
Napoleon: A Recipe for Workflow

C. Payne, D. Thomsen, J. Bogle and R. O’Brien
Secure Computing Corporation

2675 Long Lake Road
Roseville, MN 55113

Abstract

This paper argues that Napoleon, a flexible, role-based
access control (RBAC) modeling environment, is also a
practical solution for enforcing business process control,
or workflow, policies. Napoleon provides two important
benefits for workflow: simplified policy management and
support for heterogeneous, distributed systems. We discuss
our strategy for modeling workflow in Napoleon, and we
present an architecture that incorporates Napoleon into a
workflow management system.

1. Introduction

Last year at this conference we introduced Napoleon,
a multi-layered, role-based access control (RBAC) mod-
eling environment for distributed computing systems [10].
Napoleon’s primary objective is to simplify policy manage-
ment for the system administrators of distributed computing
systems. It satisfies this objective by shifting the burden of
policy management from the system administrator alone to
all of the principals involved in the system’s development,
including application designers, system integrators and the
like. Napoleon translates the resulting policy for each en-
forcement mechanism in the system. Napoleon is a practical
solution for RBAC policy management.

This year we argue that Napoleon is also a practical
solution for business process control, or workflow, policy
management.1 Napoleon addresses two challenges posed
to workflow technology developers: simplify policy man-
agement [1] and support distributed computing systems [3].
Napoleon’s layered model simplifies policy management by
dividing the burden among all principals in the system’s
development, and Napoleon supports distributed comput-
ing systems by providing policy translators for the various

1This investigation was performed under a Phase I SBIR from the
National Institute of Standards and Technology (NIST) Contract No. 50-
DKNB-8-90107. Phase II has been awarded and will begin in the fall of
1999.

enforcement mechanisms in the distributed system.
Modeling workflow in Napoleon is simple, because the

underlying concepts of workflow are consistent with the
Napoleon model. However, implementing workflowis more
complicated. RBAC policies are primarily class-based, but
workflow policies are very much instance-based. We dis-
cuss these issues and propose a solution that incorporates
Napoleon into a workflow management system.

First we review the Napoleon model and software tool.
Napoleon has evolved significantly since last year. In par-
ticular, the model is more general and more flexible.

2. Revisiting Napoleon

Pastry is like mathematics. Everything is logical. If
you know the basic building blocks, you can make
anything.

Jacques Torres
Dessert Circus[11]

Napoleon is the common name for a family of desserts
that are created by alternating layers of pastry with sweet,
creamy filling and then finishing with a glaze of icing or a
dusting of confectioners’ sugar (see Figure 1 (a)).

Napoleon is also an acronym for the Network Application
POLicy EnvirONment, a role-based access control (RBAC)
modeling environment [10]. The environment consists of a
policy model and a software tool for defining and managing
the model. The software tool is implemented in Java with a
model-view-controller architecture.

Like the dessert, the Napoleon policy model is multi-
layered (see Figure 1 (b)). Each layer defines a set of roles
that become policy building blocks for all higher layers.
The bottom policy layer defines the most primitive access
control policy. This policy layer is typically application-
specific and is defined in terms of the access control mecha-
nisms that manage the application’s resources. The second
through penultimate layers use the roles defined at lower
layers to create even more abstract roles that simplify policy



(a)

Application Roles

Layer of semantic Roles

...

Layer of semantic Roles

Users assigned

(b)

Figure 1. Two Napoleons

management. Roles defined in the top layer are assigned to
users. Like the dessert, there can be an arbitrary number of
layers, and new layers can be introduced as required.

Unlike the dessert however, each Napoleon policy layer
is constructed by a different “chef.” Application designers
define the bottom layer because they understand best what
their resources are and how access to these resources should
be constrained. Several chefs may contribute to a single
layer, e.g., there may be several applications represented in
the bottom layer. System administrators define the top layer
because they know who their users are. The chefs for inter-
mediate layers vary with each model. An application suite
designer may group the roles of participating applications
into roles for the suite. A system integrator may create more
abstract roles based on the suite roles. It is important to
note that unlike the dessert, the layers in a Napoleon policy
model may not be strictly one above the other. A particular
layer may build on roles defined in any layer below it, not
just the layer immediately below it. For example, the local
system administrator is not restricted to roles defined in the
penultimate layer. Roles assigned to users can be culled
from any layer as needed.

