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Abstract 
Causal reasoning comprises a large portion of the in- 
ference performed by automatic planners. In this pa- 
per, we consider a class of inference systems that are 
said to be predictive in that they derive certain causal 
consequences of a base set of premises correspond- 
ing to a set of events and constraints on their occur- 
rence. The inference system is provided with a set 
of rules, referred to as a causal theory, that specifies, 
with some limited accuracy, the cause and effect re- 
lationships between objects and processes in a given 
domain. As modifications are made to the base set 
of premises, the inference system is responsible for 
accounting for all and only those inferences licensed 
by the premises and current causal theory. Unfor- 
tunately, the general decision problem for nontrivial 
causal theories involving partially ordered events is 
NP-complete. As an alternative to a complete but po- 
tentially exponential-time inference procedure, we de- 
scribe a limited-inference polynomial-time algorithm 
capable of dealing with partially ordered events. This 
algorithm generates a useful subset of those inferences 
that will be true in all total orders consistent with 
some specified partial order. The algorithm is incre- 
mental and, while it is not complete, it is provably 
sound. 

I. Introduction 

We are concerned with the process of incrementally con- 

structing nonlinear plans (i.e., plans represented as sets of 

actions whose order is only partially specified). A signifi- 

cant part of this process involves some means for predicting 
the consequences of actions and using these consequences 

to verify whether or not a given partially constructed plan 
is likely to succeed. Of course, if by “likely to succeed” 

we mean that the choices made thus far in constructing 

the partial plan will not require further revision, then it is 
obvious that this verification step subsumes the entire pro- 

cess of planning. Usually, by “likely to succeed” we mean 
something like: given a partially ordered set of tasks and 
their intended effects, make sure that there is at least one 
total ordering consistent with the initial partial order such 
that all of the tasks have their intended effects. At first 

lThis work was supported in part by the National Science Foun- 
dation under grant IF&8612644 and by an IBM faculty development 
award. 

blush, determining whether a given partially constructed 

plan satisfies this criterion appears to be a significantly 
easier problem than the general planning problem. Unfor- 

tunately, if the language used to represent plans, tasks, and 

their effects is sufficiently expressive and we use asymp- 

totic complexity as our measure of difficulty, the problem 
faced by the temporal reasoning component is just as diffi- 

cult as the general planning problem. This shouldn’t sur- 

prise anyone, but neither should it discourage anyone from 

employing classical planning techniques. It does indicate, 

however, that we have some way to go in understanding 
the expressive and computational requirements for effec- 
tive temporal reasoning systems. 

A theory for reasoning about the effects of actions (or, 
more generally, the consequences of events) we refer to as a 

causal theory. We will describe a language for constructing 
causal theories that is capable of representing indirect ef- 
fects and actions whose effects depend upon the situation 

in which the actions occur. We will consider two algo- 
rithms for reasoning about such causal theories. These al- 

gorithms are polynomial-time, incremental, and insensitive 

to the order in which facts are added to or deleted from 

the data base. We show that one algorithm is complete 

for causal theories in which the events are totally ordered, 

but is potentially inconsistent in cases where the events 
are not totally ordered. The general problem of reason- 

ing about the effects of actions that are partially ordered 
and whose effects depend upon the situation in which the 

actions occur has been shown to be NP-hard [l]. As an 
alternative to a complete but potentially exponential-time 

decision procedure, we provide a partial decision procedure 
that is provably sound. What this means for a planner is 

that the procedure is guaranteed not to mislead the plan- 
ner into committing to a plan that is provably impossible 

given what is currently known. If the decision procedure 
answers yes, then the condition in question is guaranteed 
to hold in every totally ordered extension of the current 

partial order; if the decision procedure answers no, there 
is a chance that the condition holds in every total order, 
but to determine this with certainty might require an ex- 

ponential amount of time or space. 

II. Temporal Data Base Management 

A temporal data base management system (TDBMS) is used 
to keep track of what is known about the order, duration, 
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and time of occurrence of a set of events and their conse- 

quences. In the rest of this paper, we will be concerned 

with a particular type of TDBMS called a time map mun- 
agement system or TMM. [3]. In the TMM, the classical 
data base assertion is replaced by the notion of time token 

corresponding to a particular interval of time during which 
a general type of occurrence (a fact or event) is said to be 

true. For any given fact or event type, the data base (or 

time map) will typically include many tokens of that type. 

