
Architecture and Applications for a Distributed Embedded Firewall

Charles Payne
Tom Markham

Secure Computing Corporation
fcpayne,markhamg@securecomputing.com

Abstract

The distributed firewall is an important new line of net-
work defense. It provides fine-grained access control to
augment the protections afforded by the traditional perime-
ter firewall. To be effective, though, a distributed firewall
must satisfy two critical requirements. First, it must em-
brace a protection model that acknowledges that every-
thing behind the firewall may not be trustworthy. The mali-
cious insider with unobstructed access the network can still
mount limited attacks. Second, the firewall must be tamper-
resistant. Any firewall that executes on the same untrusted
operating system that it is charged to protect begs the ques-
tion: who is protecting whom? This paper presents a new
distributed, embedded firewall that satisfies both require-
ments. The firewall filters Internet Protocol traffic to and
from the host. The firewall is tamper-resistant because it
is independent of the host’s operating system. It is imple-
mented on the host’s network interface card and managed
by a protected, central policy server located elsewhere on
the network. This paper describes the firewall’s architec-
ture and associated assurance claims and discusses unique
applications for it.

1. Introduction

Traditional perimeter firewalls are a critical component
of network defense, but they should not be considered the
only line of defense. First, their protection is too coarse.
This leaves the firewall helpless against the malicious in-
sider, who operates freely within the firewall’s security
perimeter. Second, it is costly to extend their protections
to mobile users, because the firewall’s security perimeter is
determined somewhat artificially by the firewall’s location
in the network topology. For effective network defense, we
must augment perimeter firewalls with more fine-grained
access controls.

Bellovin [1] argued that a distributed firewall provides
the fine-grained protection that is needed. In this solution,

a firewall is placed at each host in the network, and all fire-
walls are managed as a single entity. That is, centralized
management is coupled with distributed enforcement. Dis-
tributed firewalls contain the malicious insider because the
security perimeter is drawn around each host. Because the
perimeter is no longer defined by network topology, the
distributed firewall is an ideal solution for mobile users,
telecommuters and business-to-business extranets. Also,
since distributed firewall policy is expressed in terms of net-
work endpoints, changes to network topology have little if
any impact on policy management. Ioannidis, Keromytis,
Bellovin and Smith [3] described a prototype distributed
firewall for OpenBSD hosts.

The distributed firewall falls short, however, if it assumes
that all users on the local host are trustworthy. If these users
are trusted to access the network freely, limited attacks such
as network sniffing, host address spoofing and denial of ser-
vice are still possible. To effectively contain the malicious
insider, distributed firewalls must embrace a stronger pro-
tection model that acknowledges that users on the host may
not be trustworthy. In other words, in addition to protecting
the host from a malicious network, the firewall must pro-
tect the network from a malicious host. This requirement
becomes more significant when we recognize that many in-
sider attacks are not mounted intentionally. Worms like
Code Red and NIMDA, for example, can turn loyal users
into unwitting insiders [4].

The distributed firewall also falls short if it executes on
an untrusted operating system. So-called personal fire-
walls suffer this fate. These software-based solutions fail
to satisfy a cornerstone requirement for firewalls: tamper-
resistance. Personal firewalls are relatively easy to disable
via a network-based attack [7]. Like the emperor’s dress-
maker, they can leave the host — and by consequence the
network — a bit exposed.

This paper describes a new distributed embedded firewall
called EFW that embraces the stronger protection model
and that is tamper-resistant. EFW filters Internet Protocol
(IP) traffic to and from the host. EFW is tamper-resistant
because it is independent of the host’s operating system. In-



stead, the firewall is implemented on the host’s network in-
terface card (NIC) and managed by a central, protected pol-
icy server elsewhere on the network. EFW is implemented
on a commodity NIC and scales easily to thousands of hosts.

The paper focuses on EFW’s architecture and how it can
support interesting security applications. Section 2 defines
EFW’s security and non-security objectives. Sections 3 and
4 illustrate the component and management architectures,
respectively, that result from these objectives.

