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Abstract

Coordinating multiple overlapping defense mecha-
nisms, at differing levels of abstraction, is fraught with
the potential for misconfiguration, so there is strong
motivation to generate policies for those mechanisms
from a single specification in order to avoid that risk.
This paper presents our experience and the lessons
learned as we developed, validated and coordinated net-
work communication security policies for a defense-
in-depth enabled system that withstood sustained red
team attack. Network communication was mediated by
host-based firewalls, process domain mechanisms and
application-level security policies enforced by the Java
Virtual Machine. We coordinated the policies across
the layers using a variety of tools, but we discovered
that, at least for defense-in-depth enabled systems, con-
structing a single specification from which to derive all
policies is probably neither practical nor even desirable.

1. Introduction

Defense in Depth (DiD) [18], or loosely the ability
of security defenses to compensate for each other’s fail-
ures, is rarely achieved in real systems. Redundant
security enforcement is expensive to implement, con-
figure and maintain, and there is little guidance for
doing so effectively. The correctly functioning system
requires consistent security policies across all defense
layers; however, the varying semantics of the under-
lying defense mechanisms make it difficult to measure
consistency between their disparate policies.

Thus, there is a strong motivation to develop a sin-
gle specification from which all policies will be derived.
This topic has been the focus of significant research
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(c.f., [8, 20, 13, 9]) that has demonstrated that the
master specification can eliminate unnecessary duplica-
tion and be analyzed effectively for desired properties.
However, those research efforts focused on coordinat-
ing policies for identical or similar defenses within a
single defense layer. What about coordinating poli-
cies across multiple defense layers? The variety of en-
forcement targets, and range of abstractions (from IP
addresses and gateways to network services and pro-
cesses), means that any useful master specification will
need to contain many details at discordant levels of
abstraction. That is, not all details are required at all
defense layers, so they tend to get in the way when rea-
soning about a layer where they are not required. A
master specification also raises concerns about hidden
assumptions that might yield exploitable vulnerabili-
ties and circumvent any gains promised by DiD.

This paper documents our experience defining and
coordinating the network communication policies for
a DiD enabled system. Defense technologies from the
network layer to the application layer were deployed to
address potential threats from a sophisticated attacker.
Each layer, to the greatest extent, repeated the logical
network communication rules of layers below it.

We initially pursued the master specification ap-
proach for selected layers. For example, we began by
generating the host layer policy automatically from the
application layer policy. However, we soon realized
that a hybrid approach that created policies in a co-
ordinated but largely independent fashion would yield
the best balance of flexibility, autonomy (an important
quality for DiD) and assurance of correctness. Our hy-
brid approach avoided simple mis-configurations by co-
ordinating static policy elements shared by all policies,
such as host names and port numbers, from a single
source. Then we minimized the risk of hidden assump-
tions by (a) specifying each policy separately using a
different author, (b) structuring each policy to deny



everything that was not explicitly allowed and then
defining the policy according to observed failures in
order to achieve a policy that was minimally sufficient,
and (c) supporting each policy with validation tools.
The policy validation tools enabled software develop-
ers to review policies for correctness even if they did
not understand the syntax of the policy enforcement
mechanism. Using the validation tools, they discov-
ered policy misconfigurations and fed this information
back to the policy authors.

The next section discusses our DiD problem and
the complexity of its network communication require-
ments. Then we describe for each defense layer the pol-
icy construction and validation process. We conclude
with lessons learned and some thoughts for future work.

2. The DARPA Challenge

In 2002, DARPA challenged the research commu-
nity to design and demonstrate an unprecedented level
of survivability for an existing DoD information sys-
tem using DARPA-developed and COTS technologies.
In particular, DARPA required that the defended sys-
tem must survive 12 hours of sustained attack from
a class A red team. DARPA chose as its target a
large, distributed, publish/subscribe/query (PSQ) sys-
tem implemented using the Joint Battlespace Infos-
phere (JBI)1, which relies on a public transport net-
work to support its objective to deliver “the right in-
formation to the right people at the right time”. The
notional JBI system is illustrated on the left in Fig-
ure 1.

