
Domain-Speci�c Software Architectures for

Guidance, Navigation and Control

Pam Binns, Matt Englehart, Mike Jackson, Steve Vestal�

Honeywell Technology Center
Minneapolis, Minnesota

January 1994

Abstract

We describe two integrated languages and as-

sociated tools for capturing and analyzing two

di�erent views of the architecture of an embed-
ded system. One language is tailored to address

guidance, navigation and control issues, while
the other is tailored to address real-time, fault-

tolerance, secure partitioning and multi-processor

system issues. Both languages have tools that per-
form analyses appropriate for the issues each ad-

dresses, and tools to automatically con�gure the

application software from a su�ciently detailed
speci�cation. The integrated languages and tools

are intended to support an architecture reuse de-

velopment process, in which the development of a
new product in a family of similar products starts

from a generic or reusable architecture speci�ca-
tion for that product family.

1 Introduction

The concept of architecture that we wish to build
upon is the intuitive one: it is the high-level de-

sign, the annotated drawings of modules and the
relations between them that engineers sketch out

for each other. What we are seeking to do is add

rigor to this intuitive concept by creating more
precise descriptions of architectures, descriptions

that simultaneously present the important high-

level features of a particular design while implic-
itly capturing or constraining the many details

that are essential for a smooth transition to im-

plementation. Moreover, we want to provide good

�This work has been supported by Honeywell and by

ARPA and ONR under contract N00014-91-C-0195.

estimates for various characteristics of a design or
architecture as early in the development process

as possible, coupled with a development process

that provides assurance that the �nal implemen-
tation will in fact exhibit the predicted charac-

teristics. Our approach to architecture-oriented
software development exhibits three basic themes

or principles:

� extensive use of formal models as a basis for

speci�cation languages and architecture se-
mantics

� integrated support for multiple disciplines

and multiple views

� formal architecture speci�cation languages

with accompanying analysis and code assem-
bly tools

In playing out these basic themes, we have

constrained the nature of the software we have

concerned ourselves with. We have focused our
attention on embedded software in general and

GN&C software in particular. Within these con-
straints, there exist several formal models for im-

portant aspects of system behavior (e.g. linear

systems theory, rate monotonic analysis). The
team performing our work is a multi-disciplinary

one, consisting of individuals with varied experi-

ence in real-time software, embedded computer
system architecture, fault-tolerance, and guid-

ance, navigation and control. The various formal
models together with the details of suitable com-

putation and communication paradigms provide

the semantics for two integrated languages and
toolsets we have developed to specify two comple-

mentary views of the architecture of an embedded

GN&C software system. The ControlH language
and its toolset support speci�cation, analysis, and

code assembly for GN&C system architectures;

and the MetaH language and its toolset support
speci�cation, analysis, and code assembly for em-

bedded software architectures.

Figure 1 provides an overview of the integrated

toolsets for the ControlH and MetaH architec-
ture speci�cation languages. Both toolsets oper-

ate from a high-level speci�cation language, Con-

trolH for GN&C engineering and MetaH for em-
bedded software engineering. Both the ControlH

and MetaH languages exist in both textual and
graphical form, where mixed-mode display and

editing is supported (e.g. a ControlH operator can

be displayed as either a graphical block diagram
or a series of text formulas, where a text editor

can be invoked within a block from the graphi-

cal editor). Both the ControlH and the MetaH
toolsets consist of a series of analysis tools that

are based on appropriate formal models, together
with tools to automatically assemble application

software from a high-level speci�cation.

These two languages and their associated tools

are designed to be used by di�erent specialists to

address di�erent issues and requirements. Con-
trolH allows GN&C engineers to specify dynami-

cal system models and GN&C algorithms, to per-
form analyses that are appropriate to the �eld of

GN&C engineering (e.g. dynamical system sim-

ulations, linearizations and equilibria determi-
nations, linear analyses), and to automatically

generate code that implements the functional-

ity of a speci�ed algorithm. MetaH allows com-
puter systems engineers to specify how functional

source modules (ControlH-generated and/or ob-

tained from other sources) are combined to form
a load image that can be executed in real-time

on a speci�ed multi-processor target system. The
analyses performed by the MetaH tools are appro-

priate to the �eld of embedded software engineer-

ing (e.g. real-time schedulability, and eventually
reliability and secure partitioning).

We will �rst give an overview of the

architecture-oriented development process these

languages and associated tools were developed to
support. We will then briey outline in some-

what greater detail the languages ControlH and

MetaH, and discuss how the concepts common to
both languages apply in a multi-disciplinary de-

velopment process.

2 Architecture-Oriented

Development

The ControlH and MetaH languages and tools

have been developed to support an architecture

reuse development process. The explicit speci�ca-
tion and reuse of software architectures promises

signi�cant cost, schedule and quality improve-
ments when many similar software systems are

to be developed for a family of products. (This

situation is not a prerequisite for obtaining sig-
ni�cant bene�ts from the MetaH and ControlH

toolsets, but support for this paradigm has been

a major design goal.)

Architecture-oriented development is based on

the reuse of product family requirements and soft-

ware architecture, with source module reuse oc-
curring within the context of reuse at these higher

levels. The development of each new member of a
product family is to be started with the following

resources available.

� a generic, reusable requirements outline that

captures the common categories of services,
behaviors and characteristics of all members

of that product family

� a generic, reusable software architecture that

captures the common overall software struc-

ture, functional decomposition, and compu-
tation and communication paradigms of all

members of that product family

� a library of generic, reusable component

speci�cations and source modules that

obey the computation and communication
paradigms of, match the interface conven-

tions of, and implement variants of the func-
tional components in, the reusable software

architecture

� cross-references or relationships between the

elements of the reusable generic require-

ments, reusable generic software architec-
ture, and library of reusable generic compo-

nent speci�cations and source modules

Control
Generator

Control
Analysis

Executive
Generator

SW/HW
Analysis

Template
Library

Component
Library

Load
Image

ControlH MetaH
stability
performance
robustness

schedulability
reliability
security

Ada functional code

MetaH scheduling & communication specifications

Figure 1: Integrated ControlH/MetaH Toolset

An important aspect of all these resources is that

they not only identify what is common among all

members of a product family, but also identify
and are designed to facilitate variations between

products and evolution of the family as a whole.

