
Copyright	2018	Adventium	Labs.		 1	

AADL	ANNEX	FOR	THE	FACE™	TECHNICAL	STANDARD,	EDITION	3.0	
	
DISTRIBUTION	A.	Approved	for	public	release:	distribution	unlimited.		
	
	
This	material	is	based	upon	work	supported	by	U.S.	Army	Research	
Development	and	Engineering	Command,	Aviation	Development	Directorate	
under	Contract	No.	W911W6-17-D-0003.		Any	opinions,	findings	and	
conclusions	or	recommendations	expressed	in	this	material	are	those	of	
the	author	(s)	and	do	not	necessarily	reflect	the	views	of	the	U.S.	Army	
Research	Development	and	Engineering	Command,	Aviation	Development	
Directorate.	
	
Except	for	material	owned	by	The	Open	Group	as	defined	below,	Adventium	Labs,	sole	
owner	of	the	copyright	of	this	material,	hereby	grants	to	the	SAE	International	
permission	to	change,	modify,	and	otherwise	utilize	materials	in	this	document,	in	
whole	or	in	part,	to	meet	its	goals	and	objectives	related	to	the	AADL	Standard.	
Adventium	Labs	further	grants	SAE	International	permission	to	copyright	future	
versions,	including	the	final	standard,	as	SAE	International	copyrighted	material.	This	
license	grant	does	not	extend	to,	and	expressly	excludes,	materials	copyrighted	by	other	
parties,	such	as	The	Open	Group.	
	
Adventium	Labs	acknowledges	The	Open	Group	for	permission	to	include	text/figures	
derived	from	its	copyrighted	Future	Airborne	Capability	Environment	(FACE)	Technical	
Standard,	Edition	3.0,	©2017	The	Open	Group.		FACE™	and	the	FACE™	logo	are	
trademarks	of	The	Open	Group	in	the	United	States	and	other	countries.		
	
	
	 	

Copyright	2018	Adventium	Labs.		 2	

	

AADL	ANNEX	FOR	THE	FACE™	TECHNICAL	STANDARD,	EDITION	3.0	...	3	

TYPOGRAPHY	CONVENTIONS	...	3	

A.	 RATIONALE	...	3	

B.	 BACKGROUND	AND	ASSUMPTIONS	..	3	

C.	 REFERENCE	EXAMPLE	...	8	

D.	 PACKAGING	..	9	

E.	 DATA	MODEL	..	10	

F.	 DATA	MODEL	VIEWS	...	11	

G.	 UOP	MODEL	...	12	

H.	 TSS	...	16	

I.	 ROUTING	...	16	

J.	 IOSS	...	19	

K.	 FACE	HEALTH	MONITORING	AND	FAULT	MANAGEMENT	(HMFM)	20	

L.	 FACE	PROFILES	..	20	

M.	 FACE	LIFECYCLE	MANAGEMENT	...	20	

N.	 FACE	ARTIFACT	PARSING	GUIDE	...	20	

O.	 FACE	PROPERTY	SET	...	21	

	
	 	

Copyright	2018	Adventium	Labs.		 3	

AADL	Annex	for	the	FACE™	Technical	Standard,	Edition	3.0	
Version	0.3.0,	2018-04-04	

Typography	Conventions	
Regular	Text	
AADL Keyword
FACE	Keyword	Introduction	
FACE	Keyword	
	

A. Rationale	
	
1) This	annex	is	intended	to	help	component	vendors	and	system	integrators	using	the	

(Future	Airborne	Capability	Environment)	FACE	Technical	Standard.	FACE	Technical	
Standard	Edition	3.0	1	provides	a	data	modeling	architecture	but	does	not	provide	
mechanisms	for	describing	component	behavior	or	timing	properties.	This	document	
provides	guidance	for	translating	a	FACE	Standard	Edition	3.0	Data	Architecture	XMI	
model2	into	AADL	so	that	behavior	and	timing	properties	can	be	added	and	
analyzed.	
a) See	section	J.6	of	the	FACE	Technical	Standard	Edition	3.0	for	Object	Constraint	

Language	specifications	for	the	Data	Architecture.	
2) This	annex	supports	the	modeling,	analysis,	and	integration	of	FACE	artifacts	in	

AADL.	It	gives	AADL	style	guidelines	and	an	AADL	property	set	to	provide	a	common	
approach	to	using	AADL	to	express	architectures	that	include	FACE	components.	
Using	common	properties	and	component	representations	in	AADL	makes	AADL	
models	of	FACE	components	portable	and	reusable	and	increases	the	utility	of	tools	
that	operate	on	such	AADL	models.	