A candidate solution architecture, shown on the
right in Figure 1, called DPASA2 [6, 10], was designed
and developed by our team, led by BBN Technolo-
gies. The DPASA team recognized that the surviv-
able JBI must deflect or prevent attacks, detect
and report attack related events, and change the
system’s configuration or behavior in response to dam-
ages caused by an attack. Key features of the DPASA
solution included communication isolation zones, re-
dundant but diverse host enclaves (each containing a
complete set of management and PSQ functionality),
Byzantine agreement for attack response, and preven-
tion, detection and monitoring technologies strategi-
cally placed throughout every defense layer, and on
every host, throughout the system.

The fielded DPASA design resulted in a Core made
of four redundant quads (groups of management hosts)
interacting with clients through an Access Proxy (AP)

1http://www.infosperics.org
2Designing Protection and Adaptation into a Survivability

Architecture

on the edge of each quad, bridging the core and
client networks. The physical network topology pro-
vided some protection in this design, as clients could
not directly interact with core components other than
through the Access Proxy. Host, process and applica-
tion layer defenses further restricted the client’s com-
munication options so that they could not interact with
one another but only with the established services on
the Access Proxies. The Access Proxies were also con-
figured to only accept traffic from the known client
hosts, stopping rogue clients from being introduced
into the system.

Access within the Core was similarly restricted. The
high-level management functionality resided on the
System Manager (SM) host, but there was no direct
route to the SM from the AP, in the event the AP was
compromised. Host-resident defenses enforced separa-
tion and least privilege on each host. Each core and
client process was granted access to only the files and
directories required for its job and then with limited
permissions on those files. File systems that contained
non-changing data were mounted read-only to bolster
the policy-provided protection. Dynamic code loading
was also disabled for Java processes. At a host-level
each client and management process ran as a unique
user, which allowed further restrictions to be placed on
file access.

For the remainder of this paper, however, we focus
only on defining and deploying network communica-
tion policies. From a prevention perspective, DPASA’s
goal was to block the attacker using the DiD strat-
egy illustrated in Figure 2 (the defense layer is shown
in boldface while the prevention technology(s) used at
that layer appears in italics). At the system layer, re-
dundant hosts were deployed so that the failure of a
single host would not stop the entire system. At the
network layer, authorized enclave-to-enclave commu-
nication was enforced and encrypted by a VPN fire-
wall/router. At the host layer, authorized host-to-host
communication was enforced by the Autonomic Dis-
tributed Firewall (ADF)[16]. ADF is a host-based,
embedded, distributed firewall that is implemented on
the host’s network interface card (NIC) and performs
ingress and egress packet filtering. It protects the host
from the network, and it protects the network from
the host. In addition, all host-to-host communication
was encrypted using ADF’s Virtual Private Groups
(VPG)[15], which provided a unique encryption key for
each collection of hosts. At the process layer, autho-
rized process behavior was enforced either by NSA’s
SELinux3 or by Cisco Corp’s Cisco Security Agent4

3http://www.nsa.gov/selinux
4http://www.cisco.com



Figure 1. Baseline JBI (left) and Survivable JBI

(CSA) for non-Linux hosts. At the application layer,
authorized JBI application behavior was enforced by
the Java Virtual Machine (JVM).
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Figure 2. An attacker’s perspective of DPASA
Defense in Depth

Constructing network communication security pol-
icy proved challenging on several fronts. Clearly the
richness of DPASA’s DiD strategy meant significant
vertical duplication of logical policy rules across the
defense layers, but there was also significant horizontal
duplication of those rules due to the redundant enclaves
or quads in the DPASA JBI. For example, each quad
contained a different mix of operating systems in or-
der to minimize common mode failures, so the actual
policies enforced by similar hosts in each quad differed
significantly (e.g., between an SELinux host versus a
CSA-enabled host) even though those hosts were per-
forming identical logical functions.