The model described above, with its arbitrary number of
layers, is a significant improvement over the original model
[10]. The original model contained only two layers: one for
the application designer and one for the system administra-
tor. It did not consider the myriad of other principals that
should define policy. The current model evolved from our
attempts to include some of these principals and from our
exploration of workflow support.

The current model continues the metaphor of a key to
simplify policy management. A key corresponds to a role.
Within each layer, keys are collected into key chains for
easier handling. Keys cannot be exported directly to higher
layers, but they can be incorporated into a key chain with

only one key. Key chains can also contain other key chains,
which supports role hierarchies. One of the innovations
of Napoleon is that it associates constraints with each key
chain. The constraints place additional restrictions on the
use of the key chain. For example, a key chain may allow
access to patient medical records, but constraints may pre-
vent the holder of the key chain from accessing any records
for which the holder is not the primary care physician. Fig-
ure 2 illustrates how keys and key chains are used to build
semantic layers in the Napoleon model.

Key:

Key chains:

Key chains with constraints:

,

,

Import keys (roles) 
from lower layers

Collect keys 
into key chains

Export key chains 
(new roles) to 
higher layers

Add constraints
as necessary

S
em

an
tic

 la
ye

r

Figure 2. Building semantic layers with keys
and key chains

Napoleon’s software tool provides a graphic user inter-
face (GUI), or viewer, for each layer of the model. While the
middle layers of the model are identical structurally, they dif-
fer semantically depending on the chef, so a different viewer
is possible in each case. The tool manages the export and
import of keys between layers and directs the policy trans-
lators to convert the policy rules of the Napoleon model into
the enforcement languages of the underlyingpolicy enforce-
ment mechanisms. The tool is very modular: new viewers
and policy translators can be added easily.



2.1. Example

Consider a simple example of a hospital data system that
is composed of two applications: a CORBA application used
by the medical staff to record and share patient information
and a COM billingapplication. The hospitalpurchases these
applications from a third party integrator.

The system’s RBAC policy is modeled in Napoleon as
three layers, which are illustrated in Figure 3. In the bottom
layer, the designers of the CORBA application and the COM
application define their application policies independently.
For CORBA and COM-based applications, the Napoleon
software tool gathers automatically a list of supported op-
erations, or methods, from the application’s interface defi-
nition language (IDL) files. The application designer uses
Napoleon’s GUI to group these methods into convenient
sets called handles and then to assign handles to keys. A
key designates that the holder has permission to execute the
associated methods. Since CORBA and COM are object-
based, controllingaccess to an object’s methods is sufficient
for controlling access to the object itself.

App Suite
Integrator

Local
Sysadmin

Application 
Developer

CORBA COM

Doctor Clerk Insurance

Admin ReviewerProvider

Admin ReviewerProvider

Caregiver Consulting Accountant Auditor

Caregiver Consulting Accountant Auditor

Figure 3. An example Napoleon model

To define the application security policy, the application
designer uses the Napoleon GUI to collect keys into key
chains and marks the key chains for export to higher model
layers. By marking key chains for export, the application
developer creates policy building blocks for other layers to
build upon. It is similar to creating a software interface.
Anything not explicitly included in the interface is not avail-
able for use outside the layer.

For our simple example, the CORBA-based, patient in-
formation application designer exports two key chains: a
CAREGIVER key chain for creating and modifying patient

records and a CONSULTING key chain for only viewing pa-
tient records. The COM-based billing application designer
also exports two key chains: an ACCOUNTANT key chain
for generating billing data and an AUDITOR key chain for
only viewing billing data. These four key chains repre-
sent application-specific roles that are available as building
blocks for higher layer policies.

