
Temporal Reasoning for Planning and SchedulingMark BoddyHoneywell Systems and Research Center, MN65-21003660 Technology DriveMinneapolis, MN 55418boddy@src.honeywell.comAbstractWe brie
y describe the current implementation ofthe Time Map Manager (TMM), followed by a de-scription of the system's suitability for and appli-cation to planning and scheduling tasks.1 IntroductionAs part of the DARPA/Rome Lab Planning Initiative, Hon-eywell's Systems and Research Center has developed a newimplementation of Dean's Time Map Manager (TMM), in-volving improvements in robustness, e�ciency, user interface,and documentation, in addition to a number of extensions infunctionality. The TMM development contract is a 3 year,$1M e�ort, on which work commenced in August 1990. Hon-eywell's TMM software and User Manual were initially re-leased in August 1992, with several incremental releases since.The TMM is a unique tool for representing and reasoningabout temporal information. The TMM supports the repre-sentation of both ordering and metric constraints, reasoningabout state changes, and dynamic database updates, all in atool that has been engineered speci�cally to support large-scale temporal reasoning problems. Using the TMM, we arenow developing tools that add a new dimension of 
exibilityand power to planning and scheduling applications.In this paper, we provide a brief overview of TMM capabili-ties, a description of the system's employment as a basis forbuilding planning and scheduling tools, and a description ofselected problems to which these tools have been applied.2 TMM OverviewThe TMM provides users and application programs (e.g.,planners and schedulers) with the following functionality:� Metric and ordering constraints between any two points.� Causal reasoning.� Database monitors for temporal conditions and protec-tions.� Optimizations for large temporal databases.The structure and capabilities of the TMM are described inmore detail below.2.1 Temporal RelationsThe TMM lets users assert constraints between pairs of timepoints, resulting in a partial ordering among the points.TMM supports queries regarding necessary and possible tem-poral relations among the time points. The truth of facts overintervals of time is represented by tokens, which may include
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QFigure 1: A simple temporal databaseproperties of persistence beyond their observed endpoints. Inthe current implementation, tokens may persist both forwardand backward in time. The truth of a proposition over an in-terval is determined based on the ordering of token endpointsand the token's persistence properties. For example, Figure 1is a simple temporal database, involving three tokens of threedi�erent types. In this example, P is true over the intervalbounded by the vertical lines, and persists into the future.(not P) becomes true at a later time, and clips the forwardpersistence of P. The statement \P and Q" is true for aninterval de�ned by the overlap of the tokens labelled P andQ.1 2.2 Causal ReasoningThe TMM currently supports reasoning about the changingstate of the world as activities occur using two forms of in-ference:� The persistence assumption. As described above, usersof the TMM specify that certain facts are believed tobe true over speci�c intervals of time. In addition, theycan specify that those facts can be assumed to remaintrue until something occurs to make them false.� Projection. This is inference of the form: given an eventE and a set of preconditions P1;P2; : : :Pk, and a resultR, whenever the preconditions are believed to be truefor the entire event E, R is believed to become true im-mediately following E.These forms of inference are handled completely automati-cally: the user speci�es which facts are persistent and assertsa set of projection rules, and the requisite inference is per-formed by the system. An additional form of causal reasoningunder investigation is overlap chaining: given a set of precon-ditions P1;P2; : : :Pk, and a result R, R is believed to be truefor any interval for which all of the preconditions are true.Providing an e�cient implementation of this kind of infer-ence is proving di�cult, for reasons that have been discussedelsewhere [5].2.3 Nonmonotonic Reasoning and DatabaseMonitorsTMM supports two basic kinds of nonmonotonic reasoning:1We are in the process of developing a formal semanticsfor the TMM. A draft version is available by request.