To illustrate the policy author’s challenge, Table 1
lists the policies affected and rules required for autho-
rizing a simple network communication c from a JBI
Client A, in enclave EA, to the JBI core (B). The
hosts receiving the rules appear in square brackets.
Since there are four, redundant entry points into the
JBI core (called Access Proxies), we can denote them
collectively as B or individually as B1, B2, B3 and
B4. They are each in a separate enclave, denoted EB1

through EB4 , respectively. Assume that B1 is imple-
mented on a Windows host, that B2 and B3 and A are
implemented on SELinux hosts, and that B4 is imple-
mented on a Solaris host. CSA is enforced on all non-
SELinux hosts. Further assume that all Access Proxy
applications are written in Java and that while there
are six different JVM executables (Sun’s JVM on So-
laris, Windows and SELinux, BEA’s JVM on Windows
and SELinux, and IBM’s JVM on SELinux), all can en-
force the same policy. The table illustrates that even
a simple permission can affect almost a dozen policies.
In addition, all of the required policy rules, except for
the network layer (VPN), are specific to c and cannot
be reused.

This simple example highlights the challenge of en-
forcing even a simple network communication rule
across the various layers, but DPASA’s network com-
munication needs were far more complex. While
DPASA relied on only 25 or so distinct network ser-
vices, there were more than 570 network communica-
tion requirements, across more than 40 hosts, naming
these services, and each requirement was subject to the
analysis described in Table 1. Figure 3 illustrates the
logical communication requirements for DPASA clients



Policy Policy Rules Required

VPN
VPN to EB [EA]
VPN from EA [EBi ]

ADF VPG from A to B for c [A, Bi]

CSA Allow access from A for c [B1, B4]

SELinux
Allow access from A for c [B2, B3]
Allow access to Bi for c [A]

JVM
Allow access from A for c [Bi]
Allow access to Bi for c [A]

Table 1. Policies affected by one logical net-
work communication rule to allow communi-
cation c from client A to core B

and only one quad of the DPASA core. In this case,
CLIENT actually represents a dozen client hosts. Of
the other nodes, each node starting with ‘q1’ is a single
host, but nodes (other than CLIENT) without this pre-
fix represent collectively the corresponding hosts in the
three other quads. For example, the ADF Policy Server
in quad 1, or q1adfps, engages in policy server replica-
tion services (PSReplication) with the Policy Servers
(collectively named PS) in each other quad.

The next section describes our first step for man-
aging this complexity: defining properties for shared
policy elements.

3. Properties

Practical experience suggests that managing mul-
tiple policies, each containing redundant information,
increases the risk of overlooked updates that will be dis-
covered later by a developer, who is unaware of those
updates, and will waste time trying to debug the policy.
An example is when a key value, such as the port num-
ber for a required network service, is changed in some
policies but not in others. To minimize this risk, we
separated functional roles from actual identities when
specifying policies. For example, in each quad a dif-
ferent host(identity) fills the role of an Access Proxy.
The identities are calculated as the policy for each host
or application is generated. In addition, this allows us
to easily change the allocation of roles per host when
moving DPASA software to new network addresses and
environments.

Identities and application information were placed
in a master property file that contained two sections:
a mapping of a filename to a file identification number
in the first section and in the second section a collec-
tion of role=identity pairs followed by three hyphens,
a file identification number or numbers, and optionally

a hyphen and quad specifier. An example is shown
below.

_file_1=../../sm/conf/sm.prp

_file_2=../../proxies/conf/psqproxy.prp

PSQ_server0=192.168.4.34:8296 --- 1,2 - q4

rmi_host=192.168.4.14 --- 2

In this case, PSQ server0=192.168.4.34:8296 was
placed in sm.prp and psqproxy.prp, files 1 and 2. This
guaranteed that the specified role had a consistent
identity in the specified files. The q4 suffix declared
that this binding was good only for quad 4. The other
declaration was not specific to a quad and the suffix
was omitted.

4. Application Layer Policy

Once the identities were specified in this structured
way, they were associated with their roles in the JVM
policies using policy templates. These templates were
essentially JVM policies containing variables that were
filled in using the master property file to create a single
JVM policy for each application. Whenever we needed
an IP address or port from the configuration file we
would place a variable of the following form in the pol-
icy: name fileNumber.