In the middle layer, an application suite integrator im-
ports the four key chains from the application layer. Once
a key chain is exported, it is considered an atomic entity, so
it is considered a key by all higher layers. The application
suite integrator is charged with defining a policy that spans
all applications in the suite. In this example, the applica-
tion suite builds three key chains for export: the ADMIN
key chain that contains the CONSULTING key and the AC-
COUNTANT key, a PROVIDER key chain that contains the
CAREGIVER key, and a REVIEWER key chain that con-
tains the CONSULTING key and the AUDITOR key. The
PROVIDER key chain includes constraints that the holder
must be a primary care provider for the patient whose records
are being accessed.

At the top layer, the three key chains exported from the
middle layer (ADMIN, PROVIDER and REVIEWER) are
available as simple keys. The four key chains exported
from the bottom layer (CAREGIVER, CONSULTING, AC-
COUNTANT and AUDITOR) are also available in the event
that ADMIN, PROVIDER and REVIEWER are not suffi-
cient, but they are not immediately visible.

While the hospital is tied to a regional information net-
work, it employs a small staff that must wear many hats.
The system administrator uses Napoleon to create three key
chains to assign to users: the DOCTOR key chain contains
only the PROVIDER key, the INSURANCE key chain con-
tains only the REVIEWER key, and the CLERK key chain
contains only the ADMIN key. The constraints applied to
any keys contained in a key chain apply to the key chain
also. For example, a user in the DOCTOR role can only
modify patient records for which the user is the primary
care physician.

Once the hospital’s security policy is defined, the system
administrator directs Napoleon to translate the policy for the
CORBA and COM object managers. These object managers
enforce the policy for their respective objects. In other
words, as users attempt to access patient records or billing
data, the object managers ensure that the users have the
appropriate role and that stated constraints are satisfied.

We will return to this example later in the paper to con-
sider workflow.

3. Workflow

A workflow is “the computerized facilitation or automa-
tion of a business process, in whole or part.” [5] Workflow



technology is a promising solution for protecting business
assets, because it controls not only who has access to what
but when that access occurs.

Figure 4 illustrates a simple workflow for processing em-
ployee expense reimbursements. We represent the workflow
as a directed graph with one entry. Each node in the graph
is a workflow activity, orstep, and the edges determine
the order in which steps must occur. Associated with each
step are the object(s) that will be accessed (e.g., “check re-
quest”), the operation(s) that will be performed (“prepare”)
and the performer (“EMPLOYEE”). In this simple work-
flow, an employee must first prepare an check request form
and have that form approved by a manager. Then a com-
pany accountant drafts the check, and finally the treasurer
approves (signs) it. The most obvious constraint is that the
steps must occur in order, but other constraints are possible.
We may require that the approving manager be the manager
for the employee. We may require also that no two func-
tions be performed by the same individual, which is called
separation of duties [9].

Start

Finish

1

2

3

4

EMPLOYEE
prepare a check request

MANAGER
approve the check request

ACCOUNTANT
draft the check

TREASURER
sign the check

Figure 4. Simple workflow

Riddle [8] identifies the fundamental concepts of work-
flow and describes the relationships between them (see Fig-
ure 5).

� A step is a unit of work. It may require several re-
sources to complete. Associated with the step are those
resources and the role required to perform it.

� A work product is an artifact created or modified by
steps. Steps use and produce work products.

� A role represents the accesses that are required to per-
form a step.

� A workflow condition is a predicate that must be satis-
fied during step performance. It is often expressed as
entry and exit conditions on the step, that is, the step
can begin when and can end when the conditions are
true.

Step

Performer

Role

Methods

Workflow
Conditions

Work
Productsrequires

requires

can do

produces

uses

can
begin
when

can
end

when

can be
performed
using

Figure 5. Fundamental concepts of workflow

� A performer is a person or tool with the skills necessary
to complete the step. A role may require special skills
and therefore a specific performer.

� A method is an approach for carrying out a step. A step
can be performed using one of several methods. The
performer can do these methods.

Several of these concepts, such as roles, methods and
performers, are also fundamental concepts for RBAC. Even
work products is familiar; it is just a different name for
the resources to be accessed. Only steps and workflow
conditions are really new.

