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Foreword
The tenth annual Goddard Conference on Space Applications of Artificial Intelligence and
Emerging Information Technologies is sponsored by the Mission Operations and Data
Systems Directorate (Code 500) with the participation of the Earth Sciences Directorate's
Space Data and Computing Division (Code 930). This year, we have expanded the scope
of the Conference to accommodate emerging information technologies such as software
agents in recognition of their links to AI.

The mission of the conference is very much the same as it was ten years ago: to offer a
forum for practitioners of AI who are engaged in developing and fielding AI systems
directed to space applications. Ten years ago, AI was considered a specialty field, a field
some claimed was misnamed. Regardless of the controversy, the use of the techniques
being promoted in the "AI" discipline continues to grow, as evidenced by the wide variety
of contributions (papers, tutorials, etc.) at this conference.

AI is generally accepted today as a valid discipline, i.e., successfully integrated into
mainstream computing. It is not unusual to hear of fielded systems containing embedded
AI, expert systems, fuzzy logic, etc. Fuzzy logic, for example, has found its way widely
into industrial and consumer applications. AI-based systems are now used routinely at
NASA to assist with mission planning, science and mission operations, and flight safety,
an impressive technology infusion track record.

The Goddard AI Conference has weathered ten years; during this period this Conference
has documented the solid progress made in space applications of AI. Our plans are to
continue into 1996; the Call for Papers for the 1996 Conference is included in these
Proceedings.

The Chair would like to thank the members of the Conference Committee for their
contributions in preparing for this Conference; the quality of the event is directly
attributable to their efforts and dedication. Thanks to the diligent efforts of a Committee
member, we now have a WWW Home Page for our Conference:

http ://defiant. gsfc. nasa. gov/aiconf/AI-con f-General, html

The Committee would like to thank the speakers, presenters and authors for their
contributions; they are the substance of the Conference. I would also like to acknowledge
the NASA Center for AeroSpace Information (CASI) for their contribution of abstracts for
inclusion in these Proceedings.

The Committee would like to thank Dale Fahnestock, Director of Code 500, for continually
supporting the Conference over the years. It is the vision of Goddard management that has
made this Conference possible. The Committee would also like to acknowledge Patricia
Lightfoot and William Macoughtry for having had the foresight and resolve to initiate this
Conference ten years ago.

David Beyer
Chair

1995 Goddard Conference on Space Applications
of Artificial Intelligence and Emerging

Information Technologies
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Abstract

Several current NASA programs such as the
EOSDIS Core System (ECS) have data pro-
ceasing and data management requirements
that call for an integrated planning and
_sc/b_eduling capability. As we have shown in
previous work, the scale and complexity of
data ingest and product generation for ECS
will overwhelm the capabilities of manual
planning and scheduling procedures. Meet-
ing this challenge requires the innovative ap-
plication of advanced technology. Some of
our work on developing this technology was
described in a paper presented at the 1994
Goddard AI Conference, in which we talked
about advanced planning and scheduling ca.
pabilities for product generation. We are now
moving to deploy some of the technology we
have developed for operational use.

We have implemented a constraint-based
task and resource scheduler for the GSFC
Version 0 (V0) Distributed Active Archive
Center (DAAC) requirements. This sched-
uler, developed by Honeywell Technology
Center in cooperation with the Information
Science and Technology Branch and with the
V0 DAAC, makes efficient use of limited re-
sources, prevents backlog of data, and pro-
vides information about resource bottlenecks
and performance characteristics. It handles
resource contention, prevents deadlocks, and
makes decisions based on a set of defined

policies. The scheduler efficiently supports
schedule updates, insertions, and retrieval of
task information. It has a graphical inter-
face that is updated dynamically as new tasks

arrive or existing tasks are completed. The
kernel scheduling engine, called Kronos, has
been successfully applied to several other do-
mains such as space shuttle mission schedul-
ing, demand flow manufacturing, and avion-
ics communications scheduling. Kronos has
been successfully applied to scheduling prob-
lems involving 20,000 tasks and 140,000 con-
straints, with interactive response times for
schedule modification on the order of a few
seconds on a SPARC10.