The following example lines shows a network per-
mission in a JVM template:

permission java.net.SocketPermission \

"<rmi_host__2>:<rmi_port__2>", "connect";

and the corresponding final product:

permission java.net.SocketPermission \

"192.168.4.14:7183", "connect";

This scheme worked well when each policy template
mapped to a policy on a single deployment host. How-
ever, some DPASA components were implemented on
multiple hosts. Those applications each needed a policy
to allow them to contact services bound to the IP ad-
dress of that host. That would have required a different
policy template for each host, differing in only the iden-
tity variable placed there. To avoid such duplication,
we added meta-variables to the top of each template
to change the variable values used when generating the
policies. Each combination of meta-variables generated
a unique policy file. An example is shown below where
each client is allowed to communicate with a registry
on its own host.

// metavar=CLIENT_IP ->c1_ip__13,c2_ip__13

permission java.net.SocketPermission \

"<--CLIENT_IP-->:<registry_port__3>", \

"connect"; // ,Rmi
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Figure 3. DPASA network communication requirements

In the above case two policy files are generated, one
for each of the two client hosts. Wherever the meta-
variable - -CLIENT IP- - is found, it is replaced with
one of the specified variables. The policy file names
generated in this way are prefixed with the variable
name, or names in the case of multiple meta-variables,
used to create them so they are easily distinguished.
Using the properties, meta-variables, and JVM tem-
plates, we were able to generate JVM policies for our
components as the system was packaged for deploy-
ment.

To help validate the components protected by these
JVM security policies, the generated JVM network per-
missions were used to automatically create network
fuzzers, which would send random/malicious traffic be-
tween two end-points in the network in an attempt to
find a vulnerability. Each sending or receiving per-
mission generated a matching fuzzer. These fuzzers
were collected together to represent a faulty applica-
tion. This ensured that there was always a set of faulty
clients or servers that could be used to test what would
happen when a component behaved incorrectly. Using
these fuzzers we could test the response of a component
to authorized but incorrect or malicious traffic.

5. Process Layer Policy

Proper process behavior was enforced using SELinux
on a majority of the DPASA hosts, and CSA on the
Windows and Solaris hosts. While the two technolo-
gies served similar purposes, their policies and the ap-
proaches for constructing them were very different.
For example, SELinux policies are very fine-grained
and detailed, requiring significant effort to configure
and maintain, especially in a multi-host environment
like DPASA. To ease multi-host policy construction,
we extended the SELinux policy construction tools
to generate policies for multiple hosts simultaneously.
CSA’s policy management interface, on the other hand,
worked very nicely in multi-host environments, but its
browser-based interface made management of detailed
policies very tedious. Also, CSA, unlike all of the other
technologies we used, assumed that a privilege was au-
thorized unless specifically denied, so we had to exer-
cise caution when specifying rules. Finally, SELinux
and CSA both included tools to generate policy rules
directly from observed alerts, but we found the results
were often opaque and difficult to maintain, so we cre-
ated the deployed policies without using those tools.



5.1. SELinux Policy

The SELinux policies operated at a much finer level
of granularity (individual system calls) than the JVM
policies, and we made no attempt to directly translate
from one to the other. However, the properties that
were used to fill in the JVM templates were very use-
ful when generating SELinux policies. Each port and
IP address had a unique SELinux type in the policies,
and these types needed to be bound to the correct IP
addresses and ports for each host. Since these changed
periodically, manual maintenance was not an attractive
option.

A useful level of automation was achieved through a
modified policy construction process. The source files
for SELinux policies are normally prepared with the
m4 macro preprocessor before being processed by the
policy compiler. Three additional files were included
in the preparation in order to help automate the bind-
ing of network details. First, the host IP address and
port number definitions were converted from the mas-
ter property file into m4 macro definition statements.
Then two files were created to bind the DPASA IP and
port symbols to the SELinux type symbols. The nor-
mal source file for network binding, net contexts, was
then modified to include the new files in correct places.