The development of a particular product pro-
ceeds by iteratively re�ning the generic require-

ments, architecture, and source components until

a complete and detailed speci�cation of the re-
quirements, architecture, and source code for that

particular product are obtained. Documentation
and V&V are also assumed to fall within this

paradigm: there are reusable generic document

outlines, V&V requirements, system integration
testing architectures, and test speci�cations and

drivers.

These artifacts constitute development assets
that are consciously accumulated to increase

quality and production e�ciency within a given

market or business domain. The manner in which
these assets are accumulated; the amount of in-

vestment in these assets; the quality and ef-
�ciency returns obtained from the investment;

the \physical" form of these assets (the human

and machine readable representations for reusable
generic requirements, architectures, components,

and relationships); and the tools and processes

used to carry out product development; are all

technical and business decisions that require anal-

ysis on a case-by-case basis.

Within this context, MetaH is a language

used to capture software architectures for prod-

ucts whose generic requirements may include
real-time, fault-tolerance, secure partitioning,

and high-performance computing criteria. The

accompanying analysis tools support cross-
referencing from a product architecture back

to the real-time, reliability, secure partitioning
and performance requirements for that prod-

uct. ControlH is a language used to capture

plant models and controller and �lter architec-
tures for products whose generic requirements in-

clude guidance, navigation and/or control func-

tions. The accompanying analysis tools support
cross-referencing from a controller speci�cation

back to the performance and robustness require-
ments for that product. The accompanying ap-

plication assembly tools support cross-referencing

from an architecture to the source components of
a product, and automate the production of the

�nal product software.

3 ControlH

The ControlH language is used to capture high-

level speci�cations for real-time guidance, navi-

gation and control systems [6]. The prede�ned
data types and operations, the syntax, and the

semantics of the language have been tailored for
that speci�c domain. The analysis tools provided

with the language support the kinds of analy-

ses, both mathematical and simulation, that are
used to assess performance and robustness crite-

ria of concern to the GN&C engineer. The asso-

ciated code generator translates ControlH speci�-
cations into Ada or C code in a way that addresses

software engineering concerns with execution ef-

�ciency and veri�cation and validation. We will
�rst summarize the basic features of the ControlH

language, then discuss some of the available and
planned tools to operate on GN&C system spec-

i�cations.

3.1 ControlH Language

The look-and-feel of the ControlH language was

developed to mirror traditional notations in the
�elds of guidance, navigation and control. In

one sentence, the language supports speci�cation

of hierarchical block diagrams constructed from
primitive mathematical operations. The language

is primarily declarative or functional rather than

procedural in nature. The language has both a
textual notation that allows equations and for-

mulas to be entered in a traditional form, and

a graphical notation that allows speci�cations to
be viewed and edited in a form similar to the

block diagram notation commonly used in the
�eld. The details of the language are designed to

allow the speci�cation of information necessary

for automated analysis, and for management of
certain characteristics of the automatically gen-

erated software.

In ControlH, variables and states are used to
represent time-varying signals. The historical

roots of dynamical system modeling, analysis and
control lie in the continuous mathematics of dif-

ferential equations. To a �rst conceptual approxi-

mation the operators of ControlH provide a map-
ping from continuous time-varying input signals

to continuous time-varying output signals, where

Data Type Operation

booleans and, or, xor, not

switches increment, decrement

scalars +, -, *, /, exponentiation

trigonometric, square root

vectors augmentation, selection

matrices augmentation, selection

inverse

state spaces linear simulation

inverse

data tables interpolated table lookup

Table 1: Example ControlH Primitives

feed-back loops from outputs to inputs almost in-

variably appear. Computer simulations or imple-

mentations of such speci�cations are performed
using a sampled data computation paradigm in

which the operators are evaluated periodically at

some rate, mapping discrete-time samples of in-
put signals to discrete-time outputs. This model

of behavior and computation underlies the ba-

sic constructs of the ControlH language: vari-
ables and named constants, states, operators,

processes, global blocks of variables and named
constants, and conditionals.

3.1.1 Data Types and Operators

The language provides a set of primitive or pre-
declared data (signal) types and operators that

are appropriate for GN&C applications. The

data types de�ned in ControlH currently in-
clude booleans; switches (essentially enumerated

types); integer scalars, vectors and matrices; real
scalars, vectors and matrices; discrete-time and

continuous-time state spaces; and one-, two-,

three-, and four-dimensional data tables. A par-
tial listing of the primitive operations on these

data types appears in Table 1.

The language allows users to connect instances
of operators (either primitive or declared earlier

by the user) to de�ne new operators. In the
graphical notation this appears as a collection

of operators whose inputs and outputs are con-

nected together by lines. In the textual version,
the syntax for operators resembles that of a func-

tion in a traditional programming language, e.g.

x = f(y). However, there is usually no concept
of order of evaluation. The variable x in this ex-

ample may typically only appear on the right-

hand-side of a single statement. The output of
function f(y) is connected to the input of ev-

ery function in which x appears as an input pa-
rameter, regardless of whether those statements

appears before or after x = f(y) in the textual

speci�cation of the new, containing operator. Al-
though the textual appearance of an operator dec-

laration (operator name followed by a sequence of

input and output parameter declarations, state
and variable declarations, and formulas) appears

similar to that of a subprogram declaration in tra-

ditional procedural computer languages, the no-
tion of sequential execution is absent. An exam-

ple ControlH operator speci�cation in both tex-
tual and graphical form is shown in Figure 2.

3.1.2 State

Within the context of ControlH and GN&C en-
gineering, the term \state" has a rich and precise

meaning. In ControlH, a state provides retention

of values between successive executions of an op-
erator, encapsulation of data within an operator,

initialization, and assurance of semantic correct-

ness with respect to the sampled data computa-
tion model.

Syntactically, a state consists of the declaration
of two specially designated variables; the �rst rep-

resents the value of the state during the current

processing period, while the second represents the
value the state will assume during the next pro-

cessing period. The language enforces the restric-

tion that the current state variable cannot be ex-
plicitly set, it can only be implicitly set by an

assignment to the next state. ControlH allows a
state to be of any data type.