In this-paper, we describe the experience
of applying advanced scheduling technology
operationally, in terms of what was accom-
plished, lessons learned, and what remains
to be done in order to achieve similar suc-
cesses in ECS and other programs. We dis-
cuss the importance and benefits of advanced
scheduling tools, and our progress toward re-
alizing them, through examples and illustra-

-- tions based on ECS requirements. The first
_ part of the paper focuses on the Data Archive

_- and Distribution (DADS) V0 Scheduler de-
scribed above. We then discuss system in-
tegration issues ranging from communication
with the scheduler to the monitoring of sys-
tem events and re-scheduling in response to
them. The challenge of adapting the sched-
uler to domain-specific features and schedul-
ing policies is also considered. Extrapolation
to the ECS domain raises issues of integrating
scheduling with a product-generation planner
(such as PlaSTiC), and implementing con-
ditional planning in an operational system.
We conclude by briefly noting ongoing tech-
nology development and deployment projects
being undertaken by HTC and the ISTB.
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1 Introduction

In both joint and separate work at NASA's Goddard
Space Flight Center and the Honeywell Technology
Center, we have been working on automating the ac-
quisition, initial processing, indexing, archiving, anal-
ysis, and retrieval of satellite earth science data, with
particular attention to the processing taking place at
the DAACs.

After describing our motivation in section 2 and re-
lated work in section 2.1 and section 3 we focus on
the DADS V0 Scheduler. In section 4 we present gen-
eral scheduling requirements initially derived from the
DADS application, but extended to encompass simi-
lar NASA instrument processing such as the Clouds
and Earth's Radiant Energy System (CERES) and
the Moderate Resolution Imaging Spectroradiometer
(MODIS). Then, we describe the implementation and
operation of the prototype DADS V0 Scheduler with
particular attention to lessons learned that have en-
hanced its generality and reusability for other appli-
cations. We conclude with a short summary of our
conclusions and plans for future work.

2 Motivation

Management of complex systems requires skill in a
variety of disciplines. Two critical management dis-
ciplines involve deciding what activities to perform,
which we call planning, and deciding when those ac-
tivities should be performed, which we call scheduling.
In large systems such as ECS these functions must be
automated, since the sheer volume of data will over-
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whelm human managers.

It is not sufficient to simply plan and schedule the re-
quired activities. These decisions inherently model the
target system. Even when this model is made highly
detailed, it can never capture all of the details and pos-
sible future behaviors of an actual system. Scheduled
activities will require more or less time than scheduled.
Requests will arrive unexpectedly. Resources will be
unavailable or will fail during use. Efficient ope_.ation
and resource utilization requires that execution must
be monitored and future activities rescheduled in re-
sponse to real world events.

Hence, the overall advantages for using scheduling in-
clude:

• automation of routine operations,

• timely delivery of data products,

• efficient use of computational resources.

Satisfaction of these requirements will lead to reduc-
tion in staff, use of cheaper hardware, and user satis-
faction. These principles are being applied to both the
Intelligent Information Fusion System (IIFS) and the
DADS in the next sections.

2.1 Intelligent Information Fusion

Since 1989, the IIFS is an prototype system for test-
ing advanced technologies for processing, archiving,
and retrieval of remote sensing imagery. The IIFS is
currently being applied to the next generation direct-
readout domain, whereby data are received from the
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Figure 2: A Simple Problem with Duration and Partial
Orders

direct broadcast from orbiting platforms for the re-
gion encompassing the acquisition and loss of the
spacecraft's signal. These inexpensive ground sys-
tems are used for weather forecasting in remote areas
of the world, collection of in situ data, and calibra-
tion/validation of sensor data to name a few.

