
Using Composition to Design Secure, Fault-Tolerant Systems

Duane Olawsky� Charles Payney Tom Sundquistz David Apostal
Todd Fine

Secure Computing Corporation
2675 Long Lake Road,

Roseville, Minnesota 55113-2536

Abstract

Complex systems must be analyzed in smaller pieces.
Analysis must support both bottom-up (composition) and
top-down (refinement) development, and it must support the
consideration of several critical properties, e.g., functional
correctness, fault tolerance and security, as appropriate. We
describe a mathematical framework for performing com-
position and refinement analysis and discuss some lessons
learned from its application. The framework is written and
verified in PVS [4].

1. Introduction

Complex systems must be analyzed in smaller pieces.
Analysis input should be a by-product of the development
process, which may be either bottom-up or top-down, so
there must be support for composing smaller analysis re-
sults into larger ones or refining large results into smaller
ones. In addition, the formal underpinnings must support
the consideration of disparate properties, such as functional
correctness, fault tolerance and security, as appropriate.

In this paper we describe a mathematical framework,
called the CSS1 Framework, for performing composition
and refinement analysis.2 The framework is written and
verified in PVS [4]. We have applied it to several research
examples with encouraging results. We discuss later some

�Now at Metaphase Technology Division, Structural Dynamics Re-
search Corporation, 4201 Lexington Ave North, Arden Hills, MN 55126-
6198

yContact: cpayne@securecomputing.com
zNow at Seagate Technology, 7801 Computer Avenue South, Min-

neapolis, MN 55435-5489
1Composability for Secure Systems, the program at SCC under which

the framework was developed.
2This research was supported by DARPA and the Maryland Procure-

ment Office under Air Force Research Laboratory Contract F30602-96-C-
0344 and monitored by the AFRL Rome Site.

lessons learned from those efforts.

1.1. Related work

The CSS Framework descends from an earlier version [2]
developed under the Distributed Trusted Operating Systems
(DTOS) program at SCC. The DTOS framework dealt with
composition only and had no support for refinement reason-
ing. Both frameworks are influenced heavily by the work
of Abadi and Lamport on the Temporal Logic of Actions
(TLA) [1, 3] and by Shankar’s framework [6].

The CSS framework differs from TLA and Shankar in
the following respects. First, our framework, based on com-
ponents which are similar to TLA formulas, adds agents,
because knowing the performer of actions is useful for se-
curity analysis. Second, in our framework composition in-
vokes environment constraints automatically, unlike TLA.
Finally, TLA formulas may include existential quantifiers to
hide internal state. We explored the introduction of quan-
tifiers into our framework but decided against them. They
forced a great deal of complexity both in terms of verifying
the framework and using it. Although quantification has ad-
vantages from a philosophical standpoint, its practical value
is more suspect. In TLA the first step in a refinement proof is
typically to remove the quantifiers by applying a refinement
mapping. This step puts the proof at what is the starting
point for the proof in our framework. If no refinement
mapping can be found, then although the refinement may
still be correct, the proof is likely to be very difficult. So,
our framework makes it easier to do the refinement proofs
that are potentially feasible at the expense of not supporting
refinement proofs that are potentially very difficult.

2. The CSS Framework

Composition is a technique for specifying a large system
by combining the specifications of smaller, simpler pieces—
the system components. This technique provides advantages



that are similar to those obtained from modular software de-
sign. It allows us to decompose the analysis of a system
into the analysis of its components. Rather than analyzing
the entire composite system, we focus on a single compo-
nent at a time, showing that it satisfies some more localized
property. We then show that the localized properties of the
components together imply that the global desired property
is satisfied by the system as a whole. Since the local analy-
ses depend upon only a single component, they are reusable.
They need not be redone when the component is used in a
new context.