Figure 3 gives an example of the use of state

variables to provide retention of values between
successive executions or samples in a ControlH

operator. This example de�nes the operator
delay, called within Figure 2. The statement

x <- x next is shorthand for \x next is the vari-

able which serves as the placeholder for the state
x during the next computational period." In our

example, we implement a delay operation by stat-

ing that the operator's output is the current value
of the state, while the value of the state during

the next computational period will be the present

value of the input. In a sampled data computa-
tion model, the output of this operator at a given

sample time will be its input at the previous sam-
ple time.

operator delay is

inputs: real_scalar: u;

outputs: real_scalar : y;

begin

state: real_scalar : x <- x_next;

x_next = u;

y = x;

end delay;

Figure 3: A ControlH Speci�cation of the Delay
Operation for Scalars

GN&C algorithm designers view operators as

objects in a block diagram whose internal states
are encapsulated within that block. To support

this view, ControlH provides data encapsulation

of the states declared within an operator. When
an operator is called or invoked, that call cor-

responds logically to a unique instance of that

operator and possesses a unique set of state vari-
ables. To put this another way, each time the

name of an operator with state appears in the
speci�cation of another operator, a new state is

created for that particular invocation or instance

of the operator. Two instances of the delay op-
erator appear in Figure 2, for example, and each

must have its own internal state variables. In the

graphical representation, if there are two blocks
labeled delay then each has its own internal state

variables.

Initialization is another important part of the
concept of state. The initial value of a state must

be set to some reasonable value, where reasonable

values are determined by the user from the par-
ticular application at hand. In ControlH, we gen-

erally require the programmer to specify the ini-
tialization of states, although certain data types

have a default initial value.

Finally, the ControlH state mechanism pro-

operator sum_and_delay is

inputs: real_scalar: u1, u2;

outputs: real_scalar: y1, y2;

begin

r = u1 + u2;

y1 = delay(filter(r));

y2 = delay(r);

end sum_and_delay;

Figure 2: An Example ControlH Speci�cation

vides semantic correctness for a sampled data pe-

riodic computation model. It is not uncommon
to �nd in hand-written control code that a state

variable is updated in a particular execution and
then the value of that variable is used later in

that same execution (same sample period). How-

ever, strict correctness (by which we mean corre-
spondence to the underlying mathematics of dis-

crete time sampled data systems) requires that

the state variable only assume the next value dur-
ing the next execution. To put this another way,

state variable updates only occur between succes-

sive executions of an operator, never during the
execution of an operator. The ControlH state

construct makes it possible to assure semantic
correctness in this respect.

3.1.3 Time and Space

Many GN&C applications are designed to be run

at multiple rates when implemented in software.
Di�erent operators in a GN&C algorithm often

sample their inputs and produce outputs at dif-
ferent rates, which is to say they are periodically

executed with di�ering periodicities. For these

reasons, ControlH supports a multi-process pro-
gramming environment by incorporating a pro-

cess object. The speci�cation of a process cur-

rently consists only of the declaration of its name

and its period.

The power of the process object is associated
with its semantics in relation to operator in-

stances. ControlH allows the user to specify in
which process a called operator should be exe-

cuted. If an explicit speci�cation is not given,

the default is to execute an operator instance
in the same process as its parent or calling op-

erator (what we sometimes refer to as process

inheritance by a child operator from its parent
or structurally containing operator). As an il-

lustration of syntax, suppose that in the speci-
�cation of one operator we wanted to explicitly

execute a contained delay operator in a process

named Hz10 (presumably a process with a pe-
riod of 0.1 seconds). This would be expressed as

y2 = delay.Hz10(r) in textual ControlH, or by

annotating the block with the process name Hz10
in the graphical representation. This explicitly

speci�es that a delay of 0.1 seconds is desired in

this example.

The ability to specify the rate structure of an

application provides a fundamental mechanism

for the GN&C engineer to manage processor uti-
lization. In this case, the trade-o� is not the tra-

ditional software one of time versus space, but

a trade-o� of sampling rates with GN&C perfor-
mance and robustness.

ControlH provides a powerful mechanism for

performing time-space tradeo�s in the generated

code that we call parametric instantiation of op-
erators. By parametric instantiation of an oper-

ator, we mean that invocations of that operator

can be translated into code that incorporates in-
put values that are statically known at transla-

tion time (constants or computed only from con-
stants). The semantic e�ects are as if the static

values of those inputs are embedded in the def-

inition of the operator, and an alternate version
of the operator created for that particular invoca-

tion. This is a form of user-controlled ControlH

operator inlining combined with inter-operator
constant propagation.

As with traditional compilers, constant propa-

gation and folding within the ControlH transla-

tor can greatly magnify the bene�t of instantiat-
ing an operator invocation with its static inputs.

The consequences of parametric instantiation are
a potential signi�cant decrease in execution time

at the expense of a potential signi�cant increase

in the size of the generated code. We will note
that the same e�ect cannot be achieved by rely-

ing on inlining and optimization of the underly-

ing traditional programming language (e.g. Ada).
The design decisions involved must be made by

the GN&C engineer at the ControlH speci�cation
level. Moreover, ControlH has specialized seman-

tics, and the ControlH translator can perform op-

timizations during parametric instantiation based
on knowledge of these semantic constraints that

cannot safely be made later, since much of this

specialized semantic information cannot be recov-
ered by the underlying language compiler.

As we will see shortly, the ControlH translator

maintains a systematic mapping from the Con-

trolH speci�cation structure to the structure of
the generated code. This mapping makes it pos-

sible to transfer traditional pragmas relating to
time and space from the ControlH speci�cation

to the generated code in a reasonable way. As a

consequence, the full range of time-space tradeo�s
through Ada pragmas is available at the ControlH

level.

3.1.4 Other Features

ControlH provides mechanisms to specify generic

or polymorphic operators, which is to say opera-
tors whose exact meaning depends on the types of

the input values used in a particular invocation or

call to that operator. This �nds its greatest use
in writing generic operators that can manipulate

scalars, vectors or matrices interchangeably with-

out built-in knowledge of dimensionality, but the
mechanism is a fairly general one that can also be

applied in other ways.

