s. By default, we delete only two bits (the bits representing the delimiters) for all values
of chsz less than 0.

87

(Definition of char.tail)[lZ2] =
function char_tail (s, chsz) =
begin

if chsz >= 0
then tr!remove_first_n (s, chsz + 2)
else tr!remove_first_n (s, 2) end if

end char_tail;
This macro is invoked in definition 201.

10.3 Set of even parity characters

cseq also contains the definition of the subset of characters that have even parity. A character is of

even parity if and only if the sum of its bits is even.

(Set of even parity characters) [133]M =
cseq!even_parity_chars (chsz)

This macro is invoked in definitions 14, 19, 36, and 38.

(Definition of even.parity.chars)[lS4]M =
zf function even_parity_chars(chsz) =
begin

{ c in char_set(chsz) I even(sum(c)) }
end even_parity_chars;

This macro is invoked in definitions 199 and 201.

(Definition of even) [135]M =
function even(i) =
begin

i mod 2=0
end even;

This macro is invoked in definitions 199 and 201.

(Definition of sum) [136]M =
function sum(s) =

measure len s
begin

if null s
then 0
else head(s) + sum(tail s) end if

end sum;
This macro is invoked in definitions 199 and 201.

Chapter 11

Character Storage Module

The procedural approach to modeling CSP sequential processes using EVES requires using only
executable SVerdi constructs. Although traces are useful for storing characters in the specifications
about Rptr, they cannot be used in SVerdi procedure definitions since they are not executable. This
section characterizes a module called bf r that includes a set of operations on a data type called
buffer used to store sequences of characters.

(Buffer type)[137]M =
bfr(buffer

This macro is invoked in definitions 56, 57, 58, 62, 86, 87, 87, 88, 88, 176, 178, 181, 182, 193, and 193.

{Definition stub for buffer type)[138]M =
type buffer;

This macro is invoked in definition 197.

Characters and sequences of characters are represented simply as sequences of values of type
bit. A function is provided to convert a bit to a one or a zero. Two bits are equal if and only if
they are equal after conversion.

{Bit type)[139]M =
bfr!bit

This macro is invoked in definitions 56, 58, 62, 167, 169, 172, 173, 193, and 193.

{Definition stub for bit type)[140]M =
type bit;

This macro is invoked in definition 197.

{Definition stub for cnv_bit) [141]M =
typed function cnv_bit (b : bit) returns int;

This macro is invoked in definition 197.

{Definition for equality of bits) [142]M =
typed function bit_equal (bl,b2 : bit) returns bool =

begin
cnv_bit(bl) = cnv_bit(b2)

end bit_equal;
This macro is invoked in definition 197.

89

Objects of type buffer are isomorphic to traces of bits in the sense that there is a mapping from
buffers to traces of bits that is one-to-one and onto. We call this mapping contents; we call its
inverse rebuff. We specify the properties of buff er only at its interface since we are not concerned
at this point with an implementation. Of course, any implementation would require that buffers be
bounded which would imply a more constrained interface.

(Contents)[143](ol)M =
bfr!contents(ol)

This macro is invoked in definitions 72, 72, 72, 72, 72, 76, 76, 90, 90, 96, 96, 96, 99, 99, 99, 175, 175, 176, 176, 178, 178, 180,

181, and 182.

(Buffer-Trace conversions) [144]M =
function contents (buff);

function rebuff (tr);

grule contents_is_trace (buff) =

begin
typeof(buff) = bufferQ

-> contents (buff) **? -f.0,l>-
end contents_is_trace;

rule rebuff_is_buffer (tr) =

begin

tr -*? -{0,1}-
-> typeof rebuff(tr) = buffer ()

end rebuff_is_buffer;

rule contents_rebuff (tr) =

begin

tr "*? -{0,1>-
-> contents (rebuff (tr)) = tr

end contents_rebuff;

grule cnv_bit_is_0_or_l (b) =

begin
typeof(b) = bit()

-> cnv_bit(b) in -{0,1}-

end cnv_bit_is_0_or_l;

This macro is invoked in definition 197.

The isomorphic nature of buffers and traces of bits implies that each operation on traces has a
counterpart for buffers. As a notational convenience we name each operation on a buffer similar to
its counterpart. In particular, operations named by a sequence of alphabetic characters are modified
by appending the letter p onto the end, e.g., tailp for the tail of a buffer. Operations named by
a special symbol are modified by delimiting the symbol with backward quote marks, e.g., '"' for ".

(Buffer operations)[145]M =
typed function start_bitp () returns bit;
typed function stop.bitp () returns bit;
typed function is_emptyp (buff : buffer) returns bool;
typed function emptyp () returns buffer;

90

typed function tackp (b : bit, buff : buffer) returns buffer;

typed function first_eventp (buff : buffer) returns bit;

typed function but.firstp (buff : buffer) returns buffer;

typed function appendp (buffi,buff2 : buffer) returns buffer;

typed function lengthp (buff : buffer) returns int;

This macro is invoked in definition 197.

(Buffer operation abbreviations) [146]M =
nilfix startbitp start_bitp;
nilfix stopbitp stop_bitp;
delim ",";
delim ">.'";
plist "'.<" , >.' tackp emptyp;
prefix nullp is_emptyp 18;
infixr •"]-"' tackp 24;
prefix headp first_eventp 20;
prefix tailp but.firstp 22;
infix •"-"• appendp 22;
prefix lenp lengthp 16;
infix "'='" bit.equal 16;

This macro is invoked in definition 197.

The above definitions allow us to define the following special macros.

(IVace of single startbit)[147]M =
'.<startbitp>.'

This macro is invoked in definition 56.

(b is startbit)[148]M =
b '=' startbitp

This macro is invoked in definition 56.

(b is stopbit)[149]M =
b '=' stopbitp

This macro is invoked in definition 62.

(Empty buffer)[150]M =

This macro is invoked in definition 86.