Distributed firewalls like EFW offer new opportunities in
security policy enforcement. Section 5 enumerates several
novel applications that we have identified for EFW.

Finally, EFW’s genesis occurred in DARPA-sponsored
research from the late 1990’s. Since then, we have investi-
gated its use in many problem domains. Section 6 offers a
glimpse at EFW’s future directions.

The remainder of this section considers related work.

1.1. Related Work

While EFW’s goals and objectives closely resemble
those of Bellovin [1], the two efforts proceeded inde-
pendently and resulted in very different implementations
(Bellovin’s implementation is described in [3]). Bellovin
noted that “for more stringent protections, the policy en-
forcement can be incorporated into a tamper-resistant net-
work card” [1, Section 7.5], but he chose to implement his
distributed firewall with kernel extensions, a user level dae-
mon and a new device driver. Besides offering a simpler
development path for a prototype, this strategy enabled the
firewall to handle application-level policies. EFW, on the
other hand, focuses on IP packet filtering because of the
limited processing power available on the NIC.

Nessett and Humenn [5] proposed a novel multilayer
firewall that can be managed centrally. Nessett’s firewall
includes all of the devices, such as perimeter firewalls,
switches and routers, that currently perform filtering in the
network. This work illustrates the pitfalls that can be en-
countered when firewall policy management is inextricably
bound to network topology management. Bellovin [1] and
Markham [4] advocate breaking this bond. Nessett and Hu-
menn’s results also underscore the importance of creating
multiple layers (e.g., distributed firewalls and perimeter fire-
walls) in an overall network defense strategy.

2. Objectives for EFW

We divide the objectives for EFW into two camps:
security-related and non-security-related.

2.1. Security Objectives

Figure 1 illustrates an EFW NIC on a protected host, the
EFW policy server (also protected by an EFW NIC), and
the communication paths between them. To illustrate our
high-level design strategy, we state the security objectives
for EFW in the form recommended by [6]. Assertions that
EFW must satisfy are expressed as claims. Following the
statement of each claim are zero or more assumptions upon
which the claim relies. Validated assumptions are repre-
sented as claims elsewhere in this section and are so ref-
erenced. Unvalidated assumptions represent potential vul-
nerabilities for EFW that must be validated by other means
(procedural controls, physical security, and so forth).

EFW NIC

Protected
Host

EFW NIC

EFW
Policy
Server

6Audit Events6 6

Policy Management Traffic

Figure 1. EFW NIC and Policy Server

The top-level claim is that EFW performs its function
correctly.

Claim 1 EFW blocks unapproved IP traffic to and from the
host, which assumes

� EFW is configured properly

� EFW is non-bypassable [Claim 2]

The first assumption captures the importance of strength
in policy, while the second assumption captures the impor-
tance of strength in mechanism. The first assumption is val-
idated on a case-by-case basis. Essentially we must ensure
that the policy enforced by EFW is appropriate for the op-
erational environment and its security threats. We will not
consider this requirement further except to describe, in Sec-
tion 4, the tools that EFW provides for policy management.

Claim 2 EFW is non-bypassable, which assumes

� The host can communicate only through EFW-enabled
NICs



� EFW is tamper-resistant to host-based attack
[Claim 3]

� EFW is tamper-resistant to network-based attack
[Claim 4]

The first assumption is not trivial to achieve, and cur-
rently EFW offers no technical means to validate it. This
means that we cannot, for example, stop the user from
swapping out the EFW NIC for a non-EFW NIC. However,
technical measures do exist in the EFW policy server to de-
tect such activity. Fortunately, this potential vulnerability
is temporary. Section 6 describes a technology that will
prevent the host from accessing network resources unless
it communicates through an EFW NIC.