� Possibly true temporal relations between time points(which may be invalidated by additional constraints),and� Assumed truth of a temporal proposition over an in-terval based on a time token's persistence (which maybe invalidated by the addition of a contradictory token,which clips the proposition during that interval).In addition, the database itself is \nonmonotonic", in thesense that information can be deleted, and the inference per-formed by the system thus far will be checked to ensurethat it continues to be supported by the current state of thedatabase. 2The existence of speci�ed database properties as changes aremade over time can be tracked through the use of monitors.The existing types of TMM database monitors are tempo-ral conditions and protections. Temporal conditions monitorwhether speci�ed relations among points can be derived fromthe current state of the database, maintaining this informa-tion as the database changes. Protections do the same thingfor the truth of some fact over an interval. Between them,these two mechanisms provide support for monitoring thecontinued validity of previous inference, or triggering demonsbased on complex properties of the temporal database.2.4 E�ciencyCurrent and planned TMM optimizations for handling largedatabases include the use of a global reference point whereappropriate (rather than forcing its use as some systemsdo), limiting search to that necessary to prove or disprovea query, caching search results for later use, graph decom-position, temporal indexing, lazy monitor evaluation, and al-gorithms that are designed to search only those parts of thedatabase that may result in useful answers. The representa-tion of temporal information as a graph makes it easy to con-struct application-speci�c algorithms, for example providinga graph-based algorithm for e�ciently determining intervaldurations.3 Scheduling Using the TMMWe are interested in the solution of large, complex schedulingproblems. Examples of the kinds of domains we are interestedin include several NASA scheduling problems (e.g. Spacelab,Space Station operations, Shuttle ground processing), andthe Transportation Planning problem being addressed by thejoint DARPA/Air Force Planning Initiative.A \solution" as we use the term is not simply an imple-mentation of an algorithm for solving a particular constraintsatisfaction or constrained optimization problem. For manydomains, constructing schedules is an extended, iterated pro-cess that may involve negotiation among competing agents ororganizations, scheduling choices made for reasons not eas-ily implementable in an automatic scheduler, and last-minutechanges when events do not go as expected. In such an envi-roment, the process by which a schedule is constructed mustbe considered in any attempt to provide a useful schedulerfor a given domain.Even the more limited problem of generating a single scheduleis becoming increasingly complex. For example, many NASA2This capability (temporal reason maintenance) is de-scribed in [5].
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P8 P9 P10Figure 2: Gradual hardening of a partial orderscheduling domains involve large problem instances (hun-dreds to thousands of activities and constraints), context-dependent activity e�ects (including context-dependent tran-sitions or setup times as a special case), complex resourcestructures (e.g., a power bus that is divided into sub-busses),and user preferences on where activities appear in the �nalschedule (e.g., \as late as possible"). To provide an e�ec-tive solution, a scheduling system must be expressive enoughto represent or re
ect these domain complexities as well assupporting the process by which a schedule is constructed.The assumptions underlying our scheduling work are as fol-lows:1. Explicitly modelling the constraints resulting from spe-ci�c scheduling decisions makes the schedule easier toconstruct and modify.2. Representing only those relationships required by thecurrent set of constraints (the decisions made so far)provides a more useful picture of the current state ofthe scheduling e�ort.The main consequence of this approach is that the sched-uler does not manipulate totally-ordered timelines of activi-ties and resource utilization. Instead, the evolving scheduleconsists of a partially ordered set of activities, becoming in-creasing ordered as additional constraints are added (or lessso, as those decisions are rescinded).The greatest advantage we have found to using the TMM isthe 
exibility added to the scheduling process: schedules areconstructed by a process of \iterative re�nement," in whichscheduling decisions correspond to constraining an activityeither with respect to another activity or with respect to sometimeline. The schedule becomes more detailed as activitiesand constraints are added. Undoing a scheduling decisionmeans removing a constraint, not removing an activity froma speci�ed place on the timeline. Figure 2 depicts the processby which a partially ordered schedule is gradually re�ned intoan executable, totally ordered schedule.Timeline schedules can be represented using linear sequencesof tokens, one sequence for each resource. Figure 3 depicts asimple timeline schedule. Arrows between the sequences rep-resent constraints on parts of the two sequences that mustobey the indicated ordering relationship. In contrast, sched-ules constructed by accumulating constraints have a structurelike that in Figure 4. Here, the current set of constraints isinsu�cient to force a totally-ordered sequence of activities.