(buff is empty)[151]M =
nullp buff

This macro is invoked in definition 87.

(tail of buff')[152]M =
tailp buff

This macro is invoked in definitions 87 and 88.

(tail of cAr)[153]M =
tailp chr

This macro is invoked in definitions 62 and 179.

91

(Append b onto end of cnr)[154]M =
chr '-' *..'

This macro is invoked in definition 58.

(Append delimited chr onto end of buff)[155]M =
buff '** (startbitp ']-' (chr '"' '.<stopbitp>.'))

This macro is invoked in definitions 87 and 88.

(len of buff)[156]M =
(lenp buff)

This macro is invoked in definition 87.

(Jen of chr) [157]M =
(lenp chr)

This macro is invoked in definition 58.

As mentioned there is a one to one correspondence between the operations on buffers and the
operations on traces of bits. This correspondence is specified as a sequence of rules that are assumed
without proof. These rules are the natural ones expected.

(Buffer operation properties)[158]M =
rule startbitp_is_startbit () =

begin
cnv_bit(startbitp) = startbit

end startbitp_is_startbit;

rule stopbitp_is_stopbit () =
begin

cnv_bit(stopbitp) = stopbit
end stopbitp_is_stopbit;

rule emptyp_is_empty () =
begin

'.<>.' = rebuff(.<>.)
end emptyp_is_empty;

rule nullp_is_null (buff) =
begin

typeof(buff) = buffer ()
-> (nullp buff) = null contents(buff)

end nullp_is_null;

rule tackp_is_tack (b.buff) =
begin

typeof(b) = bit ()
and typeof(buff) = buffer ()

-> (b ']-' buff)
= rebuff(cnv_bit(b)]- contents(buff))

end tackp_is_tack;

rule headp_is_head (buff) =
begin

92

typeof(buff) = buffer ()

and not null contents(buff)

-> cnv_bit (headp buff) = head (contents (buff))

end headp_is_head;

rule tailp_is_head (buff) =

begin
typeof(buff) = buffer ()

and not null contents(buff)
-> (tailp buff) = rebuff(tail contents(buff))

end tailp_is_head;

rule appendp_is_append (buff1,buff2) =

begin
typeof(buffi) = buffer ()

and typeof(buff2) = buffer ()
-> (buffi '"' buff2) = rebuff(contents(buffl) * contents(buff2))

end appendp_is_append;

rule lenp_is_len (buff) =

begin
typeof(buff) = buffer ()

-> (lenp buff) = len contents(buff)

end lenp_is_len;

This macro is invoked in definition 197.

93

Chapter 12

Base Machine Interface

The underlying machine on which we model CSP sequential processes keeps track of the status of
relevant communication channels and the values that have been transmitted over those channels.
This section describes an SVerdi library unit called mach that characterizes the interface to this

machine.

The state of a sequential process is characterized by a machine variable of type state. The only
way this variable can be accessed or modified is by the facilities provided by mach. The structure of
the state data type is hidden from any units using mach.

(State type) [159]M =
mach!state

This macro is invoked in definitions 55, 56, 57, 58, 62, 86, 87, and 88.

(Definition stub for state type)[160]M =
type state;

This macro is invoked in definitions 193 and 195.

{Event type) [161]M =
mach!event

This macro is invoked in definitions 55, 56, 57, 58, 62, 86, 87, and 88.

(Definition stub for event type)[162]M =
type event;

This macro is invoked in definitions 193 and 195.

For specification purposes, mach provides access to the current trace of each sequential process

given that process's current state.

(Trace) [163] (ol)M =
mach!hist(ol)

, j • j c ■»• E[« KK «« fil fiq fi<? 79 7? 72 72 76 76 76 86 86, 86, 90, 90, 96, 96, 99, 99, 99, This macro is invoked in definitions 55, 55, 55, 63, bd, bd, bd, u, it, it, <*, 10, ID, IO, ou, ™, ou, *u, , , , , . ,

99, 99, and 99.

(Function returning the current process trace)[164]M =
function hist (st);

94

grule history_is_trace (st) =

begin

istrace hist (st)

end history_is_trace;

This macro is invoked in definitions 193 and 195.

mach provides facilities to send bits over channels. As in the specification, channel identifiers
are simply represented as integers. The variable cntdwn, which serves as the measure for the loop,
represents an upper bound on the number of times the channel is to be polled before the communi-
cation is aborted. Note that the invariant for the loop of snd-bit is the same as the post-condition
for the polling routine, cntdwn must decrease each iteration and be bounded below by zero. The
bit is sent only if the variable sent is true and cntdwn is greater than zero; otherwise no change
to the trace is incurred. The primary difference between snd-bit and poll_snd_bit below is that
snd-bit guarantees that the bit is sent as long as cntdwn does not reach zero. poll_snd_bit polls
the channel to determine whether a bit may be sent and, if so, sends it.

(outbit ! head of buff)[165]M =
mach!snd_bit(st,outbit,headp buff,cntdwn)

This macro is invoked in definition 87.

(snd-bit specification)[166]M =
initial st_0=st,cntdwn_0=cntdwn

pre cntdwn > 0
post cntdwn < cntdwn_0

and cntdwn >= 0
and (if cntdwn>0 then

hist(st) = hist(st_0) " .<chn.bfr!cnv_bit(b)>.

else hist(st)=hist(st_0) end if)

This macro is invoked in definitions 167 and 193.

(Definition of snd.bit)[167]M =
procedure snd_bit (mvar st : state,

lvar chn : int,
lvar b : (Bit type)[139],
pvar cntdwn : int) =

(snd-bit specification) [166]
begin

pvar sent : bool := false
poll_snd_bit(st,chn,b,sent,cntdwn)
loop

invariant cntdwn < cntdwn_0
and cntdwn >= 0
and if sent and cntdwn>0

then hist(st) = hist(st.O) " .<chn.bfr!cnv_bit(b)>.
else hist(st)=hist(st_0) end if

measure cntdwn
exit when sent or cntdwn=0
poll_snd_bit(st,chn,b,sent,cntdwn)

end loop
end snd_bit;

This macro is invoked in definition 195.