Claim 3 EFW is tamper-resistant to host-based attacks,
which assumes

� The EFW NIC hardware is protected from direct ma-
nipulation

� Only the EFW policy server can disable an EFW NIC
[Claim 5]

� Only the EFW policy server can download new policy
[Claim 6]

� Attackers cannot masquerade as the EFW policy
server [Claim 8]

Claim 4 EFW is tamper-resistant to network-based at-
tacks, which assumes

� Only the EFW policy server can disable an EFW NIC
[Claim 5]

� Only the EFW policy server can download new policy
[Claim 6]

� Attackers cannot masquerade as the EFW policy
server [Claim 8]

The first assumption in Claim 3 can be validated by re-
stricting the hardware interfaces. Newer generations of the
3CR990 NICs take steps in that direction by combining
more functions onto fewer chips. The remaining assump-
tions for Claim 3 also apply for Claim 4. That is not a coin-
cidence. While we typically imagine the EFW NIC as being
managed remotely, the EFW policy server can protect itself
with an EFW NIC, which it will manage locally. The pro-
tection mechanisms implemented on the EFW NIC do not
distinguish whether the policy server is local or remote, and
the host enjoys no privileged access to the EFW NIC.

Similarly, the next two claims have identical supporting
assumptions.

Claim 5 Only the EFW policy server can disable an EFW
NIC, which assumes

� The operation is available only by a command to the
EFW NIC API

� The command is accepted only from the EFW policy
server [Claim 7]

� Only authorized users can access the EFW policy
server

Claim 6 Only the EFW policy server can download new
policy to an EFW NIC, which assumes

� The operation is available only by a command to the
EFW NIC API

� The command is accepted only from the EFW policy
server [Claim 7]

� Only authorized users can access the EFW policy
server

The first supporting assumption for Claims 5 and 6 is
validated by the EFW implementation. The third support-
ing assumption can be validated by procedural controls and
physical security. The remaining assumption is validated by
a combination of technology, procedural and physical secu-
rity controls, as described below.

Claim 7 The command is accepted only from the EFW pol-
icy server, which assumes

� All policy server/NIC communications is authenticated
by 3DES [Claim 9]

� Only the EFW policy server and the EFW NIC possess
the cryptographic key [Claim 10]

The remaining assumption from Claims 3 and 4 is vali-
dated by the same controls.

Claim 8 Attackers cannot masquerade as the EFW policy
server, which assumes

� All policy server/NIC communication is authenticated
by 3DES [Claim 9]

� Only the EFW policy server and the EFW NIC possess
the cryptographic key [Claim 10]

The next claim defines the technology controls.

Claim 9 All policy server/NIC communication is authenti-
cated by 3DES, which assumes



� The work factor to break 3DES is too high

The last claim defines the procedural and physical secu-
rity controls.

Claim 10 Only the EFW policy server and the EFW NIC
possess the cryptographic key, which assumes

� Only authorized users can access the EFW policy
server

� EFW crypto keys are protected from compromise

2.2. Other Objectives

While most of the research behind EFW was funded
by the US Department of Defense (DoD), the DoD relies
increasingly on commercial-off-the-shelf solutions, so the
needs of DoD and the commercial marketplace are not dis-
similar. As a result, we also considered commercial via-
bility and commercial acceptance throughout this effort. In
addition to being secure, we determined that EFW needed
to be cost-effective, scalable and friendly to manage.

Cost-effective. The constraints of implementing on a NIC
prompted the motto: “fast, simple and cheap”. For perfor-
mance, a NIC has a tight processing loop, and our solution
had to fit within those bounds. A NIC also has limited mem-
ory, so complex processing is performed elsewhere (e.g., on
the EFW policy server). Lastly, the 3CR990 NIC is rela-
tively inexpensive, and we did not want to alter that fact.
These NICs are already widely deployed, so modifications
to the existing hardware and its drivers were avoided at all
costs. We confined our modifications to the NIC’s firmware.

Scalable. To facilitate commercial acceptance, it must be
possible for administrators to introduce EFW as little or as
much as they like. Initially, some administrators may prefer
to protect only a few critical servers; others may immedi-
ately deploy EFW to every client desktop along with a pol-
icy that enforces “good network hygiene”. The differences
between a large deployment (thousands of NICs) versus a
small one are minimized in the eyes of the administrator
through the use of management abstractions (explained in
Section 4). We also adopted a master/slave architecture be-
tween the policy server and its NICs.