The user of the TMM can specify information concern- 

ing events that have been observed or are assumed in- 
evitable and information in the form of general rules that 

are believed to govern the physics of a particular domain. 
The user can also specify certain conditional beliefs. If the 

user explicitly states the conditions for believing in certain 

propositions, the TMM can ensure that those propositions 

(and their consequences) are present in the data base just 

in case the conditions are met. This is achieved through 
the use of data dependencies [7]. In the TMM, the primary 

forms of data dependency (in addition to those common in 

static situations) are concerned with some fact being true 

at a point in time or throughout an interval. In addition, 

there is a nonmonotonic form of temporal data dependency 

concerned with it being consistent to believe that a fact is 

not true at a point in time or during any part of an inter- 

val. These forms of temporal data dependency are handled 

in the TMM using the mechanism of temporal reason main- 
tenance [3]. Language constructs are supplied in the TMM 
that allow an application program to query the data base 
in order to establish certain antecedent conditions (includ- 

ing temporal conditions) and then, on the basis of these 
conditions, to assert consequent predictions. These predic- 

tions remain valid just in case the antecedent conditions 
continue to hold. 

Perhaps the most important and most often over- 
looked characteristic of a temporal reasoning system is its 

ability to handle incomplete information of the sort one in- 
variably encounters in realistic applications. For example, 
we seldom know the exact duration or time of occurrence 

of most events. Moreover, for those durations and offsets 

we do know, they are seldom with respect to a global frame 

of reference such as a clock or calendar. In the TMM, every 
point is a frame of reference, and it is possible to constrain 

the distance between any two points simply by specifying 

bounds, (low, high), on the distance in time separating the 

two points. By all owing bounds to be both numeric and 

symbolic, the same framework supports both qualitative 
and quantitative relationships. 

Another important aspect of reasoning with incom- 

plete information has to do with the default character of 
temporal inference. In general, it is difficult to predict in 

advance how long a fact made true will persist. It would 

be convenient to leave it up to the system to decide how 

long facts persist based upon the simple default rule [9] 
that a fact made true continues to be so until something 

serves to make it false. This is exactly what the TMM does. 

The term persistence is used to refer to an interval corre- 

sponding to a particular (type of) fact becoming true and 
remaining so for some length of time. A fact is determined 
to be true throughout an interval I just in case there is 

a persistence that begins before the beginning of I and it 
can’t be shown that the persistence ends before the end of 

I. Before we continue our discussion it will help to intro- 

duce some notation. 

Relations. Let II be the set of points corresponding to 

the begin and end of events in a particular temporal 
data base. We define a function DIST to denote the 

best known bounds on the distance in time separating 

two points. Given rr,7r2 E II such that DIST(~~, 7r2) = 

(low, high), we have: 

-4 57-2 ($ low 1 E2 

is ordered before 7r2) 
= - r2 H (low, high) = (0,O) 

is coincident with 7~) 

5 7r2 H (771 4 7r2) v (7rr = 7r2) 
precedes or is coincident with 7r2) 

+it4 7F2 * high 2 E 

possibly precedes 7r2 ) 

5M =2 * high 2 0 
possibly precedes or is coincident with 7r2) 

Tokens. We denote a set of time tokens T = {to, tl, . . . tn} 
for referring to intervals of time during which certain 
events occur or certain facts are known to become true 

and remain so for some period of time. The latter 

correspond to what we have been calling persistences. 

For a given token t: 

@ BEGIN(t), END(t) E II. 

STATUS(t) E {IN,OUT}, determined by whether 
the token is warranted (II) or not (OUT) by the 
current premises and causal theory. 

TYPE(t) = P where P is an atomic predicate cal- 

culus formula with no variables. 

(B DURATION(t) = DIST(BEGIN(t), END(t)) 

rkypes. As defined above, the type of an individual to- 
ken is an atomic formula with no variables (e.g., 

(on block14 table42)). In general, any atomic for- 

mula, including those containing variables, can be 

used to specify a type. In describing the user in- 
terface, universally quantified variables are notated 

?variable-name, the scope of the variable being the 

entire formula in which it is contained (e.g., (on ?x 

?y)). In describing the behavior of the inference sys- 

tem, we will use variables of the form t p to quantify 

over tokens of type P (i.e., vtp E T TYPE(tp) = P). 