Refinement supports reasoning about a system specified
at multiple levels of abstraction. Refinement analysis makes
it possible to show that properties demonstrated for an ab-
stract specification are preserved in a less abstract refinement
of that specification that reflects a more detailed design. It
is usually easier to prove desired system properties for an
abstract specification than for a more detailed one. On the
other hand, it is easier to relate a detailed specification to its
implementation since it includes more design details. The
goal, of course, is to know that the implementation satis-
fies the desired properties. Refinement analysis allows us
to conclude this by proving that an abstract specification
satisfies the properties, then arguing that a refined specifica-
tion is consistent with the implemented system and finally,
comparing the two specifications to show that the refined
one is consistent with the abstract one. Thus, we only need
analyze the property at the abstract level where this analysis
is easiest.

The CSS framework was developed with the goals that
it be small, easy to use and not too hard to verify while
still providing the essential reasoning power. It consists of
a set of PVS theories that must be loaded into PVS along
with the specifications, which are expressed in the syntax
of the framework. Supporting the use of the framework
are two tools: a specification browser helps novice users
develop and manage their specifications, and an analyst’s
assistant, actually a set of PVS strategies, facilitates many
of the proofs required by the framework.

The framework’s primitive is the component. A compo-
nent specification is a state machine model defined (similar
to [3]) by the following characteristics: the initial states
allowed by the component, the agents acting on behalf of
the component, the transitions for the component — both
performed by the component and what the component al-
lows its environment to perform, and fairness constraints
(both weak and strong) required for the component. Tran-
sitions are defined by the initial state, the final state and
the performing agent. Note that transitions performed by
the environment are those for which the performing agent
is not in the component’s agent set. The component spec-
ification may also include assumptions that the component
makes about its environment. A behavior of a component is

represented by all executions that start in an allowed initial
state, that contain only allowed transitions and that satisfy
the fairness conditions.

The basic idea of composition is that the composed com-
ponents start in a common state that is acceptable to all of
them, that they take turns performing transitions that are
allowed by all of them, and that the fairness conditions of
all of the components are satisfied. We allow components
to have overlapping agents; however, if the agent sets are
disjoint, then the environment transition constraints for each
component are checked automatically against the transitions
performed by its peers. This automatic check is important
from the standpoint of reuse. It removes the need to modify
the specification of a component whenever it is to be com-
posed with a new component. It also allows the definition
of a component to focus entirely on its own state. However,
it also means that there is no way for these constraints to be
violated by a peer in a composite system. Thus we stress
that the environment transition constraints are an integral
part of a component specification and that the component is
not described faithfully without them.

Once the composite system is specified, we may want to
prove that it satisfies some critical property. The behavior of
the composite system is defined as the intersection of the be-
haviors of its components. It is a trivial consequence of this
definition that if some component of the system satisfies the
property, then so does every system containing the compo-
nent. This supports reuse of analysis and the decomposition
of a satisfaction proof into smaller, component-local satis-
faction proofs.

Frequently, a component is designed so that it satisfies
some desired property as long as certain assumptions hold
true for its environment (e.g., the processes with which it
communicates follow an agreed upon protocol). In this case,
we say the component conditionally satisfies the property.
To show that it satisfies the property unconditionally, we
must assert that the environment validates its assumptions.
There are two approaches. The first approach is to add the
assumptions to the component specification (as noted ear-
lier) and then compose the component with an environment
that satisfies those assumptions. The second approach is
to state the property as an implication, which makes the
assumptions more explicit in the satisfaction proof.

A (possibly composite) component is a refinement of, or
implements, another component if the behaviors of the first
component are a subset of the behaviors of the second com-
ponent. This is a useful concept since property satisfaction is
preserved under refinement. Thus properties can be proven
at an abstract level of specification and a refinement analysis
can then be performed to show the properties remain true
for a lower level specification. Since component behaviors
are typically infinite sets of execution histories, which are
themselves infinite sequences, an arbitrary refinement proof



can be difficult. Therefore, we defined a theorem (like [1])
that states that for any two components a and b, a imple-
ments b if the initial states of a are contained in the initial
states for b, the transitions allowed by a are contained in
the transitions allowed by b and the behavior of a satisfies
the fairness constraints for b, subject to some refinement
mapping.