Friendly to manage. To make EFW friendly to manage,
we created several administration tools, including a policy
editor, a EFW device (NIC) manager, and an audit logger
and event viewer. These tools rely on several abstractions
to reduce their complexity. Our objective was to make EFW
invisible to the end user and to incorporate familiar manage-
ment paradigms for the administrator.

3. Implementing EFW

The high-level architecture for EFW is illustrated in Fig-
ure 2. The protected host may be a client workstation, a
server, or any other device that supports the NIC. The policy
server should be installed on a dedicated host and protected
by its own EFW NIC. The following sections describe the
components on each platform in greater detail.

EFW NIC

EFW Helper Agent

Host OS

NIC Driver &
EFW Runtime Image

Protected Host

EFW NIC

Audit
Database

&
Daemon

Policy
Database

&
Daemon

Management
Frontend

& SMNP MIB

EFW Policy Server

6

Audit Events6

6

Policy Management Traffic

Figure 2. EFW Architecture

3.1. EFW Components on the Protected Host

Three components reside on each protected host: the
EFW-enhanced NIC, the NIC’s driver and runtime image,
and a non-security-critical helper agent.

EFW-enhanced NIC. The most important component
on the protected host is the NIC and its EFW-enhanced
firmware. EFW is based on the 3Com 3CR990 family of
NICs. We selected these NICs for several reasons. First,
they have an on-board processor and memory, which allows
the NIC to operate independently of the host operating sys-
tem. Second, they contain an on-board cryptographic en-
gine. This feature was included to support Windows 2000
IPSEC offloads, but EFW also leverages the crypto engine
to provide secure communications with the policy server.
Finally, these NICs are relatively inexpensive and widely
available.

Flashed onto the NIC during the EFW install, the EFW-
enhanced firmware contains the packet filtering engine and
the management interface for the EFW policy server. The
packet filter can accept or reject packets according to the
standard parameters (source and destination address, source
and destination port range, IP protocol, packet direction,
etc.) as well as the value of the TCP SYN flag (used for



connection initiation) and the presence of IP options. It can
also accept or reject fragmented packets and non-IP pack-
ets. Each filter rule can be configured to generate an audit
event. The management interface handles policy downloads
from the policy server and transmits audit events to the au-
dit server. It is also responsible for managing the secure
channel with the policy server.

Driver and runtime image. The driver installed for a
EFW NIC is the unmodified commercial driver. Like sim-
ilar products, this NIC relies on its driver upon each host
reboot to download its runtime image into the firmware. To
ensure that a host remains protected, the EFW NIC stores
enough information in non-volatile memory to verify the
integrity of its runtime image. Once a NIC is configured for
EFW, it cannot be disabled except by performing the appro-
priate action on the policy server. In other words, the EFW
NIC will become inoperable if its runtime image fails the
integrity check.

Helper agent. The NIC must know its IP address in order
to enforce policy. In a DHCP environment, it will need the
host’s assistance to determine that address. A small helper
agent in user space performs this function. The helper agent
also sends regular heartbeats to the policy server to help the
policy server detect NICs that may not be functioning. Like
all other communications with the policy server, the heart-
beat is encrypted by the EFW NIC. If a malicious user were
to replace the EFW NIC with a vanilla NIC, the heartbeats
for that EFW NIC would effectively stop, raising the sus-
picions of the EFW administrator. The EFW NIC does not
rely on the helper agent for continued operation and will
continue to enforce policy even if the helper agent crashes
or is removed.

3.2. EFW Policy Server Components

The EFW policy server is composed of three main com-
ponents:

1. the management component, including the graphical
user interface (GUI), the SNMP management informa-
tion base (MIB) and the controller frontend,

2. the policy component, including the policy daemon
and the policy database, and

3. the audit component, including the audit daemon and
the audit database.

Management component. The management component
is described more fully in Section 4. Its main purpose is
to provide the administrator with the tools to create, view
and distribute policies to each EFW NIC. It also includes an

audit browser to review event logs. The MIB will support
future network management applications.