As we will see in the next section, the TMM allows a 

user to specify rules (referred to collectively as a causal 

theory) for inferring additional consequences of the data 
(referred to as the set of basic facts and notated B). B con- 

sists of a set of time tokens and a set of constraints on 

2The symbol E is meant to denote an infinitesimal: a number 
greater than 0 and smaller than any positive number. 
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Rl: (project (and PI . . . P, 

(M (not (and &I . . . Qm)))> 
E R) 

R2: (proje)ct (and PI . . . Pn) 

E R) 

R3: (disable (and &I . . . Qm) 

(ab W) 

R4: (disable (and RI. . . R,) 

(ab W) 

Figure 1: Hierarchically arranged projection and disabling 
rules 

the amount of time separating pairs of points correspond- 
ing to the begin and end of time tokens. Generally, the 

causal theory remains fixed for a specific application, and 

a program interacts with the TMM by adding and removing 
items from B, and by generating queries. A query consists 

of a predicate calculus formula corresponding to a question 
of the form “Could some fact P be true over a particular 

interval I?” An affirmative answer returned by the TMM in 
response to such a query will include a set of assumptions 

necessary for concluding that the fact is indeed true. Any 
assertions made on the basis of the answer to such a query 

are made to depend upon these assumptions. 

The state of a temporal data base is completely de- 

fined by a temporal constraint graph (TCG), consisting of 
the points in II and constraints between them, and a causal 

dependency graph (CDG), consisting of dependency struc- 
tures corresponding to the application of causal rules in 

deriving new tokens. The TCG and CDG are incrementally 
modified to reflect changes in the set B. 

III. Causal Theories 

In the TMM, a causal theory is simply a collection 
of rules, called projection rules, that are used to specify 

the behavior of processes. In the following rule, .Pr . . . Pn, 
&I -Qm, E, and R designate types, and delay and 
duration designate constraints (e.g., (e, 00)). In: 

(project (and PI . . . P, 

(M (not (and &I . . . Qm)))) 
E delay R duration) 

PI . . . P, and Qr . . . Q,,, are referred to as antecedent con- 

ditions, E is the type of the triggering event, and R refers 

to the type of the consequent prediction. The above pro- 

jection rule states that, if an event of type E occurs cor- 

responding to the token tE and Pr . . . P, are believed to 

be true at the outset3 of tE and it is consistent to believe 

that the conjunction of Qi . . . Qm is not true at the outset 

of tE, then, after an interval of time following the end of 

tE determined by delay, R will become true and remain 
so for a period of time constrained by duration (if delay 

and duration are not specified, they default to (0,O) and 

(e, co), respectively). In the following, we will be consid- 
ering a restricted form of causal theory, called a type 1 

theory, such that the delay always specifies a positive off- 
set (causes always precede their effects). 

We also allow the user to specify rules that serve to 
disable other rules [ll]. F g i ure 1 shows a standard projec- 

tion rule Rl and a pair of projection and disabling rules R2 
and R3 that replace Rl. The rule R3 is further conditioned 

by the rule R4. Assuming just the rules R2, R3, and R4, 
any application of R2 with respect to a particular token t 
of type E is said to be abnormal with regard to t just in 

case Qr . . . Qm hold at the outset of t and it is consistent 

to believe that R3 is not abnormal with regard to t. The 

nonmonotonic behavior of type 1 causal theories is speci- 
fied entirely in terms of disabling rules and the default rule 

of persistence (see Section II.). In addition to their useful- 

ness for handling various forms of incomplete information, 

disabling rules make it possible to reason about the con- 

sequences of simultaneous actions. The reader interested 
in a more detailed treatment of causal theories may refer 

to one of [5] or [ll]. Throughout the rest of this paper we 
will consider causal theories without disabling rules and 
consisting solely of simple projection rukes4. The following 

represents the general form of a simple projection rule: 

(project (and PI . . . Pn) E delay R duration) 

In order to support temporal reasoning, there has to 
be some method or decision procedure for drawing appro- 

priate conclusions from a set of basic facts and a given 
causal theory. In the TMM, such a procedure is used to 
generate new time tokens, update the status of existing 
tokens, and facilitate query processing by determining the 
truth of facts over specified intervals of time. As far as we 

are concerned, an inference procedure is fully specified by 

a criterion for inferring consequent effects from antecedent 

causes via causal rules, a method for actually applying that 
criterion (an update algorithm), and a criterion for deter- 

mining if a fact is true throughout some interval. Figure 2 
shows a criterion for inferring consequent effects which we 

refer to.,as wealE projection. The criterion is specified as a 

rule schema (implicitly) quantified over simple projection 

rules. Figure 3 shows a criterion for determining if a fact 

is true throughout an interval which we refer to as weak: 

true throughout. The criterion is specified in terms of a 

3An alternative formulation described in [6] states that the an- 
tecedent conditions of a projection rule must be true throughout the 
trigger event rather than true just at the outset. Both formulations 
are supported in the TMM, though we will only be discussing the 
true-at-the-outset formulation in this paper. 