95

(Poll outbit to send ßrst of buff)[168]M =
mach!poll_snd_bit(st,outbit,headp buff,sent,cntdwn)

This macro is invoked in definition 88.

(Definition of pollsnd.bit)[m]M =
procedure poll_snd_bit (mvar st : state,

lvar chn : int,
lvar b : {Bit type)[139],
pvar sent : bool,
pvar cntdwn : int) =

initial st_0=st,cntdwn_0=cntdwn
pre cntdwn > 0
post cntdwn < cntdwn_0

and cntdwn >= 0
and if sent and cntdwn > 0

then hist(st) = hist(st_0) " .<chn.bfr!cnv_bit(b)>.
else hist(st)=hist(st_0) end if;

This macro is invoked in definitions 193 and 195.

mach also provides facilities to receive bits. This specification is very similar in structure to
that of snd_bit above. The primary difference is that rcv_bit and poll_rcv_bit guarantee that
the object received is in fact a bit.

(inbit ? b)[170]M =
mach!rcv_bit(st,inbit,b,cntdwn)

This macro is invoked in definitions 56, 58, and 62.

(rcv.bit specification)[171]M =
initial st_0=st,cntdwn_0=cntdwn

pre cntdwn > 0

post cntdwn < cntdwn_0

and cntdwn >= 0

and (if cntdwn > 0
then hist(st) = hist(st_0) * .<chn.bfr!cnv_bit(b)>.

else hist(st)=hist(st_0) end if)

This macro is invoked in definitions 172 and 193.

(Definition of rcv.bit) [172]M =
procedure rcv_bit (mvar st : state,

lvar chn : int,
pvar b : (Bit type) [139],
pvar cntdwn : int) =

(rcv.bit specification) [171]
begin

pvar rcvd : bool := false
poll_rcv_bit(st,chn,b,rcvd,cntdwn)
loop

invariant cntdwn < cntdwn_0

and cntdwn >= 0
and if rcvd and cntdwn > 0

then hist(st) = hist(st_0)
* .<chn.bfr!cnv_bit(b)>.

96

else hist(st)=hist(st_0) end if

measure cntdwn

exit when rcvd or cntdwn=0

poll_rcv_bit(st,chn,b,rcvd,cntdwn)

end loop

end rcv_bit;

This macro is invoked in definition 195.

(Definition of poiLrcv.bit) [173]M =
procedure poll_rcv_bit (mvar st : state,

lvar chn : int,
pvar b : {Bit type) [139],
pvar rcvd : bool,
pvar cntdwn : int) =

initial st_0=st,cntdwn_0=cntdwn
pre cntdwn>0
post cntdwn < cntdwn_0

and cntdwn >= 0
and if rcvd and cntdwn > 0

then hist(st) = hist(st.O) " .<chn.bfr!cnv_bit(b)>.
else hist(st)=hist(st_0) end if;

This macro is invoked in definitions 193 and 195.

mach provides facilities to send and receive characters very similar to those provided to send
and receive bits. The primary difference is that, on reception, the character size chsz is passed and
the predicate cseqüs-char is guaranteed to hold for the character received.

{mid ? chr)[174]M =
mach!rcv_char(st,mid,chr,chsz,cntdwn)

This macro is invoked in definition 87.

{rcv_char specification)[175]M =
initial st_0=st,cntdwn_0=cntdwn

pre cntdwn > 0
post cntdwn < cntdwn_0

and cntdwn >= 0
and (if cntdwn > 0

then cseq!is_char((Contents)[143]('chr'),chsz)

and hist(st) = hist(st_0) " .<chn.(Contents)[143]('chr')>.

else hist(st)=hist(st_0) end if)

This macro is invoked in definitions 176 and 193.

{Definition of rcv.char)[176]M =
procedure rcv_char (mvar st : state,

lvar chn : int,
pvar chr : (Buffer type) [137],
lvar chsz : int,
pvar cntdwn : int) =

(rcv.char specification) [175]
begin

pvar rcvd : bool := false
poll_rcv_char(st,chn,chr,chsz,rcvd,cntdwn)

97

loop
invariant cntdwn < cntdwn_0

and cntdwn >= 0
and if rcvd and cntdwn > 0

then cseq!is_char((Contents)[143]('chr'),chsz)

and hist(st) = hist(st_0)
- .<chn.(Contents)[143]('chr')>.

else hist(st)=hist(st_0) end if

measure cntdwn
exit when rcvd or cntdwn=0
poll_rcv_char(st,chn,chr,chsz,rcvd,cntdwn)

end loop

end rcv_char;

This macro is invoked in definition 195.

(Poll mid to receive chr)[177]M =
mach!poll_rcv_char(st,mid,chr,chsz,rcvd,cntdwn)

This macro is invoked in definitions 88 and 88.

(Definition of polUcv.char)[l78]M =
procedure poll_rcv_char (mvar st : state,

lvar chn : int,
pvar chr : (Buffer type) [137],
lvar chsz : int,
pvar rcvd : bool,

pvar cntdwn : int) =
initial st_0=st,cntdwn_0=cntdwn
pre cntdwn>0
post cntdwn < cntdwn_0

and cntdwn >= 0
and if rcvd and cntdwn > 0

then cseq!is_char((Conteflts)[143]('chr'),chsz)

and hist(st) = hist(st_0) " .<chn.(Contents)[143]('chr')>.

else hist(st)=hist(st_0) end if;

This macro is invoked in definitions 193 and 195.

(mid! tail of chr) [179]M =
mach! snd_char (st, mid, (tail of chr) [153], cntdwn)

This macro is invoked in definition 62.