Policy component. The policy component takes the poli-
cies defined using the management component and com-
piles them into filter rules for each NIC. This component
ensures that NICs enforce the policy to which they are as-
signed. When a NIC’s host is rebooted, the NIC requests
the current policy from the policy server. If the policy server
does not respond, the NIC “falls back” to enforce a simpler
policy. Currently the choices are: allow all traffic, allow
all traffic but prevent network sniffing, or deny all traffic.
If a policy is modified, the policy component automatically
pushes the updated policy to the affected NICs. NICs that
are off-line during the policy push receive the policy once
they return on-line. The heartbeat generated by the host’s
helper agent informs the policy component of the policy that
the NIC is enforcing.

Audit component. The audit component receives audit
events from each NIC and stores them in a database for
browsing and searching by the management component.
Audit logs can also be exported to third-party tools for ad-
ditional analysis. As the arrows in Figure 2 imply, policy
updates from the policy component to the NIC are acknowl-
edged by the NIC; however, the audit component does not
acknowledge audit events generated by the NIC.

4. Managing EFW

EFW provides many useful abstractions to help the ad-
ministrator define and manage policies. This section de-
scribes those abstractions and discusses the challenges and
opportunities of managing distributed firewalls.

Abstractions. EFW divides protected hosts into policy
domains. A policy server can manage only one policy do-
main, although there may be multiple policy servers for
each domain. A policy domain might encompass an entire
organization or perhaps just one or two divisions within that
organization.

Within each policy domain, NICs are grouped by func-
tion into device sets. There might be one device set for man-
agers, another for the finance staff, etc. Device sets reduce
complexity by grouping together the NICs that are likely
to be assigned the same policy. So while there might be
thousands of NICs in a policy domain, there may only be a
dozen or so device sets. Each device set is assigned a sin-
gle policy, although a particular policy may be assigned to
multiple device sets.

Policies are composed of policy attributes and rules.
Policy attributes represent facts that apply across all rules



of the policy. For example, “the host is not allowed to spoof
its IP address”, or “fragmented packets are not permitted”.
EFW rules are similar to the packet filter rules found on
other firewalls. For convenience, rules can be grouped into
rule sets. If any rule in the rule set is modified, the changes
propagate to all policies that include the rule set.

EFW also supports audit and test mode. Audit can be set
for an entire policy or just for an individual rule. Test mode
works with audit to help the administrator understand the
effects of a policy or a single rule before it is actually en-
forced. For example, a rule that is in test mode will generate
audit events each time a packet matches it, but the action as-
sociated with that rule (allow or deny) will be ignored.

Audit is also very useful for “discovering” policy. For
example, to identify the network services that a particular
host requires to boot up and log on users to the net, we can
push an “allow but audit” policy to its EFW NIC. Then we
reboot the host and watch the audit logs. A network monitor
would perform a similar function.

Challenges. EFW is not immune to the policy manage-
ment challenges that face other packet filters, and the lim-
ited resources of the NIC make overcoming these chal-
lenges even more difficult. For example, port mapping pro-
tocols, i.e., protocols that start on a well-known port then
negotiate a higher, random port to complete the session, re-
quire the firewall to maintain some state about the session.
Protocols that use a well-known control port and a random
data port (e.g., FTP and some streaming media protocols)
are similarly challenging. We are examining alternatives for
solving this problem for EFW. Fortunately, the challenge
exists only if we need to specifically allow these protocols
while denying everything else. If we want to deny these
protocols, we can deny the connection to their well-known
ports.

Opportunities. Managing policy for a distributed firewall
like EFW is not simply a matter of moving the perimeter
firewall’s policy to each endpoint EFW device. Consider
the following policy:

Allow HTTP requests from a specific client to a
specific web server.

On a traditional firewall, this policy might be stated as a sin-
gle rule (see Table 1), where a rule is stated in the form (ac-
tion, protocol, port, source, destination). We assume that
traffic is permitted in both directions.