	

B. Background	and	Assumptions	
3) This	document	provides	a	mapping	for	FACE	Technical	Standard	Edition	3.0	and	

AADL	2.2.		
4) The	FACE	Technical	Standard	provides	a	framework	for	data	architecture	that	

enables	service	and	application	portability	across	platforms	by	requiring	

																																																								
1	Unless	explicitly	noted,	all	references	to	the	FACE	Technical	Standard	in	this	document	
refer	to	Edition	3.0.	
2	The	FACE	Technical	Standard	Edition	3.0	provides	a	data	architecture	metamodel	in	an	
EMOF	in	section	J.5.	

Copyright	2018	Adventium	Labs.		 4	

conformance	to	the	FACE	Technical	Standard’s	data	modeling	and	software	
guidelines.	
a) As	illustrated	in	Figure	2,	the	FACE	Technical	Standard	is	divided	into	layers.	

Individual	applications	or	services	that	reside	in	one	of	these	layers	are	called	
Units	of	Portability	(UoPs3).	UoPs	in	the	Portable	Components	Segment	(PCS)	and	
the	Platform	Specific	Services	Segment	(PSSS)	communicate	with	one	another	
using	a	Transport	Service	Segment	(TSS)	library.	The	PCS	contains	general-
purpose	applications,	while	the	PSSS	isolates	UoPs	that	interact	with	devices	
through	the	I/O	segment	(IOS).	The	TSS	is	an	abstract	grouping	of	components	
(including	libraries)	that	provide	data	exchange	related	functionality.	

b) Communication	between	UoPs	is	accomplished	using	parameters	dictated	by	
views.	Views	and	are	constructed	from	a	FACE	data	model	using	queries.		

c) In	a	system	built	from	FACE	conformant	software,	there	is	a	single	data	
architecture	model.	This	data	architecture	model	is	composed	by	the	system	
integrator	using	data	models	associated	with	each	UoP	in	the	system.	

d) The	fields	that	make	up	each	inter-UoP	message	are	taken	from	the	data	model.	
Each	field	in	each	message	is	associated	with	a	hierarchy	of	data	model	
elements.	This	means	two	UoPs	that	do	not	need	to	use	precisely	the	same	data	
representation	(e.g.,	metric	or	imperial)	to	communicate	with	one	another.	
i) For	further	information	about	the	FACE	Data	Architecture,	see	section	2.3	of	

the	FACE	Technical	Standard.	
5) The	FACE	Technical	Standard	data	architecture	is	divided	into	three	layers:	The	Data	

Model,	UoP	Model,	and	the	Integration	Model	(see	Figure	1).	This	document	
provides	guidance	for	all	three.		

																																																								
3	The	FACE	Technical	Standard	defines	two	equivalent	terms,	Unit	of	Portability	(UoP)	
and	Unit	of	Conformance	(UoC).	This	document	uses	the	former,	as	FACE	conformance	
is	not	in	the	scope	of	this	annex.	

Copyright	2018	Adventium	Labs.		 5	

6) The	FACE	Technical	Standard	data	model	provides	a	realization	hierarchy	for	
multiple	levels	of	data	description	(conceptual,	logical,	and	platform).	Most	AADL	
analyses	are	not	expected	to	require	that	multiple	levels	of	the	FACE	Technical	
Standard	data	model	are	mapped	to	AADL.			

a) 	
Figure	1	Data	Architecture	(extracted	from	FACE	Technical	Standard	Edition	3.0)	

Copyright	2018	Adventium	Labs.		 6	

7) All	communication	between	the	FACE	UoPs	that	reside	in	the	PCS	or	PSSS	layers	is	
conducted	via	the	TSS	interface	according	to	Views	defined	in	the	Data	Model	(as	
shown	in	the	top	and	right	of	Figure	2).		

8) In	addition	to	its	data	modeling	approach	to	interoperability	of	UoPs,	the	FACE	
Technical	Standard	also	provides	operating	system	interface	specifications	and	I/O	
device	interface	specifications.	I/O	device	access	is	represented	in	the	FACE	IOSS	
(I/O	Service	Segment).	The	operating	system	interface	is	represented	in	the	FACE	
OSS	(Operating	System	Segment).	See	the	left	and	bottom	of	Figure	2.	

a) 	
Figure	2	Architecture	Segments	Example.	(Extracted	from	FACE	Technical	Standard	Edition	3.0)	

9) The	terms	specific	to	the	FACE	Technical	Standard	used	in	this	annex	are	defined	
below:	
a) FACE	(Future	Airborne	Capability	Environment):	A	government-industry	

software	standard	and	business	strategy	for	acquisition	of	affordable	software	
systems	that	promotes	innovation	and	rapid	integration	of	portable	capabilities	
across	global	defense	programs.		The	FACE	Standard	also	provides	a	data	
modeling	language	used	to	describe	component	interfaces.	