The language supports conditional selection of

input and output signals through constructs that

resemble if-then-else and case statements (typi-
cally called switches in GN&C block diagrams).

There are algorithms which defy a declarative
description in pure ControlH. ControlH recog-

nizes this fact by including certain escape mecha-

nisms in the language. In particular, true proce-
dural (sequential) execution of conditionals, loops

and assignments is provided in a way that allows

users to directly write procedural algorithms for
an operator where this is deemed essential.

ControlH allows the speci�cation of global
blocks of constants and variables. Global con-

stants make it convenient to de�ne parameterized

models and controllers. Global variables make it
possible for di�erent operators to access common

values in a synchronized manner, including oper-
ators executing at di�erent rates in di�erent pro-

cesses.

3.2 ControlH Tools

Figure 4 shows the toolset used to support Con-

trolH speci�cation development. An important
aspect of our approach is that much detailed anal-

ysis and V&V activity by the GN&C engineer
is based on the generated code that will be the

actual implementation. The traditional GN&C

engineering task of verifying the system speci�ca-
tion is thus also simultaneously testing and verify-

ing the behavior of the implementation software.

graphical
editor

textual
editor

code
generator

primitives
source module

library

simulation

linear models
C

O
T

S
 C

A
D

S
D

 in
te

rf
ac

e

HoneyX

MatLab

gnuPlot

test
signals

test
outputs equilibria,

linearization

linear models, equilibrium solutions

.

.

.

Ada or C modules, MetaH specs

to MetaH
or other

toolset or
executive

Figure 4: ControlH Tools

3.3 Code Generation

In the previous section, we described the avor

and power of the language in the sense of provid-

ing a natural grammar for expressing GN&C ap-
plications. However, we are not simply concerned

with the creation of an attractive GN&C speci-
�cation and analysis environment. The quality

of the code that is produced by the translator is

also of great importance to us. We have designed
the language and translator to produce high qual-

ity GN&C software that is optimized for use in

embedded real-time systems. Our goal is to im-
prove the quality of the code through automatic

generation, rather than gain the convenience of

automatic generation only at the expense of code
quality.

ControlH Ada, C

local variable local variable

operator procedure

states global variables

process procedure & packages

global constants block global package

global variables block global package

Table 2: Mappings fromControlH Objects to Ada

Constructs

Our ControlH code translator currently gen-
erates either Ada or C software. An important

aspect of our approach is the generation of well-

structured source code. Among other things,
there is a reasonably intuitive mapping from Con-

trolH objects to the Ada or C constructs gener-
ated from them. This mapping is shown in Ta-

ble 2. It is important to note that the mapping

between ControlH operators and source language
procedures preserves the modularity of the al-

gorithm. The resulting ease of traceability be-

tween speci�cation and implementation is ex-
tremely useful during multi-disciplinary trade-o�

studies and during veri�cation and validation.

A key aspect of our code generation approach
is that the set of primitives is very loosely coupled

with the code generation algorithms themselves.

In particular, the set of primitive operators and
the library of source code templates used during

translation can be fairly easily modi�ed. We use a

rule-based approach for code generation in which
the translator does not directly select and insert

a particular block of code for a particular prim-
itive operator. Instead, the translator invokes a

rule that is provided with any user-speci�ed prag-

mas and the results of the translator's type infer-
encing, data ow and constant propagation anal-

ysis. This operator-dependent rule then selects

and tailors the �nal code generated for a partic-
ular primitive operator. Although it is transpar-

ent to the typical GN&C engineer using the Con-

trolH toolset, in fact the ControlH translator is
more like a module assembly tool than a tradi-

tional compiler whose coding idioms are largely
immutable.

While translating a ControlH speci�cation, the

code translator attempts to statically evaluate op-

erations. In general, when it is possible to deter-
mine the values of the inputs during translation,

and it is appropriate to evaluate that operation at

that time, the expression will be evaluated during
translation. Static evaluation of operations is not

limited to a small subset of common primitives,

such as addition, subtraction, and multiplication.
Indeed, every hierarchical operator and nearly ev-

ery primitive one is a candidate for static evalu-
ation during translation. As mentioned earlier,

the constant propagation and folding capabilities

of the translator can be used in a powerful and
user-controlled way by parametrically instantiat-

ing operators.

3.4 Simulation

Functional simulation is performed by combining

the generated source modules with with a simu-
lation executive, which is an idealized (non-real-

time) scheduler and state update function. The

resulting simulation does not provide any feed-
back about computer resource utilization or tim-

ing, but does provide the GN&C engineer with

the ability to perform dynamical system simula-
tions and assess the mathematical functionality

of the speci�ed GN&C algorithms. We will note
again that this assessment is made using the gen-

erated source modules that will ultimately be the

actual implementation of the GN&C functional-
ity, since these same modules will be passed on to

the MetaH toolset for inclusion in the embedded

software.

3.5 Linear Analysis

Many toolsets exist to perform standard math-
ematical analysis of linear systems (e.g. deter-

mine poles and zeros, generate frequency response

curves). The code generation and simulation ca-
pabilities of our toolset allow us to easily integrate

with existing linear analysis toolsets.

By substituting a linearization executive for

the simulation executive, the user can perform
linearizations about points of interest. The ex-

ecutive numerically computes an equilibrium for

the nonlinear discrete-time system implemented
by the software, and the Jacobian for the system

about that equilibrium. The equilibrium search

is con�gurable in terms of the value of the state
and input perturbations, initial estimates for the

trim condition, exit criterion from the equilib-
rium search, and speci�cation as to which inputs

and states are �xed within the equilibrium search.

Linearizations can then be passed to existing lin-
ear analysis toolsets.

The ControlH translator also allows the user

to specify that a particular operator is in fact

a transfer function imported from a linear anal-
ysis toolset. Design and analysis of linear sys-

tems or subsystems can be performed in another

toolset, with the results incorporated into a Con-
trolH speci�cation and, ultimately, into the gen-

erated code and the �nal embedded implementa-

tion.