4All of the results mentioned in this paper extend to full type 1 
theories (see [4]). 
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VtE E T 
((STATUS = IN) A 

(3tq . ..tp., E T 

(V 1 5 i 5 n (STATUS(tpi) = IN) A 

(BEGIN(tp<)< BEGIN( A 

(Vt,pi E T 

(STATUS(t,pi) = OUT) v 

(BEGIN(t,pi) +M BEGIN(tpi)) v 

(BEGIN +M BEGIN(tqPi)) )))) 

=s 3tR E T 
(STATUS = IN) A 

(DIST(END(tE), BEGIN(tjq)) 2 d&q/) A 

(DIST(BEGIN(tR),END(tR)) & d?mtiOn) 

Figure 2: Weak projection 

V?rlnsL E II 

3tp E T 
(STATUS = IN) A 
(BEGIN 5 nl) A 

(Vtv, E T 
(STATUS(t,p) = OUT) v 

(BEGIN(t,p) -+%f BEGIN( v 

(Tz +M BEGIN(tlPi)) ))>) 

* TT(P, 7n, n2) 

Figure 3: Weak true throughout 

definition of the true throughout predicate TZ’. The infer- 

ence procedure (referred to as naive projection) consisting 

of weak projection, weak true throughout, and a simple 
update algorithm for applying weak projection by sweep- 

ing forward in time was used in one of the early versions of 

the TMM. In the following section, we will consider some 

of the properties of naive projection. 

IV. Completeness and Consistency 

In order to satisfy ourselves concerning the behavior of an 

inference system, we need a precise account of what the 

conclusions computed by that system mean. Such an ac- 

count should enable us to judge whether or not an inference 

system has come up with the right set of conclusions. The 

question we need to ask is: What are the intended models 
of a set of basic facts and a causal theory? 

As far as we are concerned, a model consists of an 
assignment of true or false to a particular set of proposi- 

tions concerning facts spanning intervals of time. Theories 
about the real world are invariably underconstrained, and 
a set of basic facts together with a causal theory will gen- 

erally have many models. We will simplify our analysis by 

partitioning models into various equivalence classes. The 
primary source of ambiguity in the TMM arises from the 

fact that the set of constraints seldom determines a total 

ordering of the tokens in T. Given that most inferences 

depend only upon what is true during intervals defined by 
points corresponding to the begin and end of tokens in T, 

all that we are really interested in are the classes of mod- 

els corresponding to the different total orderings consistent 

with the initial set of constraints. For each total order- 
ing we can identify a unique set of tokens that intuitively 

should be IN given a particular causal theory. 

We start with a set of basic facts B, consisting of a set 

of tokens TB and a set of constraints CB. The constraints 

in CB determine a partial order on the begin and end of 

tokens in TB. For a particular B, there may be a number 

of total orderings consistent with the constraints in CB. 

For a given B, a fixed causal theory, and a criterion for 

inferring consequent effects from antecedent causes (e.g., 
weak projection), the TMM generates a set of tokens T 

and a temporal constraint graph (TCG). Given T and the 
TCG, there are a finite number of statements of the form 

TT(P, ~1, nz) that are determined as true by the TMM us- 

ing a particular true throughout criterion (e.g., weak true 

throughout). The criterion for inferring consequent effects 

must be applied in a systematic way (essentially using the 
ordering information to perform a sweep forward in time) 

to yield results in keeping with our intuitions about causal- 

ity. The strategy built into the TMM for applying the crite- 

rion of weak projection with respect to specific tokens and 

updating the status of tokens already in T makes use of 
the intuition that you can’t know the effects of a particu- 
lar event e until you know the consequences of those events 

preceding e. It should be fairly easy to convince yourself 
that, in cases in which CB precisely constrains the order of 

the tokens in TB, the TMM, using weak projection, gener- 
ates a set T and a TCG such that the statements of the form 

TT(.P, rl,rz) determined true by the weak true through- 

out criterion are exactly the ones that we want. We will 
make use of this to define a working notion of model. 