(snd-char specification)[180]M =
initial st_0=st,cntdwn_0=cntdwn
pre cntdwn > 0
post cntdwn < cntdwn_0

and cntdwn >= 0
and (if cntdwn>0 then

hist(st) = hist(st_0) " .<chn.(Contents)[143]('chr')>.
else hist(st)=hist(st_0) end if)

This macro is invoked in definitions 181 and 193.

(Definition of snd.char)[181]M =

98

procedure snd_char (mvar st : state,
lvar chn : int,
lvar chr : {Buffer type) [137],
pvar cntdwn : int) =

(snd.char specification)[180]
begin

pvar sent : bool := false
poll_snd_char(st,chn,chr,sent,cntdwn)
loop

invariant cntdwn < cntdwn_0
and cntdwn >= 0
and if sent and cntdwn>0

then hist(st) = hist(st_0) ' .<chn.(Contents)[143]('chr')>.
else hist(st)=hist(st_0) end if

measure cntdwn
exit when sent or cntdwn=0
poll_snd_char(st,chn,chr,sent,cntdwn)

end loop
end snd.char;

This macro is invoked in definition 195.

(Definition of polljsnd-char)[l82]M =
procedure poll_snd_char (mvar st : state,

lvar chn : int,
lvar chr : (Buffer type) [137],
pvar sent : bool,
pvar cntdwn : int) =

initial st_0=st,cntdwn_0=cntdwn
pre cntdwn > 0
post cntdwn < cntdwn_0

and cntdwn >= 0
and if sent and cntdwn > 0

then hist(st) = hist(st.O) * .<chn.(Contents)[143]('chr')>.
else hist(st)=hist(st_0) end if;

This macro is invoked in definitions 193 and 195.

99

Chapter 13

Relevant Library Units

13.1 EVES Library

The library distributed with EVES includes the following units that we have used in the repeater
refinement. The EVES library is documented fully in [27].

fn — a theory of first-class functions

nat — a theory of the Natural numbers

pair — a theory of ordered pairs and cross products

rel — a theory of binary relations

setrules — axioms about the primitive functions on sets

13.2 CSP Library

The library containing the extensions to EVES to allow specification and verification of CSP pro-
cesses using the Traces Refinement model contains the following units. This library is documented

fully in [19].

nset — a theory of finite sets containing up to five elements

tr — a theory of traces (or sequences) of some object

pr — a theory of a subset of the CSP processes

fpt — a theory of parameterized recursive processes

reqs — a theory of CSP alphabets and trace specifications

100

13.3 Repeater Application Modules

This section outlines the library units containing the repeater specification, implementation and
proof. Because of their size, these units are not included in their entirety in this document. Instead,
we selected certain functions and rules from each theory to elaborate. FunnelWeb helps us maintain
consistency between the functions and rules as they are defined in this document and in the external
unit. These units are specified fully in [20].

If the reader encounters a FunnelWeb macro definition whose definition invocation number is
higher than any FunnelWeb macro presented in this document (e.g., the reader sees "This macro is
invoked in definition 203.", and the highest macro definition number presented here is 191), then that
macro definition is invoked in an external unit. The names of the files containing these macros are
listed below in the context of aFunnelWeb additive macro. Files ending with "s" contain specification
units; files ending with "m" contain model units.

bfr — a buffer data type

(List of external fiies)[183]Z + =
(bfrs) [197]

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.
This macro is NEVER invoked.

mach — an interface to the base machine

(List of external fiies)[184]Z + =
(machs)[193]
(machm)[195\

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.
This macro is NEVER invoked.

cseq — a theory for reasoning about sequences of bits as sequences of characters

(List of external fiies)[185]Z + =
(cseqs) [199]
(cseqm) [201]

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.
This macro is NEVER invoked.

defs — the definition of the alphabet relevant to the repeater description and some rules for rea-
soning about the alphabet

(List of external flies) [186] Z + =
(defss) [203]
(defsm) [205]

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.
This macro is NEVER invoked.

rep — the specification and implementation of the repeater in terms of its two components, Get
and Put

(List of external fiJes)[187]Z + =
(reps) [219]
(repm) [221]

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.
This macro is NEVER invoked.

101

get — the specification and implementation of the repeater's Get component

(List of external files) [188]Z + =
(gets) [207]
(getm)[209]

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.

This macro is NEVER invoked.

put — the specification and implementation of the repeater's Put component

(List of external files) [189]Z + =
(puts) [211]
(putm)[213]

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.

This macro is NEVER invoked.

rptr.fdr — The FDR physical design of Rptr.

(List of external fiies)[190]Z + =
(fdr) [215]

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.
This macro is NEVER invoked.

rptr.ml — Supporting ML definitions for the FDR physical design of Rptr.

(List of external fiJes)[191]Z + =
<mJ)[217]

This macro is defined in definitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.

This macro is NEVER invoked.

102

Bibliography

[1] R. Auletta. Rapid-prototyping of high assurance systems. Technical report, George Mason
University, Fairfax, Virginia, January 1993.

[2] A. Camilleri. A higher order logic mechanization of the CSP failure divergence semantics. In
G. Birtwistle, editor, Workshops in Computing, pages 123-150. Springer-Verlag, September

1990.

[3] R. Cleaveland, J. Parrow, and B. Steffen. A semantics-based verification tool for finite-state sys-
tems. In Protocol Specification, Testing, and Verification. Elsevier Science Publishing Company
B.V. (North-Holland), 1990.

[4] D. Craigen. Reference manual for the language verdi. Technical Report TR-91-5429-09a, ORA
Canada, Ottawa, Ontario, September 1991.

[5] D. Craigen, S. Kromodimoeljo, I. Meiseis, B. Pase, and M.Saaltink. Reference manual for the
language verdi. Technical Report TR-91-5429-09a, ORA Canada, Ottawa, Ontario, September

1991.

[6] Formal Systems (Europe) Ltd. Failures Divergence Refinement: User Manual and Tutorial,

January 1994.

[7] A. Fraenkel. Abstract Set Theory. North Holland, 1968.