The planning/scheduling portion of the IIFS is used
to manage the production pipeline. Essentially, the
planner/scheduler sacrifies accuracy for time in gener-
ating the data product. That is, if enough time and
resources exist, then the planner/scheduler generates
the normal data product, called a standard product
in the EOS nomenclature. If not, then the planner
substitutes computationally cheaper algorithms until
resource constraints can be met. The result is called
a browse product and is used soley by the scientists
during the data selection phase. Should the scien-
tist decide that greater accuracy is required, then the
plan can be regenerated under less computationally
constrained circumstances. This may, for example, in-
volve issuing a request to EOSDIS' DADS if the direct-
readout center is incapable of handling the request.

During the past few years, several planner/schedulers
have been tested in this domain. The next section
briefly discusses only one of these planners, called
PlaSTiC.

3 PlaSTiC

PlaSTiC (Planning and Scheduling Tool implemented
using Constraints) is an automated planning tool de-
signed to automatically generate of complex plans.
PlaSTiC was developed as a prototype for the genera-
tion image analysis plans (browse products and scien-
tific data) in the EOSDIS domain.

A typical plan might detail the processing steps to be

taken to clean up, register, classify, and extract fea-
tures from a given image. Plan steps will be executed
in a resource-limited environment, competing for such
resources as processing time, disk space, and the me
of archive servers to retrieve data from long-term mass
storage. Choices of these algorithms depends on the
type of satellite, region of the country, computation
characteristics (e.g., deadline, resource l_quirement,
etc.).

PlaSTiC is an integration of hierarchical planning sad
constraint-based scheduling. TMM provides the bm/J
for temporal lessoning sad constraints. The planning
component is based on an implementation of NON-
LIN developed at the University of Maryland. PIns-
TiC extends NONLIN-style planning to include
soning about durations and deadlines.

The schemas used by PlasTiC, which are based on
NONLIN's Task Formalism (TF), have been extended
to record information about the estimated sad worst-
case duration of a given task, and about the task's
resource usage. This information is used during phm
construction, for example in the rejection of an other-
wise promising expansion for a given sub-tnsk because
it requires more time than is available. It is aim used
in the construction of detailed schedules for image pro-
cessing tasks.

The fact that actions take time was abstracted out in
the earliest domain models. Planners using these mod-
els will be of limited use in domains where synchronias-
tion with other events or processes is important. This
may include such domains as manufacturing planning
and scheduling, spacecraft operations, robot planning
in any but the most simplified domains, sadschedub
ing distributed problem-solving or other pro_ng.
It certainly includes analysis and retrieval planiiing
within ECS.

Several planners include representations for metric
time and action durations. This kind of reuoning
tends to be computationally expemdve. Forbid, De-
riser, and Sips all suffer from performance problems
limiting the size of the problems to which they can be
applied. Oplan-2 appears to be able to handle some-
what larger problems than the other planners men-
tioned here.

Implementing an efficient temporal reasoning system
is not the sole hurdle, however. Adding duration to
nonlinear plans increases the difficulty of determining
whether or not the current partial plan can be refined
into a plan that will have the desired effects. In fact,
it becomes difficult to determine simply whether the
actions described in the current partial plan can even
be executed.
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Consider the simple plan fragment in Figure 2. There
are two unordered tasks, each annotated with an es-
timated duration. If actions can only be taken in
sequence, the two tasks depicted must eventually be
ordered. When the planner tries to order them, it
will discover that neither ordering will work, because
there simply isn't room for them to be performed in
sequence. In general, determining whether there is an
ordering for a set of actions constrained in this way is
a hard problem.

To date, two methods have been used to address this
problem. The first is simulation: the planner main-
rains a partial order, and after every modification ex-
pends some effort exploring the corresponding set of
total orders to ensure that there is some feasible to-
ted order [Miller, 1985, Muscettola, 1990]. As gener-
ally employed, this is a heuristic method: the plan-
ner gives up before exploring the complete set of con-
sistent total orders. Another approach, described in
[Williamson and Hanks, 1988], involves organizing a
partially-ordered plan into a tree of abstract opera-
tor types, known as Hierarchical Interval Constraints
(HIC). Each HIC type has a function defined for cal-
culating bounds on its duration. For the example in
Figure 2, the two activities would be contained in an
HIC whose duration was calculated by summing the
duration of the included operators. The problem with
this approach is the required tree structure. If actions
must be ordered for reasons that are not locally deter-

minable (e.g. because of resource conflicts, not because
they are sequential steps in some task reduction), this
representation will break down. It may be possible
to augment Williamson and Hanks' representation to
cope with a limited number of special structures rep-
resenting such nonlocal information.