Given some B together with a fixed causal theory, for 

each total ordering consistent with CB, we will say that 

the set of statements of the form TT(P, ~1, ~2) that are 

true using weak true throughout and weak projection is 
a model of B and the underlying causal theory. This set 

can be thought of as specifying an assignment to just those 

statements concerned with facts being true over intervals. 
Actually, the assignment designates a class of models, but 

we will neglect this to simplify our discussion. We will 

say that a particular inference procedure is complete for 

a class of causal theories, if for any set of basic facts and 

causal theory in that class, the statements of the form 
TT( P, 7ri,7r2) warranted by the inference procedure include 
at least those that are true in all models. Similarly, we will 

say that an inference procedure is sound for a class of causal 

theories, if for any set of basic facts and causal theory in 

that class, each statement TT(P, rl,7r2) warranted by the 
inference procedure is true in all models. 

Given the preceding definitions, it is easy to show that 
the TMM, using naive projection, is complete and sound for 

type 1 causal theories, assuming that the tokens in T are 

totally ordered [4]. 
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Vt E Tg 
STRONGLY-PROTECTED(t) 

VtE E T 
(STRONGIf-PROTECTED A 

(3 Pl * * * tp,., E T 
(V 1 5 i 5 n STRONGLY-PROTECTED(tp;) A 

(BEGIN(tp{) 5 BEGIN( A 

(Vt~pi E T 
(STATUS(tTpi) = OUT) v 

(BEGIN _( BEGIN(tpi)) v 

(BEGIN ~ BEGIN(t,Pi)) )))) 

=s, 3tR E T 

STRONGLY-PROTECTED(h) A 
(DIST(END(tE), BEGIN( & ddUy) A 
(DIST(BEGIN(tR),END(tR)) c du’ration) 

Figure 4: Strongly protected tokens 

VtE E T 
((STATUS = IN) A 

(3tp1...tpn E T 
(V 1 5 i 2 n (STATUS(tpi) = IN) A 

(BEGIN(tpi) 5~ BEGIN(@) A 

(V’t,Pi E T 
~STRONGLY-PROTECTED(t,pi) V 
(BEGIN(t,pi) +M BEGIN(tpi)) v 

(BEGIN +M BEGIN(tTPi)) )))) 

=$ 3tR E T 
(STATUS(&) = IN) A 

(DIST(END(tj$, BEGIN(&)) E de&/) A 

(DIST(BEGIN(tR),END(tR)) E duration) 

Figure 5: Improbably weak projection 

In situations where the set of basic facts does not de- 

termine a total order, it is easy to show that the TMM, 

using naive projection, can end up in a state with IN to- 

kens that allow one to conclude statements of the form 
TT(P, K~,Q) that are not true in any totally ordered ex- 

tension. In [4], we prove that the problem of determining 

if TT(P,7rr,r:!) is true for a type 1 causal theory, with or 
without disabling rules, is NP-complete. 

In the rest of this paper, we abandon the quest for 

complete inference procedures and concern ourselves with 
procedures that are sound. To improve the chances of 

the TMM warranting only valid statements of the form 
TT(P,~~,Q) the first thing we will do is strengthen the 
criterion for belief in a given token. The axioms in Figure 

4 determine a set of tokens that are said to be strongly 
protected. If the set of constraints determines a total or- 
dering, then the set of strongly protected tokens is identical 

to the set of tokens that are IN, but generally the former 
is a subset of the latter. Next, we provide a criterion for 

generating consequent predictions that takes into account 

vn17r2 E II 

3tp E 7 

STRONGLY-PROTECTED A 

(BEGIN 5 7~) A 

(Vt,p E T 

(STATUS(t,p) = OUT) b’ 

(BEGIN(t,p) 4 BEGIN( v 

(~2 4 BEGIN@+)) ) 

es TT( p, m ,7r2 ) 

Figure 6: Strong true throughout 

every consequence that might be true in any total order, 

called improbubEy weak projection. This criterion is shown 
in Figure 5. And, finally, we provide a criterion for true 

throughout that succeeds only if the corresponding formula 
will be true in all total orders consistent with the current 

set of constraints (see Figure 6). 