Additional macros were defined and used to perform
modifications such as extracting the port or IP part
of a combined IP and port specification. A “quad”
macro was used to generate the correct symbol suffix
for a policy being compiled for a host in one of the
four quads. (The correct quad was computed from the
hostname of the target host, but could be manually
fixed for cross compilation). For example, the port
binding for the heartbeat service of the downstream
controller (DC), a DPASA component, was specified
with:

defport( dc_heartbeat_port_t, udp, \

Qx(dc_heartbeat_port__1) )

Finally, the makefile for the SELinux policy was mod-
ified to include a target to regenerate the m4 macros
from the correct master configuration source as needed.

The DPASA SELinux policies employ 5 roles, 500-
600 types and 32000-35000 rules, depending on the
jobs performed by the host. The number of rules re-
quired to address a given policy goal is reduced by us-
ing SELinux attributes to label equivalence classes of
objects such as hosts. For example, all of the hosts
in the client network are labeled as client node type

and policies that apply to any client node can refer
to client node type instead of each individual client.
For reference, a client node with only the baseline
SELinux policy (stock policy from Gentoo with stan-
dard extensions to handle X) contains 425 types and

30107 rules.

The SELinux policies were empirically validated
through the correct operation of the JBI. That is, our
first priority was to ensure that the JBI worked as
expected. SELinux alerts observed during functional
testing were converted manually into additional pol-
icy rules, which granted the process the minimal per-
mission required for correct operation. Since permis-
sions were added only as required, we had confidence
that DPASA reasonably followed the principle of least
privilege. Unfortunately, the compressed development
schedule for this project left no time to explore any of
the analysis tools provided by the SELinux community;
employing a formal-model analysis tool ([5, 22, 12])
would have provided additional assurance that the
SELinux policies correctly protected the DPASA ap-
plications.

5.2. CSA Policy

Because they were complementary technologies at
the same defense layer, CSA and SELinux policies
should have been logically identical; however, the two
tools differed vastly in their conceptual models. Also,
CSA lacked any facility (even an implicit one such as
SELinux’s text-based configuration files) to integrate
with other tools. As a result, we could not inte-
grate CSA either with SELinux or with the DPASA
properties infrastructure (see Section 3). So while
the SELinux policies, which were integrated fully with
the properties infrastructure, were able to satisfy the
DPASA communication requirements (see Figure 3),
CSA, for reasons of concern about divergence with
SELinux, ADF and JVM (all of which were coordi-
nated by the properties infrastructure), satisfied only
a subset of those requirements.

To satisfy all requirements, we would have needed
to duplicate the properties infrastructure within CSA.
However, the system was still under development as
CSA policies were being written, so there was a real
risk of divergence. For each CSA-protected host, we
opted instead to specify the other hosts with which
it was permitted to communicate and to restrict that
communication to authorized protocols (i.e., TCP and
UDP). We did not specify the specific network services
(e.g., Alerts or RmiReg). As the system development
stabilized more, those services could be added; how-
ever, on-going maintenance remained a big concern.

In all, eleven policies were defined. There was one
policy for each Solaris or Windows host, except that the
ADF Policy Servers (Windows) shared a policy. The
typical Unix policy contained approximately 13 allow
rules, 8 deny rules and 8 monitoring rules (detection



only). The typical Windows policy contained approxi-
mately 24 allow rules, 18 deny rules and 7 monitoring
rules.

Like SELinux, CSA policies were validated through
the correct operation of the JBI. Unlike SELinux, CSA
offered the ability to generate an easy-to-read sum-
mary of each host’s policy. CSA’s strategy of allow-
ing what is not explicitly denied made careful review
even more critical. We first denied everything (e.g., all
network access), then we specified only authorized ac-
cesses (e.g., the remote hosts and protocols authorized
for communication).

6. Host Layer Policy

Initially, ADF policies were translated automatically
from JVM policies. For the few non-Java components,
either “fake” JVM policies were created or the compo-
nent’s ADF policy was specified directly. However, the
JVM policy could not support the translation without
annotation. For example, JVM policies do not distin-
guish between TCP and UDP protocols, and do not, by
default, identify the local host or the ephemeral port
(if any). This information was added as a comment to
each connect authorization in the JVM policy listings
and can be seen in the listing below which describes
a UDP connection from 192.168.4.162 on port 5701 to
192.168.4.170 on port 9901.

permission java.net.SocketPermission \

"192.168.4.170:9901", "connect"; \

// 192.168.4.162,Heartbeats,UDP,5701

The JVM policies were then processed to create a
single, intermediate specification containing entries of
the form

source IP, source port, destination IP, \

destination port, protocol, service

where source IP and destination IP are standard nu-
meric IPv4 host addresses, source port and destination
port represent TCP or UDP ports or port ranges, proto-
col is any valid Internet protocol, and service is a char-
acter string by which to identify the network service
implied by the other fields in this entry. These entries,
when combined with the non-JVM entries, constituted
the complete connection specification from which all
ADF policies were generated.