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SV2Figure 4: Constraint-posting scheduling and the resultingpartial orderAlthough providing increased 
exibility (through delayingcommitment), the explicit representation of partially-orderedactivities in the time map makes reasoning about resource us-age and other state changes more complicated. Causal rea-soning and resource pro�les both depend on precise orderingsof facts and activities in time, that is, on what propositionsare true and what activities occur when. For a given par-tial order, we can determine what facts might possibly ornecessarily hold at a point, in some or all of the total ordersconsistent with the given partial order. With even a very sim-ple causal model, this is an NP-complete problem [4]. Thesolution we have implemented (�rst presented in [3]) is to ap-proximate the necessary quanti�cation, implementing strongand weak reasoning as approximations for what is possibly ornecessarily true, given the current partial order. 3The TMM's strong and weak reasoning provides a partialsolution to the problem of reasoning about what will hap-pen. For certain classes of inference, in particular problemsinvolving resource capacity or the aggregate duration of mu-tually exclusive activities, strong and weak (even exact \nec-essary" and \possible") reasoning occasionally provides in-su�cient information. For these cases, there are two possi-ble approaches: simulation (sampling) of totally-ordered se-quences, or some kind of static graph analysis to determinebetter bounds on the system's behavior. The end result ineither case is a measure of how likely it is that further con-straints on the partial order will cause problems, requiringthe scheduler to backtrack to earlier choices.Despite the approximate nature of this reasoning, we are stillahead of the game: where the least-commitment approachto scheduling can at least provide approximate answers insupport of scheduling decisions (e.g. what order activitiesshould occur in), timeline schedulers make the same decisionsarbitrarily|putting an activity on the timeline is a strongercommitment than constraining it to occur (say) between twoother activities, or within a given time window.3See [5], or [14] for details.

4 Planning Using the TMMTo date, we have expended less e�ort on the application ofthe TMM to planning tasks. Our preliminary investigationsof the application of the TMM to planning problems havehad mixed results. It is increasingly clear that the metrictemporal reasoning and incremental updates supported bythe system are going to be useful. TMM support for e�-cient reasoning about partial orders was initially intended tosupport nonlinear planning.We have been able to show that for many problems, sched-ulers can be built as a relatively thin \shell" around theTMM. The correct level of integration between a plannerand a temporal reasoning system such as the TMM is anopen question. For example, in doing projection, the TMMbuilds data dependencies that look much like causal linksin an SNLP-style planner, but without the bookkeeping re-quired to explore the set of possible links in a systematicmanner [9]. Thus, an SNLP-style planner could make use ofthe lower-level temporal reasoning capabilities of the TMMwithout making e�ective employment of the causal reasoningmachinery. Backstrom and Nebel provide additional argu-ments that persistence, projection, and overlap chaining maynot be useful forms of inference for current planning tech-niques [11]. 5 ApplicationsWithin the context of the Planning Initiative, the TMM hasmade its presence felt in several ways. In a series of bench-mark studies conducted at the University of Rochester, theTMM was shown to provide a great deal of functionality andexpressive power in a tool that scaled realistically to appli-cation to problems involving tens of thousands of activities.The TMM has been integrated with a generative planningsystem (SOCAP) in a Technology Integration Experiment(TIE), and more such integrations are planned. At the re-cent PI meeting in San Antonio, we demonstrated a success-ful application of the TMM within the current transportationplanning software environment, as a system for checking andapplying doctrinal constraints that were previously checkedby hand, if at all.Planning and scheduling tools using the TMM have beendeveloped for a wide variety of domains, including opera-tions planning for a Space Shuttle science module, satellitedata analysis and retrieval, and