4 MetaH

The MetaH language and tools support the de-

velopment of real-time, fault-tolerant, securely

partitioned, multi-processor software[1, 15]. Like
ControlH, the MetaH language is largely struc-

tural or declarative rather than procedural; and,
like ControlH, it has both a textual and a graph-

ical representation. However, the MetaH user is

typically a computer systems engineer who uses
the toolset to combine ControlH-generated sub-

architectures and source components with pieces

obtained elsewhere (e.g. device drivers, real-time
data base managers, display management code)

to produce a load image for an embedded com-
puter system architecture. In many cases the

speci�cation of the hardware architecture is also

part of the development process. The criteria
of interest to the computer systems engineer in-

clude real-time schedulability, reliability, and se-

cure partitioning. We will summarize the basic
features of the MetaH language and then discuss

some of the available and planned tools that op-

erate on computer system (software+hardware)
architecture speci�cations.

4.1 MetaH Language

At �rst glance, the MetaH language is similar

to many existing structured software design or
object-oriented design notations. The graphi-

cal representation of MetaH allows entities to
be placed on a screen and connected together,

where each entity may be de�ned as another

collection of connected entities in a hierarchical
manner, as in Figure 5. However, MetaH has a

rich set of entity types and detailed semantics,

extensive and precise enough to perform a de-
tailed real-time schedulability analysis and to au-

tomatically assemble a load image. For example,
MetaH supports the speci�cation of real-time pe-

riodic tasks. It also provides a real-time connec-

tion, where data movement is synchronized with
periodic computation in such a way as to sup-

port distributed state update semantics in multi-

processor systems (where \state update" has the
GN&C meaning).

MetaH allows a speci�cation of system com-
ponents and connections, and attributes of those

components and connections that are relevant to

real-time, fault-tolerant, secure partitioning, and
multi-processor aspects of an application. The

kinds of entities in a MetaH speci�cation can
be divided into lower-level entities that describe

source code modules (e.g. subprograms, packages)

and hardware elements (e.g. memories, proces-
sors); and higher-level entities that specify how

previously declared entities may be combined to

form new entities (modes, macros, systems, ap-
plications).

The language has both a textual and a graph-
ical syntax de�ned, and tools exist that allow

a MetaH speci�cation to be viewed and edited
interchangeably in either format. Figure 6 il-

lustrates the general structure of MetaH spec-

i�cations using the textual syntax. Figure 5
shows the graphic representation for the mode

M interface (on the left) and the implementation

M.EXAMPLE (on the right).

Entities have separate interface and implemen-
tation speci�cations, where multiple implementa-

tions can be speci�ed for a given interface. An in-

terface speci�cation (e.g. mode M in Figure 6 and
the left screen in Figure 5) may contain declara-

tions of shareable monitors and packages; and/or

source entities called ports and events (e.g. mode
M has one port in its interface). An entity im-

plementation may contain declarations for com-

ponent entities and connections between those
components (e.g. P1 and P2 are components

within mode implementation M.EXAMPLE). In
the graphical representation, the interface corre-

sponds to the icon to which it is connected (e.g.

mode M on the left of Figure 5), while an imple-
mentation corresponds to a diagram that shows

one possible set of internal components and con-

nections (e.g. the right screen of Figure 5 is an
implementation for the mode M interface shown

on the left).

A process is the fundamental unit of schedul-

ing, allocation to hardware processors, and fault
containment. Process implementations identify

source code modules and can specify a variety of

attributes relating to real-time scheduling, secure
partitioning, fault behavior, and multi-processor

allocation. Both periodic and aperiodic processes
are supported. While a periodic process is ac-

tive it is automatically and repeatedly dispatched

with some periodicity that is speci�ed as an at-
tribute of that process. Aperiodic processes are

dispatched in response to an event, where events

may be raised by hardware (i.e. an interrupt) or
by software. A variety of user-settable attributes

allow �ne control over process scheduling (e.g.

process criticality, response of an aperiodic to
an event arrival while still servicing a previous

event).

A process interface may identify input and out-

put ports, which correspond to input and output
bu�er variables within the source code. Process

ports are connected together to indicate commu-
nication that is to occur between processes at

run-time (e.g. between P1 and P2 in Figures 5

and 6). Ports are strongly typed using the type
system of the underlying source language, and

port-to-port connections are type checked. Port-

Figure 5: Example Graphical MetaH Speci�cation

to-port connections cause periodic assignments

to occur between the bu�er variables associated

with the ports declared in the process interfaces.
These communications are executed in real-time

and synchronized with process execution in such a

way as to provide the afore-mentioned distributed
state update semantics.

Process interfaces may also identify output
events, which may be connected to aperiodic

processes or to modes (explained in the next

paragraph); and shareable monitors or packages,
which may be equivalenced to shareable monitors

or packages in the interfaces of other processes to

indicate that the same data is to be shared by
those processes. A service call allows a process

to raise an event, and real-time semaphores are

available to synchronize access to shared moni-
tors.

Modes and macros specify collections of pro-
cesses. A mode or macro interface may identify

shareable monitors and packages, input and out-

put events, and input and output ports. A mode
or macro implementation may specify a collection

of processes, together with connections between
those processes and between the entities declared

in the mode or macro interface (ports, events and

shared entities in a mode or macro interface must
ultimately be connected to components in some

implementation of that mode or macro). In addi-

tion to the port-to-port connections mentioned

above, event-to-aperiodic process and event-to-

mode connections; and equivalence connections
between shareable monitors and packages; may

also appear in mode and macro speci�cations.

Not all processes in a system need be active
at the same time. In particular, the language

allows a speci�cation of multiple modes of op-

eration, where each mode may identify di�erent
sets of processes and/or di�erent port and event

connections to be in e�ect during that mode of

operation[14]. One or more out events from pro-
cesses (or from hardware events, i.e. interrupts)

may be connected to a mode. When that event

occurs at run-time, a change is made from the
current mode to the connected mode. When this

change occurs, all active processes that are not in
the new mode (including possibly the one that

raised the mode change event) are made inac-

tive. Such processes are aborted cleanly w.r.t.
port-to-port communication and monitor locking.

