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Abstract

We briefly describe the current implementation of
the Time Map Manager (TMM), followed by a de-
scription of the system’s suitability for and appli-
cation to planning and scheduling tasks.

1 Introduction

As part of the DARPA/Rome Lab Planning Initiative, Hon-
eywell’s Systems and Research Center has developed a new
implementation of Dean’s Time Map Manager (TMM), in-
volving improvements in robustness, efficiency, user interface,
and documentation, in addition to a number of extensions in
functionality. The TMM development contract is a 3 year,
$1M effort, on which work commenced in August 1990. Hon-
eywell’s TMM software and User Manual were initially re-
leased in August 1992, with several incremental releases since.

The TMM is a unique tool for representing and reasoning
about temporal information. The TMM supports the repre-
sentation of both ordering and metric constraints, reasoning
about state changes, and dynamic database updates, all in a
tool that has been engineered specifically to support large-
scale temporal reasoning problems. Using the TMM, we are
now developing tools that add a new dimension of flexibility
and power to planning and scheduling applications.

In this paper, we provide a brief overview of TMM capabili-
ties, a description of the system’s employment as a basis for
building planning and scheduling tools, and a description of
selected problems to which these tools have been applied.

2 TMM Overview

The TMM provides users and application programs (e.g.,
planners and schedulers) with the following functionality:

e Metric and ordering constraints between any two points.
e Causal reasoning.

e Database monitors for temporal conditions and protec-
tions.

e Optimizations for large temporal databases.

The structure and capabilities of the TMM are described in
more detail below.

2.1 Temporal Relations

The TMM lets users assert constraints between pairs of time
points, resulting in a partial ordering among the points.
TMM supports queries regarding necessary and possible tem-
poral relations among the time points. The truth of facts over
intervals of time is represented by tokens, which may include
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Figure 1: A simple temporal database
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properties of persistence beyond their observed endpoints. In
the current implementation, tokens may persist both forward
and backward in time. The truth of a proposition over an in-
terval is determined based on the ordering of token endpoints
and the token’s persistence properties. For example, Figure 1
is a simple temporal database, involving three tokens of three
different types. In this example, P is true over the interval
bounded by the vertical lines, and persists into the future.
(not P) becomes true at a later time, and clips the forward
persistence of P. The statement “P and Q” is true for an
intlerval defined by the overlap of the tokens labelled P and
Q.

2.2 Causal Reasoning

The TMM currently supports reasoning about the changing
state of the world as activities occur using two forms of in-
ference:

e The persistence assumption. As described above, users
of the TMM specify that certain facts are believed to
be true over specific intervals of time. In addition, they
can specify that those facts can be assumed to remain
true until something occurs to make them false.

e Projection. This is inference of the form: given an event
E and a set of preconditions P;, P2, ... Py, and a result
R, whenever the preconditions are believed to be true
for the entire event E, R is believed to become true im-
mediately following E.

These forms of inference are handled completely automati-
cally: the user specifies which facts are persistent and asserts
a set of projection rules, and the requisite inference is per-
formed by the system. An additional form of causal reasoning
under investigation is overlap chaining: given a set of precon-
ditions P1, P2,... Pk, and a result R, R is believed to be true
for any interval for which all of the preconditions are true.
Providing an efficient implementation of this kind of infer-
ence 1s proving difficult, for reasons that have been discussed
elsewhere [5].

2.3 Nonmonotonic Reasoning and Database
Monitors

TMM supports two basic kinds of nonmonotonic reasoning:

1We are in the process of developing a formal semantics
for the TMM. A draft version is available by request.



e Possibly true temporal relations between time points
(which may be invalidated by additional constraints),
and

o Assumed truth of a temporal proposition over an in-
terval based on a time token’s persistence (which may
be invalidated by the addition of a contradictory token,
which clips the proposition during that interval).

In addition, the database itself is “nonmonotonic”, in the
sense that information can be deleted, and the inference per-
formed by the system thus far will be checked to ensure
that it continues to be supported by the current state of the
database. 2

The existence of specified database properties as changes are
made over time can be tracked through the use of monitors.
The existing types of TMM database monitors are tempo-
ral conditions and protections. Temporal conditions monitor
whether specified relations among points can be derived from
the current state of the database, maintaining this informa-
tion as the database changes. Protections do the same thing
for the truth of some fact over an interval. Between them,
these two mechanisms provide support for monitoring the
continued validity of previous inference, or triggering demons
based on complex properties of the temporal database.

2.4 Efficiency

Current and planned TMM optimizations for handling large
databases include the use of a global reference point where
appropriate (rather than forcing its use as some systems
do), limiting search to that necessary to prove or disprove
a query, caching search results for later use, graph decom-
position, temporal indexing, lazy monitor evaluation, and al-
gorithms that are designed to search only those parts of the
database that may result in useful answers. The representa-
tion of temporal information as a graph makes it easy to con-
struct application-specific algorithms, for example providing
a graph-based algorithm for efficiently determining interval
durations.