[8] D. Good, R. Akers, and L. Smith. Report on gypsy 2.05. Technical Report 1-b, Computational
Logic, Incorporated, Austin, Texas, January 1989.

[9] C. A. R. Hoare and J. C. Shepherdson, editors. Mathematical Logic and Programming Lan-

guages. Prentice-Hall, 1985.

[10] Donald E. Knuth. The web system of structured documentation. Stanford Computer Science
Report CS980, Stanford University, Stanford, CA, September 1983.

[11] Donald E. Knuth. Literate programming. The Computer Journal, 27(2), May 1984.

[12] S. Kromodimoeljo and B. Pase. Development of a skeletal CSP theory in EVES. Technical
Report TR-92-5469-02, ORA Canada, Ottawa, Ontario, July 1992.

[13] S. Kromodimoeljo, B. Pase, M.Saaltink, D. Craigen, and I. Meisels. EVES: An overview.
Technical report, ORA Canada, Ottawa, Ontario, February 1993.

[14] C. Landwehr and J. Carroll. Hardware requirements for secure computer systems: A framework.
In Symposium on Security and Privacy. IEEE, 1984.

[15] Carl E. Landwehr. The RS-232 software repeater problem. Cipher Newsletter of the Technical
Committee on Security and Privacy, Summer 1989.

103

[16] I. Meisels. An alternative syntax for verdi. Technical Report TR-94-5478-02, ORA Canada,

Ottawa, Ontario, March 1994.

17] R. Milner. Communication and Concurrency. Prentice Hall International (UK) Ltd, 1989.

18] R. Milner. The Definition of Standard ML. The MIT Press, Cambridge, Massachusetts, 1990.

19] A. Moore. The EVES CSP library. Technical Report NRL Technical Memorandum 5540-
153:apm, Naval Research Laboratory, Washington, D.C., August 1994.

20] A. Moore. The RS-232 character repeater specification listing. Technical Report NRL Technical
Memorandum 5540-035:apm, Naval Research Laboratory, Washington, D.C., August 1994.

'21] Andrew P. Moore. The specification and verified decomposition of system requirements using
CSP. IEEE Transactions on Software Engineering, 16(9):932-948, September 1990.

22] E.R. Olderog and C.A.R. Hoare. Specification oriented semantics for communicating sequential

processes. Ada Inform., 23:9-66, 1986.

23] S Owre J. Rushby, and N. Shankar. PVS: A prototype verification system. In Six Papers on
Formal Verification. SRI International, Menlo Park, California 94025-3493, May 1992.

[24] B. Pase and S. Kromodimoeljo. A user's guide to a skeletal CSP theory in EVES. Technical
Report TR-92-5469-03, ORA Canada, Ottawa, Ontario, July 1992.

25] Charles N. Payne, Jr., Andrew P. Moore, and David M. Mihelcic. An experience modeling
critical requirements. In Proc. COMPASS 94, Gaithersburg, MD, June 1994. IEEE.

'26] A. Roscoe. Model-checking CSP. In A Classical Mind, Essays in Honour of CAR Hoare.

Prentice-Hall International, 1994.

27] M. Saaltink. The EVES library. Technical Report TR-91-5449-03, ORA Canada, Ottawa,

Ontario, August 1991.

'28] E. Wayne Sewell. Weaving a Program: Literate Programming in WEB. Van Nostrand Reinhold,
New York, NY USA, 1989. ISBN 0-442-31946-0.

'29] P van Eijk, C. Vissers, and M. Diaz, editors. The Formal Description Technique LOTOS.
Elsevier Science Publishing Company B.V. (North Holland), Amsterdam, The Netherlands,

1989.

30] Ross Williams. FunnelWeb user's manual. Technical report, University of Adelaide, Adelaide,
South Australia, Australia, May 1992. Available via anonymous ftp to ftp. adelaide. edu. au

in /pub/funnelweb.

31] William D. Young. Verifiable computer security and hardware: Issues. Technical Report 70,
Computational Logic, Inc., Austin, TX, September 1991.

104

Appendix A

CSP Notation Overview

This appendix summarizes the notation that we use to write CSP specifications and process descrip-
tions. This notation subsumes relevant notation provided by SVerdi in [16], by CSP in [9], and by
FDR in [6]. The degree to which we could maintain compatibility was limited by the constraints on
user-extensible syntax of SVerdi. Appendix B describes the variations on this notation required by
the constraints of the mechanical tools.

In addition to briefly describing the meaning of the fundamental operators, information im-
portant for parsing CSP is presented in a tabular format. For each operator presented, its type,
relative precedence, and full SVerdi function name, if any, is indicated. The type indicates whether
the operator is

nilfix — a constant, e.g., true;

prefix — a unary operator occurring before its parameter, e.g., -1;

infix — a binary operator occurring between two parameters, e.g., 1+2;

postfix — a unary operator occurring after its parameter, e.g., 5!;

list — an n-ary operator representing a list, e.g., a pair represented in Verdi as
pair!pair(a,b) is represented as -<a, &>-;

plist — an n-ary operator representing a paired list, e.g., a set represented in Verdi as
(setadd a (setadd 6 (setadd c (nullset)))) is represented as {a,b,c} and corresponds
to the Verdi functions setadd and nullset; and

multifix — a more flexible n-ary operator that allows internal operator symbols to vary,
e.g., the concurrent process denoted P [I X |] Q. l

The precedence of each operator is given on a scale of 0 to 24 where the higher numbers indicate
higher precedence. Finally, the full function name, when written in prefix form, is provided so that
the properties that the SVerdi operator inherits from Verdi, if any, are apparent from the Verdi
Language Definition [4]. The function name is also needed when performing the invoke prover
command, so that the parser can easily resolve which (potentially overloaded) operator should be
expanded.

A.l Logical Notation

'This type of operator is not supported in SVerdi.