In PlaSTiC, we have started with the assumptions that
resource conflicts are significant, that activity dura-
tions are nontrivial, and that deadlines will be a factor.
For these reasons, the temporal reasoning underlying
PlaSTiC is implemented in a full-fledged scheduling
engine, so that resource conflicts can be noted and
resolved as part of the planning process. Similarly,
deadline checks are performed automatically as task
reduction and order proceeds, triggering backtracking
as necessary. The task hierarchy employed by PlaSTiC
maintains at all levels a set of duration estimates, so
that deadline and resource conflicts may be noticed be-
fore a task is expanded all the way to primitive actions.
This approach is consistent with the simulation-based
technique described above, but so far we have had con-
siderable success in simply resolving possible problems
(e.g., potential resource conflicts) as they arise.

The scheduling component of PlasTiC is built on the
Kronos scheduling engine. The DADS V0 Scheduler

described below employs this same technology, but
with significant extensions to address domain specific
scheduling and system integration issues

4 DADS V0 Scheduler

Unlike direct-readout centers which will dynamically
create data flow sequences, the DADS of EOSDIS
maintains a database of fixed data flow diagrams.
These are retrieved upon request from a database
to accomplish various DADS functions. Hence, the
DADS required only scheduling and dispatch technol-
ogy for nominal operations.

In particular, the DADS V0 Scheduler is responsible
for scheduling actions and resources to ingest data
from a network to buffer disks, transfer buffered data
to a mass storage archive, and to retrieve archived
data upon request. The scheduler was developed con-
currently with the design and implementation of the
GSFC V0 DADS. Consequently it was essential that
the architecture and interfaces be able to tolerate
changes as the system design evolved. The baseline ar-
chitectural environment of the scheduler is depicted in
Figure 3. This environment continues to evolve, but its
conceptual and functional characteristics remain sta-
ble, so many system changes can be accommodated in
the Application Program Interface (API).

The DADS Manager submits scheduling requests, han-
dles errors, and retrieves schedule information. The
Task Dispatcher periodically queries the scheduler for
a list of upcoming scheduled activities to be executed.
The execution monitor notifies the scheduler of events
that affect the schedule.

4.1 Approach

The scheduling tool described in this paper was de-
signed to meet the scheduling and resource allocation
needs of the GSFC V0 DAAC while simultaneously
using the IIFS as a testbed.

Constraint envelope scheduling technology offers an
attractive, proven method of meeting the scheduling
needs of data archiving and distribution. This tech-
nology, embodied in Honeywell's enhanced implemen-
tation of the Time Map Manager (TMM), supports the
concept of a Temporal Constraint Graph (TCG) which
can be used to represent multiple projections of future
system behavior, thereby providing rapid rescheduling
with minimal disruption in the presence of schedule
uncertainty.

The DADS V0 Scheduler is an application of the Kro-
hoe scheduling engine, built on top of TMM. Kro-
nos has been successfully applied to domains such as
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space shuttle mission scheduling, demand flow man-
ufacturing, and avionics communications scheduling.
It has handled scheduling problems involving 20,000
tasks and 140,000 constraints, with interactive re-
sponse times for schedule modification on the order
of a few seconds on a SPARC10.

4.2 Scheduler Requirements

Detailed scheduler requirements were initially estab-
lished for the DADS application, then extended and
adapted to encompass the scheduling needs of other
NASA programs. The following paragraphs summa-
rize requirements at a high level. They confirm the
need to be appropriate to the application domain, to
be compatible with the target system, and to provide
responsive performance reliably.