(Allow, TCP, 80, client, web server

Table 1. Traditional Firewall

Placing this rule on both the EFW for the client and the
EFW for the web server would be redundant, and if it was

the only rule enforced by either EFW, it would probably
be overly restrictive. More likely, the policy writer would
choose to distribute the policy between the two devices,
such as illustrated in Table 2. However, the same effect
could be achieved by distributing the policy as in Table 3. In
both tables, the web server is restricted to processing HTTP
requests. However in Table 2, the client may make other
requests, while in Table 3, the client is restricted to HTTP
requests.

for host client
(Allow, *, *, client, *)

for host web server
(Allow, TCP, 80, *, web server)

Table 2. EFW — Option 1

for host client
(Allow, TCP, 80, client, *)

for host web server
(Allow, TCP, 80, *, web server)

Table 3. EFW — Option 2

Tables 2 and 3 express different policies from each other
and from Table 1; however, the differences are only evident
when we express the policies for EFW. The traditional fire-
wall policy did not specify the behavior of the client and
the web server beyond HTTP requests flowing through the
perimeter firewall. For a particular site, these distinctions
may be important, and EFW helps us to make them. EFW
lets the administrator state policies far more precisely.

5. EFW Applications

While EFW can certainly handle applications conceived
for traditional, packet-filtering firewalls, its real power lies
in applications that are either not possible or not feasible
using traditional firewalls. This section describes several
useful applications that we have encountered. Each appli-
cation forms a building block that can be used to construct
even more interesting applications.

No sniffing, no spoofing. One of the most significant ap-
plications for EFW is its ability to enforce good network
hygiene. In general, a host should not be able to sniff other
network traffic or spoof its IP address to other hosts. Many
network attacks rely on one or both behaviors. Distributed
denial of service attacks, for example, direct zombies to
flood the victim host with spoofed service requests. EFW
can prevent the NIC’s untrusted driver from placing the NIC
in promiscuous mode, and it can also prevent any packet



from leaving the host that is not tagged with a valid IP ad-
dress for that host.

Lock down the host. One of the biggest problems for IT
personnel is keeping up with the security patches that must
be installed. Often these patches are for services that are
installed by default when the operating system is installed.
Sometimes the services are network services that the user
should not be invoking anyway. Rather than manually re-
configuring each host to disable the service, EFW can pre-
vent the service from being available.

Another problem is users who configure their hosts in vi-
olation of the organization’s security policy. For example,
most network administrators prefer that users share files us-
ing an IT-maintained resource. However, a user can easily
configure the typical PC to share files from the local disk.
EFW can prevent this behavior by preventing file access re-
quests from reaching the host.

Servers are not clients. Dedicated servers should not per-
form certain functions normally reserved for clients, such
as sending email, making web requests and so on. The
NIMDA worm, for example, relies on this behavior to prop-
agate. For TCP-based services, the easiest defense is to pre-
vent the host from initiating TCP connections to other hosts.
EFW can prevent unauthorized, outgoing TCP connection
initiation requests from ever reaching the network.

Clients are not servers. Similarly, client hosts should not
respond to service requests from other hosts. For TCP-
based services, EFW can prevent unauthorized, incoming
TCP connection initiation requests from ever reaching the
host.

Stay in your own backyard. With the exceptions of web
and certain related traffic (FTP, streaming media, etc.),
client hosts obtain most network services from dedicated
LAN (local area network) servers. For example, it is typi-
cally not necessary for a user to access any DNS or SMTP
server other than the one assigned by IT. To accomplish this
goal, EFW can allow limited “external” requests, then re-
strict all other traffic to the local subnet.

Don’t talk to strangers. If a particular network service,
e.g., DNS, should be provided only by a specific server or
group of servers, then EFW can restrict access to that ser-
vice on only that server or group of servers.

Emergency rule set. This very useful application utilizes
the rule set feature of the EFW policy server. Rule sets are
included in policies by reference, not by value, so a change
in the rule set propagates to all affected policies. Using this

capability, an administrator can define an emergency rule set
to be included in all policies. If a network attack is detected
that requires a particular service port, the administrator can
add a rule to the emergency rule set denying that port. With
a click of a single button, the administrator can distribute
this new restriction to all EFW NICs in the EFW policy
domain.