Periodic processes cease being periodically dis-

patched, and aperiodic processes will no longer
be dispatched in response to an event connected

to them. When the mode change occurs, all in-
active processes that are in the new mode are

made active. Process-speci�c initialization code

is executed, after which process dispatching as de-
scribed above is performed. The port and event

connections in e�ect become those speci�ed for

with port type TARGET T;

process P1 is

TO P2 : out port TARGET T.INTEGER T;

FROM P2 : in port TARGET T.INTEGER T;

end P1;

periodic process implementation P1.IMP is

sub1, sub2: subprogram;

attributes

self
0Period := 25 ms;

self
0SourceTime := 1 ms;

self
0SourceFile := "p1 root.a";

sub10SourceTime := 2 ms;

sub10SourceFile := "sub1.a", "sub1 b.a";

sub20SourceTime := 8 ms;

sub20SourceFile := "sub2.a", "sub2 b.a";

end P1.IMP;

with port type TARGET T;

process P2 is

TO P1 : out port TARGET T.INTEGER T;

FROM P1 : in port TARGET T.INTEGER T;

end P2;

periodic process implementation P2.IMP is

foo: subprogram;

attributes

self
0Period := 50 ms;

self
0SourceTime := 1 ms;

self
0SourceFile := "p2 root.a";

foo0SourceTime := 10 ms;

foo0SourceFile := "foo.a", "foo b.a";

end P2.IMP;

with port type TARGET T;

mode M is

TO ENV : out port TARGET T.INTEGER T;

end M;

mode implementationM.EXAMPLE is

P1: periodic process P1.IMP;

P2: periodic process P2.IMP;

connections

P1.FROM P2 <- P2.TO P1;

P2.FROM P1 <- P1.TO P2;

TO ENV <- P1.TO P2;

end M.EXAMPLE;

application TSE is

mode M.EXAMPLE

on processor I80960MC.CVME;

connections

I80960MC.DISCRETE WRITE <- M.TO ENV;

end TSE;

Figure 6: Example Textual MetaH Speci�cation

the new mode. Mode declarations may be nested
to create submodes, which allows some processes

to continue una�ected during changes between

submodes.

The MetaH language also supports hardware
architecture speci�cation. Memories, devices,

channels (processor-to-processor communication

hardware), and processors may be connected to-
gether to specify multi-processor hardware ar-

chitectures. Hardware events, ports and moni-
tors are supported and provide a mechanism for

the application software to interface to target

hardware in a exible way. Attributes of the
hardware entities support both automated code

assembly (e.g. identify processor-speci�c mod-

ules that interface between the generated appli-
cation and the underlying system) and analysis

(e.g. processor overhead times). A simple auto-

matic software-to-hardware binder has been im-
plemented, where the user can optionally specify

binding constraints or explicit bindings for partic-
ular software entities. The language and toolset

can thus be used to support rapid analysis of al-

ternative multi-processor architectures and alter-
native software-to-hardware bindings.

4.2 MetaH Tools

Figure 7 shows some existing and planned tools to

support MetaH speci�cation development, where
shaded tools have not been developed or inte-

grated yet (the workspace does not yet support

persistent storage and so is considered only par-
tially complete). The eventual plan is to have a

suite of tools that can be invoked independently

with a degree of concurrent access by multiple an-
alyzers. Additional useful tools have been iden-

ti�ed, but the �gure shows core tools that em-

phasize the theme: automatic code assembly and
formal analysis driven from the same high-level

architectural speci�cation.

4.2.1 Code Assembly

Application source modules identi�ed in the

MetaH speci�cation are assembled into processes,
together with an automatically generated KER-

NEL service call package that provides a target-

executive
generator

real-time
 modeler

reliability
 modeler

security
 modeler

reliability
 analyser

security
analyzer

application
 builder

load
image

analysis
results

policy
source
modules

graphical/
 textual
front-end

Workspace HW/SW
binder

schedule
analyzer

Figure 7: MetaH Tools, Existing and Planned

independent interface to kernel services. Each ap-

plication process becomes a program that is com-

piled and prelinked into its own protected virtual
address space. The current tool accommodates

simple versioning techniques (\make" facilities)

so that repeated MetaH compiles do not force
source recompiles unless an application source

module has been changed or added (a few hun-

dred lines of MetaH can easily specify applica-
tions having many dozens of source modules and

many tens of thousands of lines of source code).

The code assembly tool essentially generates

an application-speci�c executive that performs
the process dispatching, message passing, access

synchronization, capabilities checking, and event

vectoring speci�ed in the MetaH speci�cation[2].
Process scheduling is based on rate monotonic

scheduling theory, where the tool automatically

assigns priorities, transforms periods as neces-
sary, and generates code to manage process dis-

patching and continuation[8]. Inter-process and
inter-processor communication code is statically

scheduled and executed as part of the generated

dispatcher. Event vectoring, and the starting
and stopping of processes at mode changes, are

also controlled by generated code. All this must

be done in a way that is mode-dependent, since

scheduling and communication varies from mode

to mode.

The generated executive makes use of a stan-

dard interface to certain low-level scheduling
primitives typically provided by a microkernel.

Our current implementation uses the Tartan Ada

multi-application run-time as the underlying mi-
crokernel. An application builder has been devel-

oped for the Tartan Ada toolset targeted to an

i80960MC processor. This build tool automati-
cally performs the compilations and links needed

to produce a �nal load image for this type of pro-
cessor.

4.2.2 Schedulability Analysis

Figure 8 shows the timing report produced from

the speci�cation in Figure 6. Summary �gures for
each process are shown on a line (e.g. TSE kernel,

P1, P2), where the �rst process is the overhead
associated with kernel dispatching. Indented be-

neath each process appears a list of that process'

components, where self is a component that rep-
resents source associated with the process entity

itself and kernel is the scheduler overhead at-

tributable to that process (e.g. context swaps of
that process).

The Budget times are those speci�ed or esti-
mated for leaf source components and must be

given in the MetaH speci�cation (e.g. estimated

by the ControlH translator). The Critical times
show how much the compute times of all pro-

cesses and their components can simultaneously

be raised while preserving feasibility. The Maxi-
mum times show how much the compute time of

an individual process or component can be raised

while preserving feasibility, providing all other
processes and components stay within their bud-

geted compute times. The % Margin is the safety
margin between the budgeted and the maximum

compute time, the % Util is the processor utiliza-

tion devoted to that process or component, and
Max Pri is the name of the highest priority pro-

cess of which a component is a member (changing

the compute time of a component will a�ect this
and all lower priority processes).