Domain Appropriate Commercial scheduling
tools sacrifice domain relevance to extend their range
of applicability, and hence their marketability. They
often lack the capacity to efficiently handle the precise
scheduling needs of large, complex applications. In or-
der to select or define a scheduling tool that is domain
appropriate, application driven requirements must be
established. Whenever possible, these requirements
should be based on multiple examples of domain op-
erations and scheduling functions using realistic data
sets. They must include quantitative demonstration
that capacity and performance goals can be met si-
multaneousiy.

Since the GSFC V0 DADS is being developed concur-
rently with the prototype scheduler, we were careful to
maintain a high degree of generality in the scheduler
implementation. By first building a core scheduling
capability derived from our Kronos scheduling engine,
and then extending that capability through specializa-
tion, we were able to meet the specific needs of DADS

while providing a scheduling tool that can easily be
applied to similar problem domains.

Stated as a system requirement, the scheduling core
domain model must be compatible with objects and
functions required by the target application. Further,
its customization capabilities must support accurate
modelling of every schedule relevant aspect of the do-
main. Care should be taken to ensure that this model
reflects the intended scheduling policies and proce-
dures of the application, and not the characteristics of
analytical models used to project system performance.

Details of the scheduling core domain model are de-
scribed in section 4.4.1. For the prototype scheduler,
subclasses were created to capture application specific
attributes and relationships. These attributes may be
used to carry system data through the schedule or to
support performance monitoring and analysis.

In one instance this derivation was particularly en-
lightening. The Kronos scheduling engine associated
resource utilization with the duration of the activities
to which a resource was assigned. If a common re-
source was to required by multiple disjoint activities,
it was expected that a an encompassing parent activity
would specify the requirement and would be assigned
the shared resource. In the GSFC V0 DADS, there is
no encompassing parent activity. Resource utilization
can be initiated by one activity (e.g., through transfer
of network data to a space on buffer disk) and must
persist indefinitely into the future (e.g., until a future
activity transfers it to the archive).

By creating persistent requirement and persistent re-
source profile classes as subclasses of the requirement
class and resource profile class, respectively, we were
able to provide the necessary scheduler functionality
with a minimum of disruption. Persistent require-
merits have the option of specifying that they begin,

95



use, or ending with their associated activity. This al-
lows the resource allocation to be open ended if de-
sired.

To be effective, any tool must be functionally com-
plete. That is, it must be able to solve the prob-
lems to which it is applied. A scheduler must en-
force structural constraints (i.e., predecessor-successor
sad parent-child relationships), temporal constraints
(e.g., earliest start or deadline), and resource svailsbi]-
ity constraints while carrying out the desired schedul-
ing and resource allocation policies in an automated
fashion. In the prototype scheduler, policies ate cur-
rently encoded as functions and a domain specific -l-
gorithm (as described in section 4.4.3. We plan to
eventually excise policy details from the scheduler by
defining syntax for policy specification. This specifi-
cation will then be input to the scheduler and used to
control scheduling and resource allocation decisions.

Compatible - The scheduling tool described here is
designed be integrated as a functional component into
the target application system. It cannot dictate re-
quirements to that system, rather, it must adapt to
the physical and logical demands of the encompassing
system. The scheduler must execute on available hard-
ware running the specified operating system. It must
be able to communicate with asynchronous functional
modules of application system via standard interpro-
tess communication system facilities.

The scheduler must also be linguistically compatible
with the surrounding system. It must be able to inter-
pret and respond appropriately to requests for service
and information. The prototype scheduler meets this
requirement in several ways. The scheduler includes an
API customized to the syntactic and semantic needs
of the DADS modules with which it interacts. An
underlying set of basic API functions facilitates this
customization.

The scheduler supports the notion of activity state.
The exact states and legal state transitions are defined
for the application. In DADS, activities can be sched-
uled, committed, dispatched, executing, complete, or
failed. Additional states and even additional state di-
mensions can be added as the need arises.