Shared server. Business-to-business communications re-
quire an infrastructure for sharing information. Extranets
are the common solution, but extranets are expensive to im-
plement. EFW enables a lightweight, cheaper alternative:
the shared server.

A single host with two EFW NICs is placed where it
is accessible by both organizations. The organization that
hosts the server controls both EFW NICs. We assume that
both organizations may have administrator privileges to the
server. The EFW NIC that is attached to the controlling
organization’s LAN prevents the shared server from initiat-
ing unauthorized communication on the LAN and sniffing
traffic on the LAN. The EFW NIC that is attached to the In-
ternet allows only protected communications with the busi-
ness partner. The business partner can enter and access the
shared server, but it is unable to exit out the “other side”.

6. Future Work

As we gain more experience with EFW, we envision ap-
plications will require features not yet present in the archi-
tecture. For example, through our DARPA-sponsored re-
search programs, we are currently investigating tie-ins to in-
trusion detection and response systems and using the EFW
NICs to provide load sharing within server clusters.

Another important area of investigation is a technology
we call virtual private groups (VPG) [2]. Like a virtual
private network (VPN), a VPG establishes a community of
interest that is not restricted by network topology. Unlike
the VPN, however, which establishes only pairwise rela-
tionships between the communicating entities, the VPG es-
tablishes group-wide relationships. The VPG architecture
significantly simplifies key management for hosts within the
group and makes management of secure group communica-
tions practical. When it is available, VPG technology will
enable organizations to quickly set up, use, and then tear
down secure group communications for wireless LANs and
collaboration tools.

The VPG technology will also be an important cata-
lyst for ensuring that network communication occurs only
through EFW NICs (see the first assumption under Claim 2
in Section 2.1). If all hosts belong to one or more VPGs,
and if network services are available only to members of
the appropriate VPG, then only EFW NICs will be able to



access network services. The attacker who attempts to ac-
cess the network with an unsecured NIC will be completely
thwarted.

7. Summary

We have described a distributed, embedded firewall
called EFW that is implemented on the host’s network in-
terface card. In addition, we have discussed several use-
ful and unique applications for EFW. EFW can be used to
lock down critical assets, such as corporate web servers,
databases and administrative workstations, and it can be
used to lock down critical services, such as DHCP, DNS and
so forth. It lets the administrator easily control unnecessary
capabilities on the network. Finally, EFW demonstrates that
finer-grained network access control is possible and practi-
cal. Together with the perimeter firewall, it forms a strong
line of network defense.

8. Acknowledgments

The authors are grateful for the financial support of the
US Defense Advanced Research Projects Agency. This
paper reflects work performed under the Releasable Data
Products Framework program (Contract no. F30602-99-C-
0125, administered by the Air Force Research Laboratory)
and the Autonomic Distributed Firewall program (Contract
no. N66001-00-C-8031, administered by the Space and
Naval Warfare Systems Center). The authors also wish to
thank the anonymous reviewers for their helpful and in-
sightful comments.

References

[1] S. M. Bellovin. Distributed firewalls. ;login:, pages 37–39,
November 1999.

[2] M. Carney, B. Hanzlik, and T. Markham. Virtual private
groups. In Network and Distributed System Security Sympo-
sium, February 2002. Submitted for publication.

[3] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M.
Smith. Implementing a distributed firewall. In 7th ACM Con-
ference on Computer and Communications Security, Athens,
GREECE, November 2000. ACM.

[4] T. Markham and C. Payne. Security at the network edge: A
distributed firewall architecture. In DISCEX II, Anaheim, CA,
June 2001. DARPA, IEEE.

[5] D. Nessett and P. Humeen. The multilayer firewall. In
Network and Distributed System Security Symposium, March
1998.

[6] C. N. Payne, J. N. Froscher, and C. E. Landwehr. Toward
a comprehensive INFOSEC certification methodology. In
Proceedings of the 16th National Computer Security Con-
ference, pages 165–172, Baltimore, MD, September 1993.
NIST/NSA.

[7] A. White. New trojan disables firewall defences. Network
News, May 2001.