b) FACE	Conformance:	A	software	component	(Unit	of	Conformance	(UoC))	is	
certified	as	FACE	conformant	when	it	has	successfully	been	through	an	
independent	verification	and	certification	process,	which	is	defined	by	the	FACE	
Conformance	Program.	This	includes	technical	verification	by	a	designated	
Verification	Authority	(VA)	subsequent	certification	by	the	FACE	Certification	
Authority	(CA),	and	registration	in	the	FACE	Library.	This	certification	represents	
that	the	software	UoC	meets	the	requirements	of	the	FACE	Technical	Standard,	
which	was	designed	to	facilitate	software	portability.	A	FACE	conformant	data	
architecture	is	a	.face	file	that	adheres	to	the	FACE	Technical	Standard	Edition	

Copyright	2018	Adventium	Labs.		 7	

3.0	metamodel.	See	section	1.5	of	the	FACE	Technical	Standard	for	more	
information.	

c) Data	Architecture	Model:	The	whole	of	Figure	1	describes	the	contents	of	the	
Data	Architecture	Model.		
i) Each	system	of	integrated	FACE	conformant	UoPs	will	ultimately	have	one	

Data	Model,	likely	created	from	multiple	input	data	models.		
d) Data	Model:	A	set	of	conceptual,	logical,	and	platform	entities	used	as	the	basis	

for	view	definition.		Each	platform	entity	refines	a	logical	entity,	and	each	logical	
entity	refines	a	conceptual	entity.	See	top	of	Figure	1.	
i) Example:	“Temperature”	is	conceptual,	“Degrees	Celsius”	is	logical,	and	

“32bit	unsigned	integer”	is	platform.		
e) UoP	Model:	A	description	of	the	UoPs	in	a	given	system	of	FACE	conformant	

components	and	their	associated	views	and	connections.	See	middle	of	Figure	1.	
i) The	connections	described	in	the	UoP	Model	do	not	describe	inter-UoP	

communication.		They	provide	only	the	UoP’s	expectations	of	the	type	of	
connection	it	will	have	when	integrated	(e.g.,	sampling).		

ii) An	integrator	will	combine	multiple	UoP	Models	(one	for	each	integrated	
UoP)	into	their	integrated	UoP	Model.	

iii) This	term	is	not	equivalent	to	“USM,”	which	is	defined	later	in	this	section.		
f) Integration	Model:	A	model	describing	the	composition	of	FACE	UoPs	in	a	

system	and	the	inter-UoP	message	routing	in	the	TSS.	See	bottom	of	Figure	1.	
g) View:	A	FACE	view	is	documentation	of	a	TS	API	data	parameter	that	can	be	

passed	in	the	TS	Interface.	A	view	is	composed	of	elements	of	a	data	model	and	
is	described	by	a	query.	
i) Example:	A	view	“status”	might	include	altitude,	airspeed,	and	ground	

speed.	
ii) Views	are	nominally	defined	in	the	platform	layer	of	the	Data	Model.		
iii) Query:	A	FACE	query	is	an	SQL-like	expression	describing	features	of	the	

FACE	data	model	to	use	in	a	view.			
iv) Template:	A	FACE	template	is	used	to	specify	the	presentation	of	data	in	a	

platform	view.	
v) UoP	(Unit	of	Portability):	Also	called	Unit	of	Conformance	(UoC).		Use	of	the	

term	Unit	of	Portability	highlights	the	portable	and	reusable	attributes	of	a	
software	component	or	Domain	Specific	Data	Model	(DSDM)	developed	to	
the	FACE	Technical	Standard.		

vi) Each	UoP	may	have	an	associated	USM	providing	its	data	model	definition	
and	UoP	Model	definition.	

h) UoC	(Unit	of	Conformance):	A	DSDM	or	a	software	component	designed	to	
meet	the	requirements	for	an	individual	FACE	segment.	UoCs	must	be	verified	as	
conformant	to	the	FACE	Technical	Standard	to	be	certified.		
i) All	FACE	components	in	the	PCS,	TSS,	PSSS,	and	IOSS	are	UoCs.		
ii) UoC	and	UoP	are	equivalent	terms.		