Responsive - Performance is often a critical require-
ment, but it is frequently overlooked in scheduling.
It is assumed that scheduling will be performed once
in an initial scheduling effort and that the resulting
schedule will satisfactorily describe the actual execu-
tion of activities. This view is seldom correct.

We have segregated the total problem into two phases,
planning (what to do) and scheduling (when to do it).
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By making this distinction, we have not only, made
each aspect more manageable, but we can tailor the
functionality an performance of each component's im-
plementation to the needs of the application. Planning
typically occurs before scheduling, though replannlng
may become necessary. In the GSFC V0 DADS sl>-
plicstion, there is a small set of functions to be per-
formed (e.g., ingestion, distribution). These can be
pre-planned in advance and described to the scheduler
as tasks (with subtssks).

The scheduler must, on demand and in near real time,
fit each new instance of s task into the current schedule
in accordance with task priorities and deadlines while
ensuring that necemszy resources will be available. As
actual events occur in the execution of the scheduler,
it must rapidly reschedule to reflect the impact of the
event. It must provide data to support graphic presen-
tation of the current schedule, sad even allow operator
manipulation of tasks.

Reliable - The fault tolerance approach employed
by the target application must be supported by the
scheduler. In the GFSC V0 DADS this translates to
requirements for redundant archiving of schedule in-
formation and rapid recovery of the schedule after a
failure. The prototype scheduler does not fully include
these features st present. However, basic mechanisms
needed for reload are present in the script processor de-
scribed in section 4.3. Also, previous schedulers based
on the Kronos engine have included schedule storage
and reload capabilities.

4.3 Prototype Environment

The DADS V0 Scheduler is being developed concur-
rently with the GSFC V0 DADS. Consequently it
was necessary to provide a stand-alone environment in
which to test and demonstrate scheduler functionality.
The operation of components external to the sched-
uler was simulated via a script processor as shown in
Figure 4. The script processor is controlled from a
demonstration Graphical User Interface (GUI) that
displays schedule activities and resource utilization
profiles. Snapshots of the demonstration GUI screen
may be seen in Figures 7 and 8. The GUI supports
selection and execution of an event script which the
script processor translates into API commands that it
sends to the scheduler.

A typical script initializes the scheduler by describing
the resources available for scheduling, commands the
creation of activities to be scheduled, and simulates
execution events such as completion of execution. The
script also notifies the GUI as objects to be displayed
are created.
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Graphical presentation of scheduler operation is visu-
ally convincing, but it is inconvenient for testing and
benchmarking purposes. Recently, auditing and test
functions were added to facilitate execution and val-
idation of complex event scripts. The test function
automates the execution of scripts and the invocation
of the audit function, which checks the schedule for
consistency and correctness.

4.4 Architecture of the Scheduler

The internal architecture of the scheduler is depicted
in Figure 5. The base layer supplies basic temporal
reasoning capability. This includes objects such as un-
certain time-points and constraints, and functions for
updating and querying the temporal knowledge base.

The Scheduling Core Domain Model supplies the ba-
sic objects and functions needed for scheduling and
resource management. Combined with the Generic
API, these layers form a core scheduling capability
that can be applied to various scheduling domains. In
the DADS V0 Scheduler implementation, the base do-
main model was extended through specialization and
extension to provide appropriate domain-specific ca-
pabilities, shown in the figure as the DADS Domain
Model and the DADS API.

4.4.1 Domain Model

Key object classes of the scheduling core domain model
include resources, requirements, activities and hierar-
chical activities. These are shown in Figure 6 along
with related objects classes of the DADS scheduling
domain model.

An activity represents an action to to be scheduled.
Each activity has an associated main-token which de-
fines its end points in time and its possible duration
range. An activity may be linked to multiple resource
requirements. These abstractly define attributes that
must be satisfied by the resources allocated to the ac-
tivity. A subclass of the activity allows hierarchical
activity structures to be defined. These were treed in
the DADS scheduler to implement tasks with compo-
nent subtasks.