Riddle relates concepts a bit differently than the RBAC
community, but the differences are superficial. Figure 6
illustrates Riddle’s concepts using a role-based perspective,
rather than the step-based view of Figure 5. From this
perspective, we see that steps are like sub-roles. They define
a group of accesses that are specific to a task. Workflow
conditions determine when the sub-roles are active. A role,
then, is a collection of steps and their associated workflow
conditions.

Workflows are enforced by a workflow management sys-
tem (WMS). The user interacts with the WMS to gain access
to resources controlled by the workflow. Automated work-
flow technology has evolved significantly since it was intro-
duced thirty years ago for office automation systems. Early
workflow systems did not acknowledge the variety of ways
that humans perform a task. So researchers focused on better
modeling techniques, and today workflow research is more
interdisciplinary: a combination of computer science and
social science. The WMS must encompass non-computer
activities such as meetings, handle unexpected contingen-
cies, and allow new workflows to be constructed from ex-
isting workflows [3]. Workflow process models must be



Step

Performer

Role

Methods

Workflow
Conditions

Work
Products

can perform

acts in

produces

uses

can
begin
when

can
end

when

can be
performed
using

Figure 6. A role-based perspective of work-
flow

reconciled with the rich variety of activities and behaviors
that comprise “real work” [1]. In short, workflow manage-
ment is a complex activity, and we want to leverage existing
technology as much as possible.

4. Napoleon and workflow

Abbott et al [1], Feinsteinet al [4] and Bertinoet al
[2] note that workflow management can be simplified con-
siderably by adopting an RBAC model. However, many
role-based models fail to include the role authorization con-
straints that are required for workflow [2]. As Napoleon
includes role constraints, it is a good candidate for work-
flow policy management.

Our design strategy for incorporating Napoleon into a
WMS is to let each tool do what it does best. Napoleon
is a policy management tool. While it may be tempting to
extend Napoleon with workflow management features, the
complexity of workflow management would overwhelm it.
Instead, we let Napoleon serve as the policy management
engine for a WMS. We use Napoleon to specify and enforce
certain aspects of the workflow policy. The divisions of
labor between Napoleon and the WMS are described below.

4.1. Specifying workflow in Napoleon

We begin by assuming that the workflow is defined in
the WMS and imported into Napoleon. The workflow is
imported as a collection of steps. Note that the workflow
conditions associated with each step are not imported. We
could model these conditions in Napoleon, but we will ex-
plain in Section 5 why we choose not to do so.

Our approach is to model workflow as a new layer in
a Napoleon model. The new layer looks structurally like
the other layers, that is, it has keys and key chains with
associated constraints. The difference is in how we build
and interpret it. We call the new layer theworkflow layer,
and we introduce a new “chef,” the workflow administrator,
to construct it.

The workflow administrator begins by assessing the keys
that are available for the workflow. The workflow will re-
quire certain operations to be performed. If those operations
are not represented in the available keys, the workflow ad-
ministrator must create new keys. Once the necessary keys
are imported, the workflow administrator collects the keys
required for each step into a key chain that represents the
step. The collection of key chains defined in this layer map
one to one to the collection of steps in the workflow. The
workflow administrator marks each step for export to the
next layer, where they are assigned to the roles that will
perform them. Several steps may be performed by the same
role.

4.1.1. An example with workflow

To illustrate this process, let us return to the hospital sce-
nario from Section 2.1. Suppose the system administra-
tor, who also happens to be the workflow administrator,
wants to specify the simple workflow illustrated in Figure 7.
This workflow states that whenever a DOCTOR updates
a patient’s medical record with treatment information, the
CLERK must prepare a bill for the treatment. The bill must
then be reviewed by the INSURANCE representative, who
may authorize partial payment. Finally, the CLERK bills the
patient for the remaining balance. This workflow ensures
that all bills are reviewed by the insurance representative
before they are mailed to the patients, and it ensures that no
insurance payment is authorized without a bill.

1

2

3

4

Start

Finish

Doctor
update record

Clerk
prepare bill

Insurance
authorize payment

Clerk
bill patient for balance

Figure 7. A simple workflow

Figure 8 illustrates how the new workflow layer is mod-



eled in Napoleon. The bottom and second layers are
constructed as before. Then the workflow administrator
(who may be the system adminstrator) imports the keys
(PROVIDER, ADMIN and REVIEWER) necessary to per-
form the workflow from the second layer. We assume these
keys are sufficient, but the workflow administrator could re-
visit the lower layers and construct new keys if appropriate.