105

Operator Type Verdi name Precedence

not prefix not 14

and infix and 14

or infix or 12

-> infix implies 8

true nilfix true —

false nilfix false —

some prefix some —

all prefix all —

Table A.l: Logical Notation Operators

Notation

not p

p and q

p or q

p-> q

true

false

some x : p(x)

all x : p(x)

Meaning

-ip (see Appendix B for variations)

p A q (see Appendix B for variations)

p V q (see Appendix B for variations)

p implies q

truth

falsity

there exists an x such that p(x)

for every x, p(x)

A.2 Integer Function Notation

Keyword Type Verdi name Precedence
- prefix - 24
* infix * 20

mod infix mod 20

div infix div 20
+ infix + 18
- infix - 18
< infix < 16
<= infix <= 16
> infix > 16
>= infix >= 16

Table A.2: Integer Function Notation Operators

Notation Meaning

the negation of i

106

*J

mod j

div j

+ j

- j

<j

<=j

>j

i >= j

the multiplication of i and j

i integer modulus j\ j not equal 0

the integer division of i by j with roundoff towards 0; j not equal 0

the addition of i and j

the subtraction of j from i

i is less than j

i is less than or equal to j

i is greater than j

i is greater than or equal to j

A.3 Ordered Pair Notation

Keyword Type Verdi name Precedence

lit
rgt
ispair
><

-<, >"

prefix
prefix
prefix
infix
list

pair list
pair!snd
pair!is-pair
pair!cross
pair!pair

20
20
18
16

Table A.3: Ordered Pair Notation Operators

Notation

lltp

rgtp

ispair p

51 >< 52

-<e,f>-

Meaning

the left element of the pair p

the right element of the pair p

p is an ordered pair

the set of pairs formed by pairing elements from set 51 with elements from

52

the pair with left element e and right element /

A.4 Set Notation

Notation

unit a

AA Sl

++S

Meaning

the singleton set containing a

the power set of 51, i.e., the set of all subsets of 51

the union of all sets in 5

107

Keyword Type Verdi name Precedence

unit prefix unit 24
AA prefix powerset 24
++ prefix cup 24

adj infix setadd 18
« infix subset 18
++ infix union 18
** infix inter 18
— infix diff 18

II infix prlsetjdiv 18

in infix in 16

-{.}- list nset!two-set —

{,} plist setadd, nullset —

Table A.4: Set Notation Operators

a adj 5

51 « 52

51 ++ 52

51 ** 52

51 — 52

51 // 52

a in 5

-{«./}-

{yin/(x) I P(x,y]

{g(x,y,z) I y,z in f(x)}

e I P(e)

a added to set 5

51 is a subset of 52

the union of 51 and 52

the intersection of sets 51 and 52

the elements in 51 not in 52

the set of elements in 51 or 52 but not in both

a in set 5

the set containing e and / that is restricted to exactly two elements,
i.e., no other set operators operate on these restricted sets - this
construct is used to ease the proof process

the set of all values y in f(x) such that P(x, y)

the set of all values g(x, y, x) such that y, z is in f(x)

choose an element e such that P(e), if one exists

A.5 Higher-Order Function Notation

Keyword Type Verdi name Precedence
<- infix fnlapply 20
dom prefix relldom 20
ran prefix rellran 20

Table A.5: Higher-Order Function Notation Operators

Notation Meaning

108

/ <- X

dorn /

ran /

function / evaluated at x

the domain of function /

the range of function /

A.6 Trace Notation

Keyword Type Verdi name Precedence

]- infix trStack 24

iscomm prefix pr!is_comm 24

chan prefix pr!channel 24

msg prefix pr!message 24

tail prefix tr!tl 22

nlast prefix trlbut.last 22
A infix tr!append 22

lA infix tr!restrict 22
1 AA infix pr!set-restrict 22

1 = infix prlvals 22

head prefix tr!hd 20

last prefix trllastjevent 20
A* postfix tr!trace .of 20
A*? infix trlis-trace^of 20
istrace prefix tr! is-trace 18
null prefix tr!is_empty 18

-c infix tr!occurs 18

.<=. infix tr!subseq 18

len prefix tr!length 16

.<, >. plist tritack, tr!empty —

Table A.6: Trace Notation Operators

Notation

el-t

iscomm e

chan c

msg c

tail*

nlast t

t\ M2

t * A

TS |AA A

Meaning

e tacked onto the front of t

e is a communication event

the channel associated with communication event c

the message associated with communication event c

all but the first element of trace t (see Appendix B for variations)

all but the last element of trace t

(between traces) t\ followed by 12 (see Appendix B for variations)

trace t with elements not in set A removed

the set of traces in TS, each restricted to events in A

109

t \=c

head t

last t

A**

t A*? A

istrace t

null*

e-lt

tl .<=.12

len t

.<el,e2,...,en>.

sequence of values sent over channel C in trace t

the first element of trace t (see Appendix B for variations)

the last element of trace t

the set of all traces of events in a (Kleene star)

t in A"*

t is a trace

t is either not a trace or is empty

e in trace t

t\ is a prefix of <2

the length of t

the trace with event el through en in sequence (see Appendix B for varia-

tions)

A.7 Process Notation

Keyword Type Verdi name Precedence

STOP nilfix None 24

SKIP nilfix None 24

e->P infix None 24

C?x -> P(x) multifix None 24

C\v-> P multifix None 24

[] x:B<t>P(x) multifix None 24

e->PÜ f->Q — None —

P;Q multifix None 24

X = P(X) multifix None 24

P [1 X |] Q multifix None 24

PWQ infix pr!parallel(P,Q) 24

P \ A infix None 24

P l?l Q~ c multifix pr!compose(P,Q,c) 24

traces prefix pr!process-traces 20

{\cl,c2,...,cn\} list —
alpha prefix pr!process-alphabet 20

isprocess prefix pr!is_process 20

sat infix reqs!satpr 20

Table A.7: Process Notation Operators

Notation

STOP

Meaning

do nothing but terminate unsuccessfully with alphabet A

110

SKIP do nothing but terminate successfully with alphabet A and
termination event c

e -> p event e then process P

C.x -> P(x) from channel C input value in variable x and then act like P
evaluated at x

C\v -> P on channel C output value v and then act like P

[] x:B « P(x) from B choose x engage in x then process F evaluated at x

e-> P [] / ->Q for e not equal to /, an abbreviation for [] x : {e, /} -> F(x)
where F(e) = P and F(f) = Q

p ■ Q P and, if terminated by c, followed by Q

X = P{X) process PROC such that PROC = F(PROC) and aPROC = A

P CI X I] Q P composed in parallel with Q synchronizing on events in set
X.

p | | Q P in parallel with Q synchronizing on events in common to
both alpha P and alpha Q

p \ A Process P while hiding the events in set A from external view.
Internal transitions occur without synchronization.