3 Scheduling Using the TMM

We are interested in the solution of large, complex scheduling
problems. Examples of the kinds of domains we are interested
in include several NASA scheduling problems (e.g. Spacelab,
Space Station operations, Shuttle ground processing), and
the Transportation Planning problem being addressed by the
joint DARPA/Air Force Planning Initiative.

A “solution” as we use the term is not simply an imple-
mentation of an algorithm for solving a particular constraint
satisfaction or constrained optimization problem. For many
domains, constructing schedules is an extended, iterated pro-
cess that may involve negotiation among competing agents or
organizations, scheduling choices made for reasons not eas-
ily implementable in an automatic scheduler, and last-minute
changes when events do not go as expected. In such an envi-
roment, the process by which a schedule is constructed must
be considered in any attempt to provide a useful scheduler
for a given domain.

Even the more limited problem of generating a single schedule

is becoming increasingly complex. For example, many NASA

2This capability (temporal reason maintenance) is de-
scribed in [5].
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Figure 2: Gradual hardening of a partial order

scheduling domains involve large problem instances (hun-
dreds to thousands of activities and constraints), context-
dependent activity effects (including context-dependent tran-
sitions or setup times as a special case), complex resource
structures (e.g., a power bus that is divided into sub-busses),
and user preferences on where activities appear in the final
schedule (e.g., “as late as possible”). To provide an effec-
tive solution, a scheduling system must be expressive enough
to represent or reflect these domain complexities as well as
supporting the process by which a schedule is constructed.

The assumptions underlying our scheduling work are as fol-
lows:

1. Explicitly modelling the constraints resulting from spe-
cific scheduling decisions makes the schedule easier to
construct and modify.

2. Representing only those relationships required by the
current set of constraints (the decisions made so far)
provides a more useful picture of the current state of
the scheduling effort.

The main consequence of this approach is that the sched-
uler does not manipulate totally-ordered timelines of activi-
ties and resource utilization. Instead, the evolving schedule
consists of a partially ordered set of activities, becoming in-
creasing ordered as additional constraints are added (or less
s0, as those decisions are rescinded).

The greatest advantage we have found to using the TMM is
the flexibility added to the scheduling process: schedules are
constructed by a process of “iterative refinement,” in which
scheduling decisions correspond to constraining an activity
either with respect to another activity or with respect to some
timeline. The schedule becomes more detailed as activities
and constraints are added. Undoing a scheduling decision
means removing a constraint, not removing an activity from
a specified place on the timeline. Figure 2 depicts the process
by which a partially ordered schedule is gradually refined into
an executable, totally ordered schedule.

Timeline schedules can be represented using linear sequences
of tokens, one sequence for each resource. Figure 3 depicts a
simple timeline schedule. Arrows between the sequences rep-
resent constraints on parts of the two sequences that must
obey the indicated ordering relationship. In contrast, sched-
ules constructed by accumulating constraints have a structure
like that in Figure 4. Here, the current set of constraints is
insufficient to force a totally-ordered sequence of activities.
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Figure 4: Constraint-posting scheduling and the resulting
partial order

Although providing increased flexibility (through delaying
commitment), the explicit representation of partially-ordered
activities in the time map makes reasoning about resource us-
age and other state changes more complicated. Causal rea-
soning and resource profiles both depend on precise orderings
of facts and activities in time, that is, on what propositions
are true and what activities occur when. For a given par-
tial order, we can determine what facts might possibly or
necessardly hold at a point, in some or all of the total orders
consistent with the given partial order. With even a very sim-
ple causal model, this is an NP-complete problem [4]. The
solution we have implemented (first presented in [3]) is to ap-
proximate the necessary quantification, implementing strong
and weak reasoning as approximations for what is possibly or
necessarily true, given the current partial order. *

The TMM’s strong and weak reasoning provides a partial
solution to the problem of reasoning about what will hap-
pen. For certain classes of inference, in particular problems
involving resource capacity or the aggregate duration of mu-
tually exclusive activities, strong and weak (even exact “nec-
essary” and “possible”) reasoning occasionally provides in-
sufficient information. For these cases, there are two possi-
ble approaches: simulation (sampling) of totally-ordered se-
quences, or some kind of static graph analysis to determine
better bounds on the system’s behavior. The end result in
either case is a measure of how likely it is that further con-
straints on the partial order will cause problems, requiring
the scheduler to backtrack to earlier choices.

Despite the approximate nature of this reasoning, we are still
ahead of the game: where the least-commitment approach
to scheduling can at least provide approximate answers in
support of scheduling decisions (e.g. what order activities
should occur in), timeline schedulers make the same decisions
arbitrarily—putting an activity on the timeline is a stronger
commitment than constraining it to occur (say) between two
other activities, or within a given time window.

#See [5], or [14] for details.