processor and communicationscheduling for the Boeing 777 Flight Management System,in addition to the Planning Initiative applications describedabove. An additional application is under development forprinted circuit board manufacturing scheduling. Other ap-plication areas under consideration include scheduling for theShuttle Mission Simulator, the Space Station EngineeringMaster Schedule, satellite ground processing for the army,real-time database transaction scheduling, generating condi-tional plans for an automated telescope, and an additionalmanufacturing domain.6 Related WorkThe idea that schedules should be constructed \from theside," looking at part or all of the schedule history ratherthat just sweeping forward or backward in time, has beenimplemented in several scheduling systems, e.g. [7, 1, 15].Typically, these systems also support an iterative process ofschedule re�nement or repair. Recent work on COMPASSprovides a protocol for allowing di�erent agents to modifythe same schedule, wherein commitments made by one agent



cannot be a�ected by the actions of any other. Researchin constraint-based scheduling [8, 16, 13] has demonstratedthe advantages of considering the structure of problem con-straints over time and using this structure to dynamicallyfocus decision-making on the most critical decisions. How-ever, these systems have historically had a weak model of theinteraction of activities and the evolving state of the domain.Research in generative planning has focused on the construc-tion of activity networks that bring about desired goal states,given basic representations of the e�ects of actions in theworld. Classical domain modeling assumptions [6] make itdi�cult to reason about the duration of activities, contin-uously varying quantities, and resource consumption. Theconsequence of these limitations is that automatic plannershave not had much success in applications to signi�cant plan-ning and scheduling problems [2, 18]. Recent work addressingthe integration of constraints and classical planning may re-sult in a resolution of some of these issues [10, 12, 17].7 Summary and ConclusionsWe have described the current implementation of the TMM,a system for temporal reasoning originally developed by TomDean. The current version includes improvements in seman-tics, robustness, and expressive power. At Honeywell SRC,we have been using the TMM as a basis for constructingplanning and scheduling tools. One question currently un-der investigation in this e�ort is what set of functionality isrequired from the temporal reasoner for building such tools.For scheduling problems, the answer is somewhat surpris-ing: we have constructed a variety of 
exible and powerfulscheduling tools, where the necessary extensions to the TMMwere small in comparison to the size of the TMM itself, con-sisting entirely of interface support and activity and resourcemodels. Schedulers using the TMM have been applied toproblems between 9000 and 10000 constraints constraints,with response times in the 1 to 5 second range.Our preliminary investigations of the application of the TMMto planning problems have had mixed results. On the onehand, it is increasingly clear that the metric temporal rea-soning and incremental updates supported by the system aregoing to be useful. On the other, it is not immediately appar-ent that projection and overlap chaining are suitable formsof inference for current planning techniques (see, for example[9, 11].Both planning and scheduling capabilities are required forcomplex domains (e.g., Space Station operations scheduling).Our current approach to integrating these capabilities is in-crementally extend the capabilities of our existing planningtools to handle state changes, task reduction, conditional ef-fects, and other functionality as needed for a particular do-main or class of problems.References[1] Biefeld, E. and Cooper, L., Scheduling with Chronology-Directed Search, Proc. AIAA Computers in Aerospace VII,Monterey, California, 1989, 1078{1087.[2] Dean, T., Firby, R.J., and Miller, D., Hierarchical PlanningInvolving Deadlines, Travel Time, and Resources, Computa-tional Intelligence, 4 (1988) 381{398.[3] Dean, Thomas and Boddy, Mark, Incremental Causal Rea-soning, Proceedings AAAI-87 Sixth National Conference onArti�cial Intelligence, 1987, 196{201.[4] Dean, Thomas and Boddy, Mark, Reasoning about PartiallyOrdered Events, Arti�cial Intelligence, 36(3) (1988) 375{399.
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