App Suite
Integrator

Local
Sysadmin

Application 
Developer

CORBA COM

Doctor Clerk Insurance

Admin ReviewerProvider

Caregiver Consulting Accountant Auditor

Caregiver Consulting Accountant Auditor

Step 2 Step 3Step 1 Step 4

Step 2 Step 3Step 1 Step 4

Admin ReviewerProvider

Workflow
Admin

Figure 8. Modeling the workflow in Napoleon

These keys are collected according to the steps that re-
quire them. Step 1 requires only the PROVIDER key. Both
step 2 and step 4 require the ADMIN key, so the ADMIN
key appears on two separate key chains. If different opera-
tions are required between the two steps, we could introduce
constraints on one or both of the key chains. Finally, step
3 requires only the REVIEWER key. The workflow ad-
ministrator marks these four steps for export to the system
administrator level, where they are assigned to the roles
(DOCTOR, CLERK and INSURANCE) that will perform
them. In the case of a role that can perform multiple steps
(for example, CLERK), constraints are used to determine
the appropriate step.

The main difference between a Napoleon model with-
out workflow and a Napoleon model with workflow is that
the latter divides roles into sub-roles by task. A Napoleon
model simply describes sets of sets, so the division is natural.
However, as we will discuss next, there are huge differences

in how these models are enforced.

4.2. Enforcing workflow in Napoleon

Napoleon is designed to provide central policy manage-
ment with distributed policy enforcement. Once the policy is
defined, it is “pushed out” to the various enforcement mech-
anisms in the distributed system. If the policy changes,
the new version is pushed out. Napoleon makes no access
decisions itself.

Workflow management, on the other hand, requires some
central policy enforcement. First, there can be many in-
stances of a workflow active simultaneously. The accesses
permitted a specific user may vary depending on the in-
stance. Each access request must be bound to the appropri-
ate instance, and that binding must occur in the WMS.

Second, for each workflow instance only one step (the
current step) is active at any time. From an access control
perspective, the permissions associated with the current step
are granted only when the step begins and are revoked imme-
diately after the step concludes. Each instance of a workflow
may have a different current step at any point in time. The
WMS must track the current step for each workflow instance
in order to determine appropriate accesses.

Our initial investigation focused on ways to enforce work-
flow entirely within the local enforcement mechanisms. To
satisfy workflow’s central enforcement needs, we envisioned
a workflow object would track the current step for each in-
stance of a workflow. Napoleon would create the workflow
object and bind it to the resources it controls. For each
access request, the local enforcement mechanism would ex-
amine the corresponding workflow object and verify that the
request is approved for the current step. If the request is ap-
proved, the local policy (“pushed out” as usual by Napoleon)
would be enforced for that resource. The local enforcement
mechanism would update the workflow object’s indicator of
current step as required.

There are several disadvantages with this approach. First,
Napoleon must be modified considerably to create and dis-
tribute workflow objects. Second, each access request re-
quires an additional permission check to the workflow ob-
ject, which may be expensive. Third, we must trust the en-
forcement mechanisms to update the current step correctly.
An enforcement mechanism could circumvent the workflow
policy with malicious updates. Fourth, this approach would
duplicate much of the workflow management processing al-
ready handled by the existing WMS. Clearly this approach
is very invasive, so we refocused our efforts on a solution
that leaves Napoleon and the local enforcement mechanisms
relatively unchanged.



5. A Napoleon-based workflow management
architecture

Olivier [7] notes that workflow policy enforcement can
be partitioned into three layers, from lowest to highest: con-
trolling access to resources, controlling access to steps and
application-specific enforcement. A useful split occurs in
the middle, or step, layer. Steps are a natural primitive for
workflow designers. A WMS is specialized to create steps,
determine their proper order and control execution of work-
flow instances according to that order. These operations
are unique to workflow technology. However, access for a
particular role to the resources associated with a particular
step can be controlled by mechanisms that are commonly
available in non-workflow domains.