Copyright	2018	Adventium	Labs.		 8	

i) TSS	(Transport	Service	Segment):	A	TSS	is	responsible	for	exchanging	data	
between	UoPs.	A	TSS	is	also	responsible	for	mediating	data	between	UoPs	and	
other	data	exchange	functions.	
i) For	example,	a	TSS	might	translate	a	“status”	parameter	to	a	“heartbeat”	

parameter	with	the	same	fields	but	different	units	(perhaps	meters	instead	
of	feet).		

ii) The	TSS	is	often	shown	as	a	signal	entity	in	diagrams	illustrating	systems	of	
FACE	conformant	software	(such	as	Figure	2)	however	there	is	no	restriction	
limiting	a	system	to	a	single	TSS.		

j) FACE	Shared	Data	Model:	An	instance	of	a	Data	Model	whose	purpose	is	to	
define	commonly	used	items	and	to	serve	as	a	basis	for	all	other	data	models.		
i) The	FACE	shared	data	model	provides	common	concepts	such	as	

temperature.	
k) USM	(UoP	Supplied	Model):	A	data	model	provided	by	a	software	supplier	that	

documents	the	data	exchanged	by	a	UoP	via	the	TS	interface.	An	integrated	
system	may	incorporate	many	USMs.			
i) The	USM	is	provided	as	a	.face	file	with	each	UoP.		

l) Integrated	Data	Model:	The	integrator	of	a	system	using	FACE	conformance	
components	combines	FACE	USMs	to	create	the	Integrated	Data	Model	for	the	
system.		

m) FACE	UoP	Vendor:	A	UoP	vendor	creates	the	software,	data	model,	and	UoP	
model	associated	with	a	UoP.	The	data	model	and	UoP	model	are	delivered	with	
the	UoP	software.	

n) Integrator	of	FACE	conformance	components:	The	integrator	of	a	system	using	
FACE	conformance	components	is	a	stakeholder	responsible	for	resolving	USMs	
from	FACE	UoP	vendors	and	for	configuring	a	TSS	that	routes	data	between	
UoPs.			

o) FACE	UUID:	Every	element	in	the	Data	Model	has	a	unique	identifier	created	
using	the	UUID	standard.	

p) UoPInstance:	A	UoPInstance	is	a	configuration	item	describing	a	UoP’s	role(s)	in	
a	given	system	configuration	as	described	by	the	Integration	Model.	A	single	
UoP	may	have	multiple	instances	in	a	system.		

q) UoPConnection:	A	UoPConnection	describes	the	UoP’s	assumptions	about	its	
connection.	A	UoPConnection	does	not	identify	the	sender	or	receiver	on	the	
other	end	of	the	connection	(See	Figure	7).	

r) UoPEndPoint:	A	UoPEndPoint	describes	the	routing	configuration	associated	
with	a	single	UoPConnection	(See	Figure	7).	

C. Reference	Example	
10) This	annex	uses	the	FACE	Basic	Avionics	Lightweight	Source	Archetype	(BALSA)	

example	as	a	point	of	reference.	BALSA	source	code	and	FACE	models	are	available	
to	members	of	The	Open	Group	FACE	Consortium.	
a) Understanding	of	BALSA	is	not	required	to	use	this	annex.	

Copyright	2018	Adventium	Labs.		 9	

	

	
Figure	3:	BALSA	modeled	in	AADL	

D. Packaging	
11) This	annex	does	not	provide	specific	packaging	requirements.	However,	modelers	

are	encouraged	to	create	separate	packages.	
a) One	package	for	the	Data	Model	
b) One	or	more	packages	for	UoPs	
c) One	package	for	each	Integration	Model	

12) The	USMs	for	each	UoP	will	contribute	both	to	the	Data	Model	package	and	to	the	
UoP	package(s).	

13) Example	
File	 Description	 Notes	

data_model.aadl data and	data
implementations
corresponding	to	FACE	
entities	and	views

	

IOS.aadl thread groups	for	IOS	
UoCs

OSS.aadl components	for	the	OSS	
PSSS.aadl thread groups	for	PSSS	

UoPs

PCS.aadl thread groups	for	PCS	
UoPs

TSS.aadl abstract defining	a	TSS

Copyright	2018	Adventium	Labs.		 10	

integration_model.aadl system and system
implementation for	a	
system	including	FACE	

conformant	components

Optionally	includes	
time	and	space	
partitioning	via	
process	and	
virtual
processor	

	

E. Data	Model	
14) The	Data	Model	(top	of	Figure	1)	describes	data	relevant	to	a	system	using	FACE	

conformant	components.		
a) The	System	Integrator	uses	the	FACE	Shared	Data	Model	and	USMs	provided	by	

UoP	vendors	to	construct	a	Data	Model.	
b) UoP	vendors	use	or	extend	the	Shared	Data	Model.	This	means	that	different	

UoPs	will	share	an	ontological	heredity	between	their	views,	easing	the	path	to	
translating	from	one	to	the	other.		

15) Each	entity	in	the	Data	Model	is	modeled	in	AADL	as	a	data.	
a) Modeling	the	realization	hierarchy	of	Data	Model	entities	is	not	necessary	for	

most	AADL	analysis.	
	