Unfortunately, there were two critical shortcomings
with translating ADF policy automatically from JVM
policy. First, the “fake” JVM policies were not vet-
ted adequately, since they were never actually used to
enforce Java process behavior, and we encountered nu-
merous errors when ADF enforced the incorrect rules
resulting from these policies. Second, we eventually
reached a point where the generated ADF policies vi-
olated design constraints for ADF. In particular, the

generated policies exceeded the maximum ADF policy
size, and they required more VPG keys to be assigned
to a host than its NIC could support. We considered
developing a tool to perform the required optimiza-
tions, we decided against doing so because its utility
would have been restricted to DPASA.

However, while we determined that the connection
specification should not be generated automatically
from the JVM policies, there was still much value in
creating it. The connection specification served many
useful purposes: (a) it was a single source from which
all ADF policies could be generated; (b) it was used
to generate a graphical depiction of each policy, in a
manner similar to Figure 3; and finally, (c) it was used
to validate authorized communications against inde-
pendent network scans. So we changed our strategy
to maintain a “permanent” connection specification so
that only valid ADF XML would be generated; how-
ever, we continued to perform an automatic translation
of JVM policy into the temporary specifications for the
purpose of policy discovery. The remainder of this sec-
tion discusses each of the purposes described above.

ADF policy was generated per host. A connection
statement such as

host A, 1024-65535, host B, 80, TCP, web

really implies two ADF policies: one for host A and
one for host B. In this case, the ADF policy for host A
would allow it to send TCP 80 packets to host B en-
crypted using the VPG key for B and receive replies to
those requests encrypted with its own VPG key. The
ADF policy for host B would allow it to receive TCP 80
packets from host A encrypted with its own VPG key
and send responses to A encrypted with the VPG key
for A. By generating both policies from a single state-
ment, we ensured consistency between the two policies,
which is particularly critical for successful VPG com-
munication.

Once all VPG policy rules were generated, the rules
for a given host were collected, ordered for optimal eval-
uation (ingress filtering then egress filtering for better
performance against network attack), and then were
translated into XML, imported into the ADF Policy
Server, and distributed to the host. In all, 28 ADF poli-
cies were generated (some hosts were grouped under a
common policy) with an average of 21 rules per policy,
or just over 600 rules total. Because the translation
routines were demonstrated to be trustworthy enough
to generate correct ADF XML from a well-formed con-
nection statement, policy debugging was done mainly
by analyzing the connection specification itself, rather
than by examining the ADF XML output. This sim-
plified ADF VPG policy debugging for developers un-
familiar with ADF.



To further facilitate developer validation of the ADF
VPG policies, we developed scripts to convert the high-
level connection statements into dot5 diagrams, such
as the one illustrated in Figure 3. The dot diagrams
provide no more information than the connection spec-
ification itself, but the data is presented in a form that
is more visually pleasing.

Finally, we compared the permissions granted in
ADF’s connection specification against network scans
in order to detect policy misconfigurations, which are,
according to The CERT Guide to System and Network
Security Practices [4], the most common cause for fire-
wall breaches. Typical policy audits for border firewalls
are performed with scanning hosts placed on each side
of the firewall under test. However, no clear boundary
exists for distributed firewalls. With them, the visi-
ble policy is the union of both the sender and receiver
rulesets, thus the communications allowed to/from a
host will be dependent on the network perspective. To
complete a full, thorough audit the network scan must
be initiated from each host to every other host. This
captures the combined effect of the egress filtering on
the sending host and the ingress filtering on the receiv-
ing host. If desired, extra hosts with no egress filtering
could be added to the scan to find errors masked by
egress filters.