Our solution exploits these partitions by assigning the
step layer and the application-specific layer to the WMS and
by assigning the resource layer to Napoleon. Workflows,
their steps and workflow conditions are specified within the
WMS. The steps are then exported to Napoleon, where re-
sources and roles are bound to them. During workflow
execution, the WMS manages workflow instances and di-
rects Napoleon to grant and revoke access, as appropriate,
to specific steps. Workflow conditions are enforced by the
WMS because they determine when the access grantings
and revocations should occur.

A high-level design of our solution is illustrated in Fig-
ure 9. This design illustrates two modes: policy specifica-
tion mode and workflow execution mode. Operations for
policy specification mode are noted initalics, while oper-
ations for workflow execution mode are noted in ordinary
text. A classical workflow management system will iso-
late these modes into two modules: aspecification module,
which enables administrators to specify the workflow, and
anexecution module, which assists in coordinating and per-
forming the procedures and activities [3]. Traditionally the
specification module is used only in pre-execution; however,
researchers are recognizing the need for the two modules to
co-evolve to handle dynamic change and exception han-
dling.

The best way to explain the architecture is with a simple
scenario for creating and executing a workflow.

5.1. Start with the workflow class definition.

The workflow designer begins by specifying an access
control policy that will apply to all instances of the workflow.
The designer creates the workflow and its steps using the
specification tools in the WMS. This information is then
exported to Napoleon, where the binding of resources and
roles to steps (as described in Section 4.1) occurs. Napoleon
has already gathered a list of available object classes from
the IDL files of its object managers. This list is also provided

to the WMS for creating workflow instances (see Section 5.2
below).

When this process is complete, the designer has created
an access control policy for a particularclass of workflow.
This policy names the roles required, it identifies the steps
that each role may take and the class of resources that can
be accessed at each step. However, the policy is incomplete.
It does not have enough information to control a workflow
instance. For example, it does not name individual objects.
The objects that may be accessed will depend on the current
step of a workflow instance. Therefore, Napoleon holds
onto the policy for now; that is, it does not “push out” the
policy for the enforcement engines.

5.2. Create a workflow instance.

At this point, Napoleon is loaded with a set of access con-
trol policies for workflow classes. A workflow instance gets
created when some event occurs to trigger it. For example,
a user requests a check reimbursement form, or a notifica-
tion appears in a user’s inbox. When such an event occurs,
the WMS determines the appropriate workflow for the event
and creates a new instance of that workflow. The workflow
instance is stored locally at the WMS. The instance names
the specific objects that may be accessed and the specific
users that may access them.

When a workflow instance is created in the WMS, it must
also be created in Napoleon. The WMS provides Napoleon
with the necessary information to instantiate the appropriate
workflow’s class access control policy, which means pro-
viding constraints such as “if object is namedfoo.txt”
that will be added to the instance copy in Napoleon. The in-
stance policy names (via constraints) the specific objects that
can be accessed. If all specific objects are not known when
the instance is created, the WMS may provide additional
constraints for that instance later.

In summary, the workflow instance definition in
Napoleon looks like the class definition except that it also
contains the constraints that name specific objects.

5.3. Execute the workflow instance.

The execution phase highlights the simplicity of this so-
lution. The WMS controls the execution of the workflow
instance. It determines the proper sequence of steps (e.g.,
what branches are executed), and it knows which steps are
active. It decides when a step should start (become active)
and when it is completed (and thus become inactive). The
WMS does what it implies: it manages the workflow. How-
ever, it relies on Napoleon to manage the access control
policy.

As the workflow executes, the WMS directs Napoleon to
grant access to the active steps and revoke access to inactive



CORBA
Object Manager

Workflow
Designer

DCOM
Object Manager

read
IDL

read
IDL

translate
policy

translate
policy

Workflow
Management

System

Napoleon

grant/revoke access to step

notification (if any)

workflows, steps, instances
specify keys
bind keys and objects to steps

specify workflows and steps

KEY

Policy specification mode

Workflow execution mode

Administrator

object classes

Figure 9. A Napoleon-based workflow management architecture

steps. No policy is translated for the object managers unless
directed by the WMS. For example, suppose that step 1 of
workflow instance P is active. Once step 1 is complete, the
WMS will direct Napoleon as follows:

Revoke access to step 1 in instance P, then grant
access to step 2 in instance P.