As an example, in the DADS application, a data inges-
tion task will have several subtasks. The data buffer-
ing subtask requires access to the FDDI network and

a specific amount of space on one of the data inges-
tion magnetic disks. A subsequent archiving subtask
requires access to the data on buffer disk and space on
the UNITREE archive magnetic disk.

The core resource classes allow resources to be concep-
tually organized into pools using a hierarchical name
structure (which permits wildcards) and using a list of
resource attributes. Each resource has an associated

availability that defines the maximum quantity of that
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Figure 6: Key DADS Scheduling Object Classes

resource and its temporal range.

Specializations of the core object classes extend the hi-
erarchy to include characteristics of the target domain.
In the DADS scheduler these specializations share a
common parent class, the DADS object, which defines
attributes every DADS activity, resource requirement,
or resource must have. Only the client and dads-name
attributes are shown in the figure.

4.4.2 Application Program Interface (API)

The Application Program Interface was specified for-
mally by documenting data content (i.e. fields and
forms) of the primary information components (i.e.
tasks, subtasks, resources, etc.) exchanged between
the scheduler and DADS subsystems. For each com-
mand, the documentation details the participants in
the exchange utilizing the command, the conditions
under which the command occurs, the intent (seman-
tics) of the command, and the scheduler's response to
the command under both normal and error conditions.

The following command categories describe the func-
tions of the scheduler visible via the API. The cat-
egories have been intentionally kept rather abstract
and high level here. Not all command categories have
been fully implemented in the prototype scheduler.

Definition/Iv*tantlation - Inform the scheduler of
the existence of scheduling entities such as activities
(i.e. tasks and subtasks), resources, and abstract re-
source utilization requirements. These commands do
not cause scheduling to occur.

Modification - Change the specifics of information
known to the scheduler. This category encompasses
only changes to the scheduling problem (e.g. relax-
ation of a deadline). It does not include notification of
real-world execution events.

Interrogation/Retrieval Retrieve schedule and
resource allocation information from the scheduler.
This information is based on the scheduler's model of
the problem space, its record of past events, and its
projection of future events including resource utiliza-
tion.

S chedullng/Rescheduling - Compute a
new schedule with resource allocations. Commands in
this category may be invoked indirectly by commands
in the Update/Synchronization category.

Update/Synchronlzatlon - Inform the scheduler
of the occurrence of real-world events (e.g. activity
execution completion) which may affect the schedule.
This category also includes commands for the trans-
fer of responsibility for an activity from the scheduler
to another subsystem (e.g., an execution monitor or
dispatcher).

Notification - Inform another subsystem that a
problem (or potential problem) has been detected by
the scheduler.

Communication Handshaking - Provide positive
acknowledgement of information transfer.
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Figure 7': Schedule after Data 1 #1 Arrives

Fault-Tolerance/Recovery - Support for informa-
tion backup and recovery from failures.

4.4.3 Scheduling Policy

The operation of the scheduler is controlled by schedul-
ing policies. These are currently captured in domain
specific algorithms for resource assignment and activ-
ity scheduling.

The baseline resource assignment and scheduling algo-
rithm is:

For each activity to be scheduled:

• If the activity has component activities,
Schedule each of its component activities
(i.e., apply this algorithm recursively).

. If the activity is scheduleable,
For each resource requirement of this activ-
ity:

- If a satisfactory resource is available for
use without causing it to be oversubscribed,
assign that resource to meet the require-
ment. Availability implies that the resource
is part of the resource pool specified in the
resource requirement and has the attributes
specified in the resource requirement•

- If no satisfactory resource is available,
apply the following stratagems in se-
quential order, using the possible resources
until one of them successfully eliminates the

oversubscription:

* Constrain the order of activities in-
volved in the oversubscription:
• Individually before the activity, or
• Individually after the activity, or
• Collectively before the activity, or
• Collectively after the activity•

* Relax the deadline of activities in-
volved in the oversubscription
and constrain the order of activities
(as above)

* Constrain the order of parent activ-
ities of the activities involved in the over-
subscription (as above)

* Report failure [and Exit]

• If the activity is still scheduleable

and all component activities of this activity
have been scheduled,
Mark the activity scheduled.