P I ? I Q ~ c P parallel with Q with termination event c, hiding internal
events

traces P the traces of process P

{|cl,c2, ...,cn\} the set of communication events possible with channels c\
through en as defined by the channel declarations

alpha P the alphabet of process P

isprocess P P is a CSP process

p sat S process P satisfies specification S

111

A.8 Miscellaneous Notation

Keyword
mless
typeof

Type Verdi name Precedence
infix m< 16
prefix typeof 16
infix = 16

nat nilfix nat! nat
if b then el else e2 endif infix (if b el e2)

Notation

imless j

typeof e

el =e2

nat

Table A.8: Miscellaneous Notation Operators

Meaning

true if 0 <=i <=j

the set of values corresponding to the type of e

equality between expressions el and e2 (see Appendix B for variations)

the set of Natural numbers

if b then el else e2 endif expression el if b otherwise expression e2

112

Appendix B

Notational Variations

EVES Syntax FDR Syntax ML Syntax
p and q
p or q
el = e2

p and g
p or q
el == e2

p andalso 9
p orelse «7
el =e2

not (el = e2)
sl A s2

el !=e2
sl A s2 sl @s2

head s head s hds
tail s tail s tl s
len s
.<vl, v2, ...,vn>.
if b then el eise e2 endif

#s
< vl,v2, ...,vn >
if b then el eise e2

[ul,i>2, ...,vn]
if 6 then el else e2

113

Appendix C

Notational Comparison with
Hoare's CSP

Our Hoare's Primary
CSP Syntax CSP Syntax Difference(s)
STOP STOPA Syntax of STOP

SKIP SKIPA Syntax of SKIP
e->P e-+P Syntax of prefix operator

C?x -> P(x) Clx -+ P(x) Syntax of prefix operator

C\v->P C\v-*P Syntax of prefix operator

[] x:B$P(x) x:B^ P(x) Syntax of choice operation
Syntax of prefix operator

e->Püf~>Q e-P|/-Q Syntax of choice operator
Syntax of prefix operator

P ;Q P ;Q None

X = P(X) X = P{X) None

P [1 X |] Q None -
P \ A P \ A None

P II Q PWQ None

P l?l Q~ c P\\Q\ P**Q Syntax of internal event hiding

114

115

Index

-{,}-, 107 m<, 111
++, 107
A 108

A subsequence of characters were transmitted
P ^»q over outbit, 41, 42
.,'. lfig A subsequence of even parity characters were

x, 106

111

107

transmitted over mid, 38, 39
' 1f)7 A subsequence of valid characters were trans-

, ' 1f)R mitted over outbit, 29, 31
Accept the last bit and continue, 78

' 107 Accept the next bit and continue, 78
|A' ,no Additional channels of the Rptr physical de-
I , 1UB .
->, 105, 109 slSn' 77

A*7 108 adJ' 107

-[108 all, 105
, 'mo All characters were transmitted over outbit,

41,42
?, 109
** 107
A+' 10g All even parity characters were transmitted

' in* over mid, 38, 39
<' i no All valid characters were transmitted over out-

-, 105 bit' 29

,' 109 alpha, 109
I 'i i QQ Alphabet, 27

+ 105 and' 105

AA 1f)_ Append b onto end of chr, 50, 92

>-,'l06
>-'108 b is startbit, 49, 91
K<> 1?7 b is stopbit, 51, 91

Append delimited chr onto end of buff, 63, 92

bfrs, 101
('' 107 Bit type, 49-51, 89, 95-97
\< 109 Bits to chars, 29-31, 39, 42, 85

buff is empty, 62, 91
Buffer operation abbreviations, 91

.. 109

.<=., 108

■'"' Buffer operation properties, 92
*^05 Buffer operations, 90

1 ' 108 Buffer type, 49-51, 62, 63, 89, 97-99
i'J' Buffer-Trace conversions, 90
:, 109
=,1H chan, 108
<=, 105 Channels, 27
<, 105 Character sequence received over inbit, 39
>=, 105 Character sequence transmitted over outbit,
>, 105 29, 31

116

Characters received over inbit before overflow,
30

Constraints on Rptr's trace, 28
Contents, 56, 58, 65, 67, 68, 90, 97-99
cseqm, 101
cseqs, 101
cup, 107

Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit:
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit
Definit:
Definit
Definit
Definit:

on for equality of bits, 89
on of char.head, 87
on of char-seq, 85
on of char-set, 84
on of char .tail, 88
on of current.char, 86
on of even, 88
on of even_parity_chars, 88
on of flatten, 86
on of Get_not_over_capacity, 38
on of has_char, 87
on of InOutchar.pre, 55
on of invariant_over_buffer, 66
on of invariant_over_char, 57
on of is.char, 87
on of is_char_seq, 85
on of no_error_condition, 30
on of no_over_flow, 30
on of odd-parity, 51
on of odd-parity .check, 50
on of Outchar.pre, 58
on of poll_rcv_bit, 97
on of poll_rcv_char, 98
on of poll-snd_bit, 96
on of poll-snd_char, 99
on of prty_xor, 78
on of Put_not_over_capacity, 41
on of Rev, 77
on of rev .bit, 96
on of rcv.char, 97
on of Rptr, 43
on of Rptr universe of events, 36
on of snd.bit, 95
on of snd.char, 98
on of Stop_bit, 78
on of Str, 78
on of sum, 88
on of Tx, 78
on of valid.char.Get, 38
on of valid_char_Put, 41
on of valid_Get-step, 53
on of valid Jnchar, 57
on of validJnput.chars, 29