There is a simple decision procedure for generating all 

consequences and computing the set of strongly protected 
tokens. Let To = TB, and initially assume that no tokens 
are strongly protected. Let i = 0. To compute the con- 

sequences of Ti, generate the consequent tokens of each 
token in Ti using the criterion of improbably weak projec- 
tion. Let Ti+r be the union of Ti and its consequences. 
Continue to compute new consequent tokens in this man- 
ner, incrementing i as needed until T; = Ti+r. Set T = Ti. 
At this point, perform a sweep forward in time (relative to 

the current partial order) determining for each token in T 
whether or not it is strongly protected and the status, IN 

or OUT, of each its consequents. In [4], we prove that this 

decision procedure is sound for a partially ordered set of 

tokens, and sound and complete for a totally ordered set. 

In [4], we describe an incremental update algorithm 
that has the same soundness and completeness properties 

as the algorithm described above. This incremental al- 

gorithm is such that small changes in B generally result 

in small amounts of computation. For causal theories in 

which the consequent predictions of causal rules all corre- 

spond to persistences, the worst-case behavior of the in- 
cremental algorithm is polynomial in the size of B and the 

causal theory. If we allow causal rules to generate new to- 

kens corresponding to the occurrence of triggering events, 
it is easy to construct examples in which T grows with- 
out bound. Generally, however, even those causal theories 

that generate new triggering events turn out to be well be- 
haved. In a planning system, the incremental algorithm 

can be used as part of a strategy for coping with com- 
plexity; if a query succeeds, the answer can be assured to 

be true in all totally ordered extensions. If, on the other 
hand, a query fails and the truth or falsity of the query is 

critical, the system can choose to expend additional effort 
in processing the query. In [4] we describe some additional 

techniques that can be used to improve the accuracy of 
our decision procedure without sacrificing its performance 
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(e-g-, a simple examination of the tokens in T can serve to 

guarantee the failure of certain queries). 

v. dayed-Commitment Planning 

Nonlinear planning [2] has long been considered to have 
distinct advantages over linear planning systems such as 

STRIPS [8] and its descendents. One supposed advantage 

[lo] has to do with the idea that, by delaying commit- 
ment to the order in which “independent” actions are to be 
performed, a planner can avoid unnecessary backtracking. 

Linear planners are often forced to make arbitrary commit- 

ments regarding the order in which actions are to be carried 
out. Such arbitrary orderings often fail to lead to a solution 

and have to be reversed. By ordering only actions known 

to interact with one another (i.e., actions whose outcomes 

depend upon the order in which the actions are executed) 
the expectation was that nonlinear planners would avoid a 

lot of unnecessary work. 

The problem in getting this sort of delayed- 

commitment planning to work is that it is often difficult 

to determine if two actions actually are independent. This 

is especially so if we are considering a representation of 
actions sufficiently powerful to represent actions whose ef- 

fects depend upon context. In order to determine whether 

or not two actions are independent, it is necessary to deter- 
mine what the effects of those actions are. Unfortunately, 

in order to determine the effects of a given action it is nec- 
essary to determine what is true prior to that action being 

executed, and this in turn requires that we know the effects 

of those actions that precede that action. In general there 
is no way to determine whether or not two actions are in- 

dependent without actually considering all of the possible 

total orderings involving those two actions. 

Planning depends upon the ability to predict the con- 

sequences of acting. Past planning systems capable of rea- 

soning about partial orders (i.e., nonlinear planners) have 

either employed weak (and often unsound) methods for 

performing predictive inference or they have sought to de- 
lay prediction until the conditions immediately preceding 

an action are known with certainty. Delaying predictive 

inference can serve to avoid inconsistency, but it can also 

result in extensive backtracking in those very situations 
that nonlinear planners were designed to handle efficiently. 

It is our contention that delayed-commitment plan- 

ning is of dubious utility. However, the idea of delayed- 

commitment planning is not the only reason for build- 

ing planners capable of reasoning about partially ordered 

events. Most events will not be under a planner’s control 

and-more often than not it will be difficult if not impossible 

to determine the order of all events with absolute certainty. 

Reasoning about partially ordered events is likely to play 

a significant role in future planners. 

VI. Conclusjnns 

This paper is concerned with computational approaches 

to reasoning about time and causality, particularly in do- 

mains involving partial orders and incomplete information. 

We have described a class of causal theories capable of rep- 
resenting conditional effects and the effects of simultaneous 

actions. We have described a decision procedure for gener- 

ating predictions warranted by such causal theories. The 

decision procedure is provably sound and the resulting con- 
clusions are guaranteed consistent if the underlying causal 

theory is consistent. If the events turn out to be totally 

ordered, the procedure is complete as well as sound. 
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