Then update:

• The schedule's temporal knowledge base,

• The time bounds of all changed resource utiliza-
tion profiles.

4.5 Scheduling Example

The operation of the prototype scheduler is revealed
in Figures ? and 8. In this simple example, taken from
the Clouds and the Earth's Radiant Energy System
(CERES) domain, two instances of a single task type
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have been scheduled. Each task consists of four re-
lated subtasks with interdependencies. The first sub-
task is to wait until a particular radiation budget data
set arrives. The second subtask is to calibrate and
Earth-locate that data set. A calibration resource is
required by this subtask. The third subtask is to wait
for a corresponding cloud identification data set. The
final subtask is to compute cloud data by combining
the calibrated radiation budget data with the cloud
data to produce a combined data product. The Cali-
brate subtask cannot occur until its Data 1 is available.
The Compute Clouds subtask cannot occur until the
Calibrate subtask is complete and its Data 2 is avail-
able. For illustrative purposes, the second task has
been given a deadline of 11:00 while the first task has
no deadline.

Figure 7 shows the situation after the first dataset ar-
rives. The earliest scheduled time for each activity is
shown to the right of its name as a solid horizontal bar.
Dashed lines indicate the the range of possible occur-
fences of the activity. The current time is represented
as a vertical line.

Subtask 1001 has now started because subtask 1000
has finished. Subtask 1003 cannot start until sub-
task 1001 completes. Subtask 2001 could start im-
mediately, but since its predecessor subtask, 2000, is
still executing, it will slip as time passes. Because of a
similar predecessor dependency on subtask 2001, sub-
task 2003 will also slip. The scheduler automatically
reschedules the earliest start and earliest end times of
these activities as time passes.

The resource utilization profile of one of the resources
used by the example activities is shown at the bot-
tom of Figure 7. The profile indicates both the sched-
uled (black) and potential (gray) utilization of the re-
source. The API of the DADS V0 Scheduler provides
query commands for determining the relationships be-
tween resource utilization and scheduled activities, but
in this example careful examination of the shape of
the profile reveal that increments of the Calibration
tool resource have been allocated to satisfy the require-
ments of subtasks 1001 and 2001.

At a later time, after more of the subtasks have com-
pleted execution, the situation is noticeably different.
This is shown in Figure 8. Subtask 1003 did not start
immediately after Subtask 1001 (Calibrate) because of
its additional dependency on the completion ofsubtask
1002 (Data 2). Notice that although task 100 has no
deadline, a maximum end time for subtask 1003 has
been scheduled because that subtask has an associated
maximum duration.

The resource utilization profile for the Calibration tool
resource has changed significantly from that projected
in Figure 7. This is because the start of subtask 2001
could not be predicted reliably because of its depen-
dency on the completion of subtask 2000. The execu-
tion of subtask 2001, and the utilization of the Calibra-
tion resource was rescheduled until its Data 1 arrived.

Even this simple example shows that accurate schedul-
ing and optimization of resource usage requires a
scheduling tool that can rapidly reschedule future ac-
tivities in response to real-world events.

100



5 Summary, Conclusions and Future
Work

In this paper, we have presented results of the appli-
cation of Honeywell's scheduling technology to an ap-
plication of data archiving and distribution. We have
described our progreu to date and some insights re-
garding further application of this technology to other
domains. Moving to broader operational use will re-
quire further refinement and development.

We plan to continue development and refinement of the
planning and scheduling capabilities described in this
paper. Our efforts will he focused on increasing their
applicability and achieving the goal of realization of
the Intelligent Information Fusion System. In the near
term we will be provide documentation, training, and
support materials in order to obtain design feedback
through use of these tools. We will simultaneously
continue to extend their functionality in support of
additional application domains.
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