Definition of valid.Outchar, 58
Definition of valid_Put_step, 65
Definition stub for bit type, 89
Definition stub for buffer type, 89
Definition stub for cnv.bit, 89
Definition stub for event type, 94
Definition stub for state type, 94
Definition Stub of Get, 35
Definition Stub of Put, 39
Definition Stub of Rptr, 26
Definitions of startbit/stopbit, 84
defsm, 101
defss, 101
diff, 107
div, 105
dorn, 107

else, 111
Empty buffer, 62, 91
endif, 111
Event type, 49-51, 62, 63, 94

false, 105
fdr, 102
FDR definition of inchar, 73
FDR Get specification, 73
FDR Put specification, 74
FDR Rptr specification, 73
fn

apply, 107
Function returning the current process trace,

94

Get alphabet, 37
Get Concurrent Restriction Condition, 46
Get design, 48
Get is a sequential CSP process, 36
Get lemma #1, 54
Get lemma #2, 54
Get lemma #3, 54
Get satisfies valid-Get, 37
Get terminates, 38
Get's alphabet is defined by Get_alpha, 37
Get's definition of xor, 51
Getjstep design, 49
Get-step lemma #1, 56
Get_step lemma #2, 56
Get-step specification, 49, 53
getm, 102
gets, 102

head, 108

117

if, 111
implies, 105
in, 107
inbit ? b, 49-51, 96
Inchar design, 50
Inchar lemma #1, 60
Inchar lemma #2, 60
Inchar lemma #3, 60
Inchar prefix invariant, 57
Inchar specification, 50, 56
InOutchar design, 49
InOutchar lemma #1, 59
InOutchar lemma #2, 59
InOutchar lemma #3, 59
InOutchar lemma #4, 59
InOutchar specification, 50, 54
inter, 107
iscomm, 108
ispair, 106
isprocess, 109
istrace, 108

len, 108
lenofbuff, 63, 92
len of chr, 50, 92
lft, 106
List of external files, 101, 102

machm, 101
machs, 101
mid

tail of chr, 51, 98
mid ? chr, 62, 97
mid allows only chars, 53, 55, 57, 66, 85
mid channel, 36
mid chars to bits, 66, 85
ml, 102
ML definition of cnv.to.char, 75
ML definition of cnv_to_int, 74
ML definition of odd-parity, 74
mless, 111
mod, 105
msg, 108

nat, 111
nat

nat, 111
nlast, 108
not, 105
nset

two-set, 107
null, 108

nullset, 107

Only whole characters were transmitted over
outbit, 29, 31

or, 105
outbit

head of buff, 63, 95
Outchar design, 51
Outchar specification, 51, 58

pair
cross, 106
fst, 106
is-pair, 106
pair, 106
snd, 106

Partial char over inbit, 53, 57, 85
Poll mid to receive chr, 63, 98
Poll outbit to send first of buff, 63, 96
poll_mid^and-outbit design, 63
poll_mid-and-outbit loop specification, 63, 68
poll_mid-and_outbit specification, 63, 67
powerset, 107
pr

channel, 108
compose, 109
is-comm, 108
is.process, 109
message, 108
parallel, 109
process-alphabet, 109
process-traces, 109
set.div, 107
set-restrict, 108
vals, 108

Put alphabet, 40
Put Concurrent Restriction Condition, 46
Put design, 62
Put is a sequential CSP process, 39
Put lemma #1, 66
Put lemma #2, 66
Put lemma #3, 66
Put satisfies valid-Put, 40
Put terminates, 41
Put's alphabet is defined by Put_alpha, 40
Put's definition of xor, 63
Put-step design, 62
Put-step specification, 62, 65
putm, 102
puts, 102

ran, 107

118

rcv.bit specification, 96
rcv.char specification, 97
rel

dorn, 107
ran, 107

repm, 101
reps, 101
reqs

satpr, 109
rgt, 106
Rptr Compose Restriction Condition, 45
Rptr Conjunction Condition, 46
Rptr is a CSP process, 26
Rptr physical architecture, 77
Rptr satisfies valid-relay, 28
Rptr specification channel declarations, 73
Rptr terminates, 29
Rptr universe of events, 28, 30, 36
Rptr's alphabet is defined by Rep_alpha_ext,

27

sat, 109
Sequence of even parity inbit chars over tr2,

30,38
Sequence of outbit chars over tr2, 30, 31
Set of even parity characters, 30, 31, 39, 88
setadd, 107
SKIP, 109
snd.bit specification, 95
snd.char specification, 98, 99
some, 105
State type, 49-51, 62, 63, 94
STOP, 109
subset, 107

tail, 108
tail of buff, 63, 91
tailofchr, 51, 91,98
then, 111
tr

append, 108
buUast, 108
empty, 108
hd,108
is.empty, 108
is_trace, 108
is.trace.of, 108
last.event, 108
length, 108
occurs, 108
restrict, 108

subseq, 108
tack, 108
tl, 108
trace.of, 108

Trace, 49, 53, 56, 58, 62, 65, 67, 68, 94
Trace before overflow, 30
Trace of single startbit, 49, 91
traces, 109
true, 105
type.of, 111
typeof, 111

union, 107
Unique channels, 27
Unique mid channel, 36
unit, 107

Valid character sequence received over inbit,
29,31

valid.Get, 37
valid-Put, 40
valid_Put-step lemma #1, 68
valid_Put-step lemma #2, 68
valid-relay, 28
Values transmitted over external channels, 73
Values transmitted over mid, 73

119