FACE	Entity	 AADL	Entity	 Properties	
Data	Model	 package (optional) 	

Data	Model	Entity	
Composition:	
Conceptual	

data • FACE::UUID
• FACE::Realization_Tier
=> conceptual

Data	Model	Entity	
Composition:	

Logical	

data or data
extends…

• FACE::UUID
• FACE::Realization_Tier
=> logical

Data	Model	Entity:	
Platform	

data or data
extends…

• FACE::UUID
• FACE::Realization_Tier
=> platform

• Memory_Properties::Data_
Size

16) Example	
	
Conceptual	 data aircraftID_Conceptual

 properties
 FACE::UUID => "{0540db6f-67fd-430c-bc72-84126daa00cc }";
 FACE::Realization_Tier => conceptual;
end aircraftID_Conceptual;

Logical	 data aircraftID_Logical extends aircraftID_Conceptual
 properties
 FACE::UUID => "{ cf4c9604-f2a4-4e38-8937-05fd08e00f0a}";
 FACE::Realization_Tier => logical;
end AircraftID_Logical;

Copyright	2018	Adventium	Labs.		 11	

Platform	 data AircraftID_Platform extends aircraftID_logical
 properties
 FACE::UUID => "{5e4a3697-13b0-4c35-ba56-29f61f4cdc35}";
 FACE::Realization_Tier => platform;
end AircraftID_Platform;	

	
	

F. Data	Model	Views	
17) A	FACE	Platform	View	is	composed	of	data	from	the	platform	tier	of	the	FACE	data	

model.		
a) A	Platform	View’s	contents	are	defined	by	a	query,	the	semantics	of	which	are	

provided	in	section	J.3	of	the	FACE	Technical	Standard.	
b) A	Platform	View’s	organization	is	defined	by	a	template,	the	semantics	of	which	

are	provided	in	section	J.4	of	the	FACE	Technical	Standard.	
c) Each	Platform	View	is	modeled	as	a	single	data implementation.	
d) The	subcomponents	of	the	data implementation	are	determined	by	the	

Platform	View’s	template	and	that	template’s	boundQuery.	
	
FACE	Entity	 AADL	Entity	 Properties	
Conceptual	
View	

data and data
implementation

• FACE::UUID
• FACE::Realization_Tier

=> Conceptual
Logical	View	 data and data

implementation
• FACE::UUID
• FACE::Realization_Tier

=> logical
Platform	View	 data and data

implementation	
• FACE::UUID
• FACE::Realization_Tier

=> platform	
	
18) The	example	in	Table	1	shows	the	AADL	data	and	data implementation	for	a	

template	and	its	boundQuery	that	include	an	aircraftID	and	tailNumber.	
	
Platform	
View	

data aircraft_config
end aircraft_config;

data implementation aircraft_config.impl
 subcomponents
 aircraftID: data AircraftID_Platform;
 tailNumber: data Tail_Number_Platform;
 properties
 FACE::Realization_Tier => platform;
end aircraft_config.impl;	

Table	1	Example	platform	view	in	AADL	

Copyright	2018	Adventium	Labs.		 12	

G. UoP	Model	
19) The	scope	of	the	FACE	Data	Architecture	is	restricted	to	the	data	exchanged	by	

software.	FACE	3.0	does	not	describe	the	physical	attributes	of	a	system	(e.g.,	
binding	hardware	to	software).		

20) All	AADL	components	translated	from	FACE	UoPs	use	the	FACE::UUID	property	to	
denote	the	UUID	of	the	FACE	component	from	which	they	were	derived.	

21) A	collection	of	UoP	Instances	is	modeled	as	a	system implementation.	
22) The	UoP	model	does	not	include	routing	of	connections	between	UoPs.	Connection	

routing	is	described	in	the	FACE	Integration	Model.	
	

	

	
Figure	4:	Example	UoP	(ADSB.impl)	shown	inside	a	process	(ADSB.linux)	

23) Each	FACE	UoP	is	modeled	in	AADL	as	a	thread group.	
a) The	FACE	Technical	Standard	does	not	place	requirements	on	threading	of	UoPs,	

however	the	standard	does	provide	for	multiple	UoPs	in	a	single	ARINC653	
partition	or	POSIX	process.	In	Figure	4	a	single	UoP	is	shown	inside	a	process.	
However,	a	single	process	could	support	multiple	UoPs.	4	

b) A	single-threaded	UoP	is	modeled	as	a	thread group	containing	a	single	
thread.	In	Figure	4	the	UoP	is	called	ADSB.	It	is	of	type	ADSB.impl	and	is	
from	the	PSSS	package.	

c) UoPConnections	on	the	UoP	are	modeled	as	ports	on	the	UoP	thread
group.	In	Figure	4	the	UoPConnection	is	called	ATC_Data_In.	

d) AADL	ports	on	UoPs	reference	Views	via	type	constraints.	
e) The	FACE	Technical	Standard	provides	several	refinements	of	UoPConnection	as	

shown	in	Figure	5.	The	following	are	the	available	concrete	(non-abstract)	
connection	types:	
i) A	ClientServerConnection	is	modeled	as	an	in	event	data	port	and	an	out

event data port.	