4 Planning Using the TMM

To date, we have expended less effort on the application of
the TMM to planning tasks. Our preliminary investigations
of the application of the TMM to planning problems have
had mixed results. It is increasingly clear that the metric
temporal reasoning and incremental updates supported by
the system are going to be useful. TMM support for effi-
cient reasoning about partial orders was initially intended to
support nonlinear planning.

We have been able to show that for many problems, sched-
ulers can be built as a relatively thin “shell” around the
TMM. The correct level of integration between a planner
and a temporal reasoning system such as the TMM is an
open question. For example, in doing projection, the TMM
builds data dependencies that look much like causal links
in an SNLP-style planner, but without the bookkeeping re-
quired to explore the set of possible links in a systematic
manner [9]. Thus, an SNLP-style planner could make use of
the lower-level temporal reasoning capabilities of the TMM
without making effective employment of the causal reasoning
machinery. Backstrom and Nebel provide additional argu-
ments that persistence, projection, and overlap chaining may
not be useful forms of inference for current planning tech-
niques [11].

5 Applications

Within the context of the Planning Initiative, the TMM has
made its presence felt in several ways. In a series of bench-
mark studies conducted at the University of Rochester, the
TMM was shown to provide a great deal of functionality and
expressive power in a tool that scaled realistically to appli-
cation to problems involving tens of thousands of activities.
The TMM has been integrated with a generative planning
system (SOCAP) in a Technology Integration Experiment
(TIE), and more such integrations are planned. At the re-
cent Pl meeting in San Antonio, we demonstrated a success-
ful application of the TMM within the current transportation
planning software environment, as a system for checking and
applying doctrinal constraints that were previously checked

by hand, if at all.

Planning and scheduling tools using the TMM have been
developed for a wide variety of domains, including opera-
tions planning for a Space Shuttle science module, satellite
data analysis and retrieval, and processor and communication
scheduling for the Boeing 777 Flight Management System,
in addition to the Planning Initiative applications described
above. An additional application is under development for
printed circuit board manufacturing scheduling. Other ap-
plication areas under consideration include scheduling for the
Shuttle Mission Simulator, the Space Station Engineering
Master Schedule, satellite ground processing for the army,
real-time database transaction scheduling, generating condi-
tional plans for an automated telescope, and an additional
manufacturing domain.

6 Related Work

The idea that schedules should be constructed “from the
side,” looking at part or all of the schedule history rather
that just sweeping forward or backward in time, has been
implemented in several scheduling systems, e.g. [7, 1, 15].
Typically, these systems also support an iterative process of
schedule refinement or repair. Recent work on COMPASS
provides a protocol for allowing different agents to modify
the same schedule; wherein commitments made by one agent



cannot be affected by the actions of any other. Research
in constraint-based scheduling [8, 16, 13] has demonstrated
the advantages of considering the structure of problem con-
straints over time and using this structure to dynamically
focus decision-making on the most critical decisions. How-
ever, these systems have historically had a weak model of the
interaction of activities and the evolving state of the domain.

Research in generative planning has focused on the construc-
tion of activity networks that bring about desired goal states,
given basic representations of the effects of actions in the
world. Classical domain modeling assumptions [6] make it
difficult to reason about the duration of activities, contin-
uously varying quantities, and resource consumption. The
consequence of these limitations is that automatic planners
have not had much success in applications to significant plan-
ning and scheduling problems [2, 18]. Recent work addressing
the integration of constraints and classical planning may re-
sult in a resolution of some of these issues [10, 12, 17].

7 Summary and Conclusions

We have described the current implementation of the TMM,
a system for temporal reasoning originally developed by Tom
Dean. The current version includes improvements in seman-
tics, robustness, and expressive power. At Honeywell SRC,
we have been using the TMM as a basis for constructing
planning and scheduling tools. One question currently un-
der investigation in this effort is what set of functionality is
required from the temporal reasoner for building such tools.
For scheduling problems, the answer is somewhat surpris-
ing: we have constructed a variety of flexible and powerful
scheduling tools, where the necessary extensions to the TMM
were small in comparison to the size of the TMM itself, con-
sisting entirely of interface support and activity and resource
models. Schedulers using the TMM have been applied to
problems between 9000 and 10000 constraints constraints,
with response times in the 1 to 5 second range.

Our preliminary investigations of the application of the TMM
to planning problems have had mixed results. On the one
hand, it is increasingly clear that the metric temporal rea-
soning and incremental updates supported by the system are
going to be useful. On the other, it is not immediately appar-
ent that projection and overlap chaining are suitable forms
of inference for current planning techniques (see, for example
9, 11].

Both planning and scheduling capabilities are required for
complex domains (e.g., Space Station operations scheduling).
Our current approach to integrating these capabilities is in-
crementally extend the capabilities of our existing planning
tools to handle state changes, task reduction, conditional ef-
fects, and other functionality as needed for a particular do-
main or class of problems.
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