The primary goal of our network scan tool was to 1)
detect unauthorized communication paths and 2) de-
tect unnecessary communication paths which exist in
the system. The scans were coordinated via ssh on
a separate DPASA control network (used for develop-
ment purposes only), so no reconfiguration of ADF it-
self was required to support the scan. Each scan was
performed by nmap, with the central controller receiv-
ing the results in standard nmap XML format. Each
file contained all live hosts that were found during the
scan and the state of the ports on those hosts. The
state of the ports were classified as: open (responded
with TCP SYN-ACK or UDP data), closed (responded
with TCP RST or ICMP Port Unreachable), or filtered
ports (No Response). If there were no misconfigura-
tions, all ports should return filtered except those that
were explicitly allowed in the connection specification.

After all the host scans were performed, the re-
sults were combined to create the global network view.
This process was straight-forward and achieved with
a Python script. The final result was an XML file
containing a list of each communication path that was
found in the system. Using XSLT to transform this
output, the results were compared automatically with
the ADF connection specification to discover miscon-
figurations and unnecessary communication paths.

5http://www.graphviz.org

The scan did detect extra communication paths that
were not authorized within the ADF connection specifi-
cation, but further examination revealed that the ADF
policies themselves had been manually edited to autho-
rize these paths. This finding underscores the impor-
tance of independent testing, because the connection
specification did not reflect the true protection profile.

7. Lessons Learned

Our hybrid policy construction approach worked
well because policies could be developed independently
and simultaneously by various authors, which was par-
ticularly important given DPASA’s compressed devel-
opment schedule. Since the policy authors were geo-
graphically dispersed, the coordination required for a
master policy specification would have been difficult.
Also, it was not necessary for all authors to develop
expertise on all technologies. The approach of starting
with a minimal policy and adding to it, as operational
failures (due to policy) were observed, helped to min-
imize concerns about unnecessary privileges, such as
was discussed at the end of Section 6. While it is pos-
sible that some functional behaviors could have been
removed during system development, resulting in “or-
phaned” policies, many eyes, validation scanning, and
daily coordination on development progress and con-
cerns helped avoid that risk. Also, having a single-
source for policies means that the orphans will be gen-
erated only if the functionality is completely orphaned
and not on account of missing a change in some other
area.

The validation support tools also worked well. The
ADF connection specification and dot diagrams clar-
ified what was being enforced better than either the
JVM policies that produced it or the ADF XML pol-
icy that resulted from it. In particular, since the JVM
policy author only filled in a template using variables
(as discussed in Section 4), the actual values for some
policy elements were not easily visible until the con-
nection specification was generated.

We used a variety of management interfaces to con-
figure policy for DPASA. JVM and SELinux were text-
based and configured using an editor and common com-
mand line tools. CSA and ADF were GUI-based, but
we avoided using ADF’s GUI to develop policies. In-
stead, we used common command line tools like m4 and
awk to construct and translate the connection spec-
ification into an XML format that could be imported
and assigned to hosts using ADF’s GUI. Unfortunately,
CSA’s GUI did not provide similar support, so while
its web-based interface was probably the friendliest for
a novice user, it was awkward to integrate into a larger



policy environment such as DPASA. In the end, some
form of command line support proved invaluable for
integrating these tools.

A valuable lesson was that policy construction
should not begin until the system functions are reason-
ably stable. This can be accomplished by either setting
an acceptable, but perhaps overly broad, policy early
on and then implementing the system, being sure to fit
within the specified policy, or by implementing the sys-
tem, being mindful of security concerns, and then cre-
ating the policy to tightly fit the system requirements
when the component’s functionality is stable. Since
we needed to incrementally develop the system while
still learning about the abilities of the code we had
been given to defend and had to adhere to a tight time
schedule, we chose the second option. This was not
such a concern for JVM policy, since it was maintained
by the developers themselves and could be updated
easily as new code was added, or for ADF, since it was
generated nearly automatically from the JVM policy,
but SELinux was especially sensitive to any changes
in process behavior. Developers had to be instructed
in how to relabel the file system after new files were
added and how to start authorized processes in the
proper SELinux role, or else functional tests to sup-
port policy debugging were rendered useless. SELinux
policy refinement depended on observing the system in
operation in a permissive mode while collecting denial
audits. However, it was impossible in most cases to
fully test applications in isolation: related applications
needed to be running correctly as well. The constantly
changing and challenging-to-test system impeded pol-
icy development to a surprising degree.