																																																								
4	This	annex	translates	FACE	elements	to	AADL	components	that	can	be	used	in	
conjunction	with	a	processor	and/or	virtual	processor,	thereby	permitting	but	not	
requiring	adherence	to	ARINC653	or	POSIX	AADL	modeling	norms.	

Copyright	2018	Adventium	Labs.		 13	

ii) A	QueuingConnection	is	modeled	as	an	in	event	data	port	or	an	out
event data port.		

iii) SingleInstanceMessageConnection	is	modeled	as	an	in data port or	an
out data port.	

	
FACE	Entity	 AADL	Entity	 Properties	 Notes	
UoP	 thread

group	
• FACE::UUID
• FACE::FaceSegm

ent => PSSS or
PCS

• FACE::Profile

Can	also	be	
modeled	as	an	
abstract,	but	
thread group	
is	preferred.	

UoPInstance	 thread
group as
subcomponen
t

 When	a	thread
group	is	used	as	
subcomponent	of	
a	process,	it	is	
acting	as	a	
UoPInstance.	

UoPConnection	 See	concrete	
implementations	

• FACE::UUID
• FACE::ViewUUID
• Communication_

Properties::In
put_Rate and
Communication_
Properties::Ou
tput_Rate

The	rate	of	a	
UoPConnection	is	
specified	as	a	
period	in	seconds	
in	the	FACE	UoP	
Model,	requiring	
inversion	for	
representation	in	
AADL.	

ClientServerCon
nection	(extends	
UoPConnection)	

An in event
data port
with data
type from	
associated	view	
and	an out
event data
port with
data type
from	associated	
view

 Associated	views	
(requestType	and	
responseType)	
are	associated	
with	ports	
depending	on	the	
ClientServerRole	
property	of	the	
connection.	If	the	
connection’s	role	
is	Client,	then	the	
requestType	view	
is	associated	with	
the	out port	
and	the	
responseType	

Copyright	2018	Adventium	Labs.		 14	

view	is	associated	
with	the	in
port.	The	
association	is	
reversed	for	
ClientServerConn
ections	with	role	
Server.		

QueuingConnecti
on	(extends	
UoPConnection)	

in or	out
event data
port with
data type
from	associated	
view.		The	
direction	of	the	
port	is	
determined	by	
the	
MessageExchan
geType	
property.	
InboundMessag
e	corresponds	to	
an	in port,	
OutboundMessa
ge	corresponds	
to	an	out
port.

Communication_Prope
rties::Queue_Size
set	from Depth

	

SingleInstanceM
essageConnetion	
(extends	
UoPConnection)	

in or out
data port
with data
type from	
associated	view.	
The	direction	of	
the	port	is	
determined	by	
the	
MessageExchan
geType	
property.	
InboundMessag
e	corresponds	to	
an	in port,	
OutboundMessa

 	

Copyright	2018	Adventium	Labs.		 15	

ge	corresponds	
to	an	out
port.	

	

	
Figure	5	FACE	UoP	Connections,	extracted	from	the	FACE	Technical	Standard	Edition	3.0	

	
24) Each	thread	defined	in	the	UoP	is	modeled	as	an	AADL	thread.	

a) The	period	property	of	the	thread	is	assumed	to	be	in	seconds	and	is	
represented	AADL	using	the	Period	property.	

b) The	relativePriority	property	of	the	thread	is	assumed	to	imply	higher	numerical	
value	means	higher	priority	and	is	translated	directly	to	the	AADL	Priority	
property.		

c) The	timeCapacity	property	of	the	thread	is	assumed	to	be	in	seconds	and	is	
represented	in	AADL	using	the	Compute_Execution_Time	property.	

25) The	example	shown	in	Table	2	shows	a	thread	group	corresponding	to	an	Automatic	
Dependent	Surveillance-Broadcast	(ADSB)	UoP.	

	

UoP	 thread group ADSB
features

ADSB_From_ATCManager_Port: in data port
balsa_data_model::atc_data.impl;

properties

Copyright	2018	Adventium	Labs.		 16	

FACE::UUID => "{5884a330-a191-498a-9378-
11b61f3c1c77}";
FACE::FaceSegment => PCS;

end ADSB;
Table	2	Example	UoP	in	AADL	

H. TSS	
26) A	TSS	is	modeled	in	AADL	as	an	abstract	that	can	be	refined	to	accommodate	

varying	levels	of	model	detail.	
	