Note that Napoleon runs in tandem with the WMS. With
regard to policy translation, the only change in Napoleon’s
behavior is that it now “pushes out” the policy a step at a
time rather than all at once.

6. Conclusions

We have described a workflow management architec-
ture that incorporates Napoleon for workflow policy man-
agement. The architecture exploits the natural partitions
in workflow policy management by assigning workflow-
specific tasks to the WMS and workflow-generic tasks to
Napoleon. This approach lets each tool do what it does best.

Napoleon offers many benefits to workflow management,
including simplified policy management and support for
heterogeneous, distributed computing systems. Napoleon’s
flexible model lets workflow be introduced at any layer.

The support for distributed systems lets a workflow’s
control extend beyond the local system or local network.
A business’s divisions may be far-flung across the Internet,
so workflows may span several divisions or even several
companies (supplier, distributor, etc.). Also, a workflow
may need to control resources under the purview of legacy
enforcement mechanisms as well as resources managed by
newer standards like CORBA. In fact, the WMS does not

have to know how the resources under its control are man-
aged. Napoleon acts as a “universal adapter” between the
WMS and the policy enforcement mechanisms.

7. Future work

An outstanding issue for Napoleon is how constraints
should be implemented for CORBA and COM/DCOM ob-
jects. Neither system handles instance policies very well, al-
though we have a sample approach for enforcing constraints
in CORBA. The Object Management Group has looked at
the issue [6], and we will look more closely at their findings
and at related work by the Workflow Management Coali-
tion (WfMC) [12]. We will examine the issue of constraints
more fully in the next phase of this effort.

We will also consider other ways in which Napoleon
may benefit workflow management, such as with support
for hierarchical workflows.

Finally, we will identify a suitable WMS to prototype our
architecture.

References

[1] K. Abbott and S. Sarin. Experienceswith workflow manage-
ment: Issues for the next generation. InComputer Supported
Cooperative Work (CSCW). ACM, 1994.

[2] E. Bertino, E. Ferrari, and V. Atluri. A flexible model
supporting the specification and enforcement of role-based
authorizations in workflow management systems. InACM
Workshop on Role-Based Access Control. ACM, 1997.

[3] C. Ellis and G. Nutt. Workflow: The process spectrum. In
Workshop on Workflow and Process Automation in Informa-
tion Systems. National Science Foundation, May 1996.



[4] H. Feinstein, R. Sandhu, C. Youman, and E. Coyne. Fi-
nal report small business innovation research (sbir) role-
based access control phase 1. Technical Report Department
of Commerce Contract number 50-DKNA-4-00122, NIST,
May 1995.

[5] D. Hollingsworth. Workflow reference model v. 1.1. Tech-
nical Report TC00-1003, Workflow Management Coalition,
January 1995.

[6] Object Management Group. Workflow management facility.
Technical report, Object Management Group, July 1998.

[7] M. Olivier, R. van de Riet, and E. Gudes. Specifying
application-level security in workflow systems. In9th In-
ternational Workshop on Database and Expert Systems Ar-
chitectures (DEXA ’98). IEEE Computer Society, August
1998.

[8] W. Riddle. Fundamental process modeling concepts. In
Workshop on Workflow and Process Automation in Informa-
tion Systems. National Science Foundation, May 1996.

[9] R. Sandhu. Separation of duties in computerized information
systems. InDatabase Security IV: Status and Prospects,
pages 179–189. North Holland, 1991.

[10] D. Thomsen, D. O’Brien, and J. Bogle. Role based ac-
cess control framework for network enterprises. In14th An-
nual Computer Security Applications Conference,December
1998.

[11] J. Torres. http://www.jacquestorres.com/ bookinformation /
book1 / jtbook.htm.

[12] Workflow Management Coalition. Workflow security con-
siderations — white paper. Technical Report WFMC-TC-
1019, Workflow Management Coalition, February 1998.