8. Related Work

Several efforts have demonstrated that policy gen-
eration for multiple enforcement points from a single
source is practical, but they have focused mainly on
creating policies for identical or similar defense at a
single layer of defense, rather than on creating policies
for multiple, diverse defense layers as described here.
Nevertheless, these efforts suggest important goals for
future work in DiD policy specification. For exam-
ple Guttman’s[13] policy language for filtering routers
yields policies that can be verified formally against de-
sired security properties. Were formal semantics avail-
able for even a subset of our defense mechanisms, re-
finement theory could be applied to ensure that DiD
is actually achieved. Bartal et al [8] require less rigor
in Firmato, a policy language for perimeter firewalls.
Firmato relies on a graphical validation strategy sim-
ilar to ours; however, their graphs are built directly

from the generated rules, which gives more confidence
than our strategy, which based the graphs on the spec-
ification that produced those rules. Our graphs could
be misleading if the graph generator and the rule com-
piler do not share the same semantics. Other related
work along these lines includes Bradley and Josang[9]
(Mesmerize), who describe a framework for manag-
ing network layer defenses, and Uribe and Cheung[20],
who propose an approach for coordinating firewall pol-
icy with network intrusion detection strategies. Fi-
nally, Service Grammars[17] provide a framework for
simplifying configurations based on high-level special-
purpose languages.

More general motivation for our work, and empiri-
cal evidence of the difficulty of writing even small se-
curity policies, was gathered by Wool[21], who found
that complexity directly affects the number of errors
in the firewall policy. A rough estimate of DPASA’s
complexity places it as a moderately complex system,
likely to have errors. Since DPASA needed to be as
error free as possible, we needed methods to manage
the complexity of our policies.

A considerable body of research has also been per-
formed on rule set anomaly detection (also called con-
flict detection) [14, 7, 3, 1, 2, 11]. An anomaly-free
rule set will be consistent (rules are ordered correctly),
complete (every packet matched at least one rule),
and compact (no redundant rules) [11]. Our methods
do not perform conflict analysis (although it could be
added), but we make a best-effort to create anomaly-
free rule sets.

Complimenting anomaly detection and policy con-
struction, Stang et al [19] presents Archipelago as a
security tool for estimating system security. Using
Archipelago, the “important” nodes (those most cen-
tral in the connection graph) can be identified and
brought to a higher level of secureness. Whether cen-
trality is a good measure of the “importance” of a node
is unclear without further empirical studies. Providing
policy analysis, in addition to our policy generation, us-
ing methods similar to that of Archipelago represents
an interesting area of future work.

9. Conclusions

In consideration of DiD enabled systems, construct-
ing each policy in isolation is labor-intensive and can
lead to configuration errors. On the other hand, gen-
erating all policies from a single specification — an
approach advocated for policies within a particular de-
fense layer, such as the network layer [8] — is perhaps
even more labor-intensive and error-prone for DiD so-
lutions, because too many details are required in that



specification that will apply only to specific layers,
making the specification unwieldy. Instead, we advo-
cate a hybrid approach that (a) encourages selective
sharing of policy elements while maintaining policy au-
tonomy, (b) encourages independence between policy
authors, (c) builds policies from observed failures to be
minimally sufficient, and (d) integrates validation sup-
port for other policy stakeholders. Such an approach
minimizes the risk of exploitable vulnerabilities that
could circumvent the benefits of DiD.

A critical measure of success, of course, is how well
the resulting policies and their underlying defenses per-
form against a determined adversary. At this writ-
ing, red team assessment of DPASA is still underway;
however, preliminary results confirm that a carefully
crafted DiD solution is a formidable defense. We be-
lieve that the approach described here also makes such
a defense practical.
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