	
FACE	Entity	 AADL	Entity	 Properties	
TSS	 An	abstract	for	each	

TSS	in	the	system	
• FACE::UUID
• FACE::Segment=>TSS

TSS	(added	detail)	 An	abstract	for	each	
TSS	in	the	system	
implementation,	refined	
as	a	virtual bus
(for	example)	

• FACE::UUID
• FACE::Segment=>TSS

UoP	to	UoP	message	
route	

flow through one	
or	more	TSS	
abstract.	

• FACE::UUID

	

I. Routing	
27) The	FACE	Technical	Standard	specifies,	but	does	not	require,	a	formal	model	for	the	

configuration	of	the	TSS	called	the	Integration	Model.	The	Integration	Model	
includes	the	routing	of	data	between	UoPs.	Whether	or	not	they	opt	to	use	the	FACE	
Technical	Standard	Integration	Model,	system	integrators	will	have	to	connect	
UoPs.	This	annex	provides	a	standard	style	for	their	interconnection.	
a) This	document	supports	use	of	the	FACE	Integration	Model	as	specified	by	the	

FACE	Technical	Standard.		
b) This	document	provides	guidance	generally	applicable	to	routing	configurations.		

28) The	FACE	Technical	Standard	integration	metamodel	provides	mechanisms	for	
describing	inter-UoP	communication,	including	view	translation	(adapting	a	data	
interface	parameter	from	one	UoP	to	another).	

Copyright	2018	Adventium	Labs.		 17	

a) The	entities	of	the	FACE	Technical	Standard	integration	metamodel	are	shown	in	
Figure	6	and	Figure	7.	

29) A	UoPInstance	is	a	UoP	as	used	in	an	Integration	Model.	A	single	UoP	may	be	used	
multiple	times	in	a	FACE	Integration	Model.	The	UoP	is	modeled	as	a	thread
group	and	thread group implementation(s).	When	the	UoP	is	used	as	a	
subcomponent,	the	subcomponent	acts	as	a	UoPInstance.	
a) This	annex	does	not	specify	an	AADL	representation	of	the	Integration	Model	as	

a	whole.	
b) For	example,	suppose	a	message	logging	UoP	is	modeled	as	a	thread group	

named	logger	and	implemented	as	a	thread group implementation	
named	logger.impl.		If	the	FACE	Integration	Model	calls	for	a	UoPInstance	
named	my_logger,	an	AADL	subcomponent	of	type	logger.impl	with	
name	my_logger	should	be	used.	

30) The	FACE	Technical	Standard	does	not	specify	organization	of	UoPs	into	processes.	
Multiple	UoPs	may	be	modeled	in	a	single	process	or	in	multiple	processes.	

31) A	UoP	in	the	UoP	Model	defines	its	UoPConnections.	These	UoPConnections	are	
modeled	as	ports	in	the	thread group	or	thread group
implementation.	When	the	thread group	used	as	a	subcomponent,	its	
ports	act	as	UoPEndPoints.	
a) A	UoPEndPoint	is	a	feature	of	the	FACE	Technical	Standard	Integration	Model	

and	describes	part	of	the	TSS	configuration.	Each	UoPEndPoint	refers	to	a	single	
UoPConnection	that	it	services	(see	Figure	7).		

b) Note	that	a	UoPConnection	is	not	equivalent	to	an	AADL	connection.	
c) Note	that	a	UoPEndPoint	is	not	directly	equivalent	to	an	AADL	port.	A	

UoPEndPoint	and	a	UoPConnection	together	define	an	AADL	port.		
d) AADL	ports	corresponding	to	UoPConnections	may	be	organized	into	

feature groups.	
32) A	TSNodeConnection	describes	the	connection	from	a	UoP	to	the	TSS	(not	to	

another	UoP)	
33) A	TransportChannel	is	modeled	as	an	AADL	virtual	bus	to	which	a	

ViewTransporter	is	bound.	For	example,	a	FACE	Integration	Model	might	configure	a	
view	to	be	transported	between	UoPs	by	a	ViewTransporter	and	adapted	between	
types	using	a	ViewTransformation.	

34) The	example	in	Table	3	shows	UoP	data	routing	through	a	TSS.	Connections	go	
from	UoPs	to	a	TSS	and	flows	describe	data	going	from	UoP	to	UoP.		
a) The	Integration	Model	alone	is	insufficient	to	describe	flows	that	traverse	more	

than	two	UoPs.	The	flows	in	Table	3	include	information	beyond	that	provided	in	
the	Integration	Model.	