We feel that allowing such a decomposition
of processes into components, and the provision

of sensitivity analysis information, is useful in

practice[12, 13]. This supports an assessment of
the risks associated with uncertainties in actual

source module compute times and allows easy

identi�cation of bottlenecks or source modules on
which to focus optimization e�orts. For exam-

ple, sub2 in Figure 8, with a relatively high uti-
lization and low margin, represents a risk to the

extent its compute time is uncertain, or a good

candidate for further optimization. In conjunc-
tion with the intuitive traceability between Con-

trolH operators and generated source modules

mentioned earlier, the results of the timing analy-
sis can be easily related to the GN&C engineer in

a meaningful way. This supports complex, multi-
disciplinary time/space/performance/robustness

design trade-o�s.

4.2.3 Reliability Analysis

Traditional reliability analysis is used to deter-

mine the probabilities that a system will en-

ter particular states within a particular time in
response to randomly arriving hardware fault

events, where the states of interest are degraded

modes of operation, fail-safe, catastrophic failure,
etc. [11]. A number of tools exist that, when given

a model that describes the various fault events

that may occur and a system's response to those
events, will solve mathematically for the desired

probabilities.

Several basic mechanisms to specify events and

event propagation paths already exist in MetaH,

and the addition of fault arrival rate attributes for
hardware entities is trivial. The existing toolset

should eventually be extended by the addition of

a tool to build a reliability model from the de-
scription of fault event propagations contained in

a MetaH speci�cation, then solve this model us-
ing an existing Markov analysis tools.

4.2.4 Secure Partitioning Analysis

The current system provides three secure parti-
tioning mechanisms at run-time. First, data se-

curity is provided by allocating each application

process its own protected virtual address space.
Processes can access common memory only if an

equivalence connection \authorizes" this in the

MetaH speci�cation. Second, control security is
provided using capability lists generated for each

process. A process can only change to a speci�c
mode, dispatch a speci�c aperiodic process, lock

a speci�c monitor semaphore, or invoke a speci�c

kernel service if this appears in the MetaH speci-
�cation. Third, timing security is provided in the

form of enforced execution time limits on process

initialization, process computation, and monitor
locking times. A command-line option causes en-

forced times to be used for timing analysis, where

the results of this analysis are guaranteed to be
enforced at run-time. Process criticalities can also

be assigned, where the scheduling of a higher crit-
icality process cannot be a�ected in any way by

the behavior of a lower criticality process.

However, mechanism is not policy. A tool
that allows a MetaH speci�cation to be checked

against a speci�ed secure partitioning policy (e.g.
red/black compartmentalization, integrated mod-

ular avionics partitioning[5]) would be of great as-

sistance in developing and verifying applications
that have such requirements. It should be noted

that security is provided against undesirable be-

Processor timing, application TSE, mode TSE, processor I80960MC

Module Period Budget Critical Maximum % Margin % Util Max Pri

TSE_kernel 25000 1000 1397 8099 87.7 4.0

_kernel 1000 1397 8099 87.7 4.0 TSE_kernel

P1 25000 11200 15642 18300 38.8 44.8

_self 1000 1397 8099 87.7 4.0 P1

sub1 2000 2793 9099 78.0 8.0 P1

sub2 8000 11173 15099 47.0 32.0 P1

_kernel 200 280 6400 96.9 0.8 P1

P2 50000 11200 15642 25399 55.9 22.4

_self 1000 1397 15199 93.4 2.0 P2

foo 10000 13966 24199 58.7 20.0 P2

_kernel 200 280 7300 97.3 0.4 P2

Total utilization = 71.2%

Breakdown utilization = 99.4%

Critical scaling factor = 1.40

Processor schedule is feasible

Times are reported in microseconds

Nominal compute times were used in the compute paths.

Figure 8: Example Timing Analysis Report

havior of the source modules included in an ap-

plication. The assurance of correctness of the
MetaH speci�cation (which includes the security

speci�cations) and the use of the toolset for anal-

ysis and load image generation must be performed
by a trusted party.

5 Integrating The Views

There are four concepts that appear in both the

ControlH and MetaH languages. Each language

deals with somewhat di�erent semantic aspects of
each concept.

Both languages include a concept of time. Con-

trolH implicitly deals with time-varying signals

and explicitly declares process periods. MetaH
accepts scheduling requirements that must be met

in the assembled application and can perform

a schedulability analysis to determine whether
these requirements will in fact be met in all cases.

A process entity appears in both languages.

ControlH can be used to specify a name and a

period for a process, and to specify how operators

are partitioned among processes. MetaH allows a
speci�cation of a number of other properties, such

as the processor on which that process is to ex-

ecute, secure partitioning rights and capabilities,
stack sizes, etc. (there are currently 17 MetaH

process attributes that can be set by the user).

Many ControlH operators translate to a sub-
program (very low-level or optimized operators

may translate into in-line code, e.g. a scalar gain
translates to a simple multiplication; and cer-

tain ControlH operators must be translated into a

pair of subprograms to deal with feed-back loops).
The subprograms are itemized in the MetaH de-

scription so that the MetaH user has some lim-

ited visibility into the composition of each pro-
cess. This is useful during discussions between

the GN&C and software engineers about possible
time and space trade-o�s. We noted earlier that

structured translation and the resulting traceabil-

ity aided multi-disciplinary design trade-o� stud-
ies. The ease with which schedulability analysis

can be related back to the original ControlH spec-

i�cation greatly facilitates the study of complex
time/space/performance/robustness trade-o�s.