UoP	
Routing	
through	
TSS	

connections
AirConfig_To_TSS: port airConfig_PSSS.airconfig_out ->
TSS.airconfig_in;

TSS_To_ATC_Port: port TSS.airconfig_out ->
atc_PCS.airconfig_in;

Copyright	2018	Adventium	Labs.		 18	

ATC_To_TSS: port atc_PCS.adsb_out -> TSS.adsb_in;
TSS_To_ADSB: port TSS.adsb_out -> ADSB_PSSS.ATC_Data_in;

flows
AirConfig_ETE: end to end flow
airconfig_PSSS.AirConfig_Source -> AirConfig_To_TSS ->

TSS.AirConfig_flow -> TSS_To_ATC_Port ->
atc_PCS.airconfig_adsb_flow -> ATC_To_TSS ->
TSS.adsb_flow -> TSS_To_ADSB -> ADSB_PSSS.ATC_Sink;	

Table	3	Example	UoP	Routing	through	a	TSS	

	
FACE	Entity	 AADL	Entity	 Properties	
Integration	Model	 system

implementation	
• FACE::UUID

	
	
FACE	Entity	 AADL	Entity	 Properties	
UoP	Instance	 thread group as

subcomponent	
• FACE::UUID

UoPOutputEndPoint	 port on thread

group as
subcomponent

• FACE::UUID

TSNodePort	 port on	a TSS
abstract

• FACE::UUID

TSNodeConnection	 connection • FACE::UUID
ViewTransporter	 abstract • FACE::UUID

TransportChannel	 bus with view	
transporter	abstract	or	
view	transporter	
refinement bound to	
it

• FACE::UUID

ViewFilter,	
ViewTransformation,	
ViewAggregation,	
ViewSource,	ViewSink	

abstract to	be	refined	
on	an	implementation-
specific	basis

• FACE::UUID

Copyright	2018	Adventium	Labs.		 19	

	

	
Figure	6	FACE	Integration	Package,	extracted	from	the	FACE	Technical	Standard	Edition	3.0	

	
Figure	7	FACE	Integration	Transport	Package,	extracted	from	the	FACE	Technical	Standard	Edition	3.0	

 	

J. IOSS		
35) The	IOSS	Layer	(bottom	of	Figure	2)	provides	an	API	but	does	not	have	a	formal	

exchange	model,	as	IOSS	components	are	inherently	specific	to	a	particular	
platform.		

Copyright	2018	Adventium	Labs.		 20	

a) IOSS	components	are	modeled	in	AADL	as	abstracts.	
b) A	PSSS	UoP’s	use	of	IOSS	functions	is	modeled	in	AADL	using	subprogram	calls.	
c) The	physical	component	to	which	the	IOSS	service	provides	access	is	modeled	in	

AADL	as	a	device.	
d) The	bus	used	by	the	IOSS	service	to	communicate	with	its	physical	component(s)	

is	modeled	in	AADL	as	a	bus access.	
	
FACE	Entity	 AADL	Entity	 Properties	
IOSS	Service	 abstract		 • FACE::UUID

• FACE::Profile
• FACE::Segment=>IOSS

IOSS	Device	 Device • FACE::UUID
• FACE::Segment=>IOSS

IOSS	Bus	 bus access • FACE::UUID
• FACE::Segment=>IOSS

	

K. FACE	Health	Monitoring	and	Fault	Management	(HMFM)	
36) The	FACE	HMFM	API	is	a	subset	of	the	ARINC653	HMFM	API,	which	is	described	in	

the	AADL	ARINC653	annex.		
	

L. FACE	Profiles	
37) The	FACE	Technical	Standard	provides	several	operating	system	profiles	describing	

which	system	calls	are	legal	for	a	UoC.	

M. FACE	Lifecycle	Management	
38) The	FACE	Lifecycle	Management	architecture	is	out	of	scope	for	the	current	version	

of	this	document,	however	the	Lifecycle	Management	APIs,	States,	and	Transitions	
will	likely	translate	naturally	to	the	AADL	Behavior	Annex.	

	

N. FACE	Artifact	Parsing	Guide	
39) The	Data	Model,	UoP	Model,	and	Integration	Model	are	provided	in	a	standardized	

EMOF	format	provided	in	section	J.5	of	the	FACE	Technical	Standard.	
	

Copyright	2018	Adventium	Labs.		 21	

O. FACE	Property	Set	
property	set	FACE	is	
	 Profile:	enumeration	(security,	safety_extended,	safety,	general)	
applies	to	(all);	
	 Tier:	type	enumeration	(conceptual,	logical,	platform);	
	 UUID:	aadlstring	applies	to	(all);	
	 Realization_Tier:	FACE::Tier	applies	to	(all);	
	 segment:	type	enumeration	(PSSS,	PCS,	IOSS,	OSS,	TSS);	
	 FaceSegment:	FACE::segment	applies	to	(all);	
end	FACE;

	
	