State variables appear throughout a typical
ControlH speci�cation, though usually only ex-

plicitly at the lowest level of detail, inside prede-
clared operators (e.g. integrators). A ControlH

state variable translates to a statically allocated

variable in the generated code, which is identi�ed
in the MetaH speci�cation of that source code as

a MetaH port. MetaH ports are also used for

input and output signals, both those between op-
erators assigned to di�erent processes and inputs

and outputs to the overall GN&C algorithm. A
MetaH port can be connected to other ports in

other processes, and such connections are used to

communicate signal samples and state updates.
That is, rather than generating a central vector

of all state and signal variables, the ControlH

toolset produces distributed variable declarations
that are connected in the generated MetaH spec-

i�cations. The MetaH toolset generates the code

to move values between these signal and state
variables. Advantages of this approach are that

the MetaH user can move software processes be-
tween various hardware processors without any

changes to the GN&C speci�cation or generated

code; and visibility is provided to state and signal
values during testing.

6 Summary

This article has focused on two integrated lan-

guages for capturing GN&C and computer system
architectures, together with associated tools to

analyze architectures and automate the assembly
of the application software. Major elements of our

approach have been to base our languages on suit-

able formal models, and to automate mutually-
consistent formal analysis and automatic code as-

sembly in such a way that each analysis tool accu-

rately captures with high assurance the relevant
characteristics of the �nal implementation. Our

goal has been to support architectures that are
easily parameterized and scalable, that can be an-

alyzed very early in the development process, and

for which it is possible to maintain assurance that
the actual implementation characteristics are ac-

curately predicted by analysis during system de-

velopment.

We feel another interesting aspect of our work

is its inherently multi-disciplinary nature, which

for us manifested itself in two integrated lan-
guages and toolsets. We attempted in our lan-

guages and toolsets to allocate responsibility and
authority for di�erent design decisions to special-

ists in two di�erent �elds, where each has a lan-

guage and toolset suited to the issues being ad-
dressed. Our goal was to do this in a way that

allowed the GN&C engineer and the software en-

gineer to solve the detailed problems of their re-
spective disciplines in a largely independent way

while supporting broad, multi-disciplinary design
trade-o�s. We feel we have been reasonably suc-

cessful in this, primarily by codifying certain de-

tails of semantic and implementation consistency
in the languages and tools themselves, and by

maintaining a reasonably intuitive mapping be-

tween important common concepts and architec-
tural elements in the two views.

A major issue we have not addressed in this

article is the development of a reusable archi-
tecture for a speci�c product family. The ar-

chitecture reuse approach is based on the devel-
opment of standard designs or software architec-

tures for particular product families (e.g. ight

management systems, building security and cli-
mate control systems, petrochemical process con-

trol systems), where for us these architectures are

captured as partial and reusable ControlH and
MetaH speci�cations. This introduces such issues

as architecture language features that facilitate
generic speci�cations, techniques for systemati-

cally migrating such a partial speci�cation into

a �nal product description and implementation,
the technologies that go into a particular prod-

uct family, and the creative processes that go into

the development and evolution of a good reusable
generic architecture for a particular product fam-

ily.

Acknowledgements

We gratefully acknowledge the contributions of
Todd Beckering, Rashmi Bhatt, Je� Clark,

Eric Engstrom, Al Goldberger, Debra Hutchins,

Rakesh Jha, Jon Krueger, Carl Lippitt, Steve
Paesano, Tom Peterson, Todd Sorensen, Jon

Ward, and Kent Younkin to the development

and implementation of the MetaH and ControlH
toolsets; the helpful guidance and suggestions of

Gunter Stein, Jim Krause, and other employees of
the Honeywell Technology Center; and the con-

ceptual contributions of the ARPA DSSA com-

munity.

References

[1] Pam Binns and Steve Vestal, \Formal Real-

Time Architecture Speci�cation and Analy-
sis," Tenth IEEE Workshop on Real-Time

Operating Systems and Software, New York
NY, May 1993.

[2] Pam Binns and Steve Vestal, \Communica-
tion and Scheduling in MetaH," Proceedings

of the Real-Time Systems Symposium, De-

cember 1993.

[3] Cellier, F. E., and H. Elmqvist (1993),

\Automated Formula Manipulation Supports
Object-Oriented Continuous-System Mod-

elling," IEEE Control Systems, April, 1993.

[4] Matt Englehart and Mike Jackson, \Con-

trolH: A Fourth Generation Language for
Real-Time GN&C Applications", to have ap-

peared Proceedings of the CACSD, Tucson,

Az, March, 1994.

[5] Design Guidance for Integrated Modular

Avionics, AEEC/ARINC 651, Airlines Elec-
tronic Engineering Committee/ Aeronautical

Radio Inc., 1991.

[6] Mike Jackson and Jim Krause, ControlH

Programmer's Manual, Honeywell Technology
Center, Minneapolis, MN.

[7] Korn, G. A. (1989), Interactive Dynamic-
System Simulation, McGraw-Hill, New York.

[8] Lui Sha and John B. Goodenough, \Real-
Time Scheduling Theory and Ada," IEEE

Computer, April 1990.

[9] Erik Mettala and Marc H. Graham, \The
Domain Speci�c Software Architectures Pro-

gram," Proceedings of the DARPA Software

Technology Conference 1992, Los Angeles CA,
April 1992.

[10] Mitchell, E. E. L. and J. S. Gauthier (1986),

ACSL: Advanced Continuous Simulation Lan-
guage - User Guide and Reference Manual,

Mitchell & Gauthier Assoc., Concord, Mass.

[11] Andrew

L. Reibman and Malathi Veeraraghavan, \Re-
liability Modeling: An Overview for Systems

Engineers," IEEE Computer, April 1991.

[12] Steve Vestal, \On the Accuracy of Pre-

dicting Rate Monotonic Scheduling Perfor-
mance," Tri-Ada '90, December 1990.

[13] Steve Vestal, \Fixed Priority Sensitivity

Analysis for Linear Compute Time Models,"
IEEE Transactions on Software Engineering,

April 1994.

[14] Steve Vestal, \Mode Changes in a Real-

Time Architecture Description Language," to
have appeared Second International Work-

shop on Con�gurable Distributed Systems,

March 1994.

[15] Steve Vestal, Software Programmer's Man-
ual for the Honeywell Aerospace Compiled

Kernel (MetaH Language Reference Manual),

Honeywell Technology Center, Minneapolis,
MN.

[16] Steve Vestal, \A Cursory Overview and

Comparison of Four Architecture Description
Languages," Honeywell Technology Center,

Minneapolis, MN.