When a and b are both composites, the proof that a im-
plements b can be decomposed into a collection of smaller
proofs showing that for each component c of composite b,
there is some set d of the components comprising a such
that the composition of d implements c. The subproofs will
usually be easier than the large one. Furthermore, since each
subproof focuses on a single component c composed into b,
they are likely to be reusable in another refinement analysis
where c is implemented by the same low-level components
but is composed with a different set of components at the
high level.

3. Lessons Learned

We applied the framework to several small examples in
order to test various features. Our first effort was to specify
an abstract box manager that defines the requirements for
message passing in a modular operating system architecture,
then we proposed an implementation consisting of kernels,
networkservers and a network. Later we refined the network
server into a network protocol stack. In a parallel effort,
we specified a prototype fault-tolerant architecture, then,
using the lessons from the prototype, we modified the box
manager implementation to be fault tolerant. Finally, we
investigated the exposition of information flow policies in
the framework. Since space constraints prevent us from
describing the framework or its applications further here,
we direct the reader to the program web page3 for more
information. The lessons described below are derived from
these applications.

Common state. In the DTOS incarnation of the frame-
work, we defined state and agent translators to relate compo-
nents and their states during composition. Each component
was defined on a separate state type, then a global state was
defined that contained all component states. The global state
included translator functions to map each component state
to the global state. In addition to the work of defining the
translators, significant proof effort was expended to apply
the translators. As the translators were trivial projections,
the extra effort yielded little insight. We realized that if we
ever used non-trivial translators, the translators themselves
might obscure what was really being proven.

3http://www.securecomputing.com/css

This cumbersome approach was abandoned during the
box manager specification in favor of a universal, common
state. Component states are defined as before, except that
they import a config theory containing shared data types and
global “configuration” information. The component state
definitions are combined in a single common state with a
separate field for each component state. Each component is
defined directly on the common state but all of its accessors
are to its local state, so the component really depends only
on its local state. As components are added or removed, the
changes to global state are isolated to the config and common
state theories, so other components and their analyses are
not affected.

Refinement. The box manager application was also the
first to use the framework to specify a system for refine-
ment. We realized many advantages by specifying more
than one level of abstraction. The higher level contained
just enough detail to prove the critical property, which in
turn made the property easier to prove. All other necessary
design detail was introduced in the refinement. We believe
that critical property proofs will usually be harder than re-
finement proofs, so this approach reduces the overall proof
effort required.

However, we discovered that planning for refinement is
tricky. Special care is needed to ensure that the refinement
is valid. The analyst must avoid making tacit assumptions
at the lower level that are derived from the higher level. For
example, if one component is split into many, the analyst
must specify the allowed interactions between the low level
components so that they cannot do things to each other that
the high level component cannot do to itself.

The analyst should also fight the urge to overspecify
the highest level. Overspecification introduces new con-
straints, which limits the opportunities for refinement. We
also learned that the “simplest” specification can introduce
undesirable constraints. Consider an abstract component c
that has two variables, i for input and o for output. At any
time c can copy i to o, but it makes no other changes to
o. Now refine c to a chain c1; : : : ; cn of components. The
variable i corresponds to the input of c1, and the variable o

corresponds to the output of cn. Each ci performs a copy
operation. Unfortunately, this refinement is not valid. In c,
if o changes, it must change to the value in i. However, in
the implementation of c, it may change to the input value for
cn and this value may not match the input value for c1. The
problem here is the specification of c is too constrained. It
asserts implicitly that c can process only one value at a time.
It prevents refinements where multiple values are in transit.
We expect that this is a general problem for refinements.

Reuse. Just as it is difficult to plan for refinement, it is
difficult to anticipate reuse. Both the box manager and



its implementation were specified with a nondeterministic
message delivery mechanism. There was no constraint on
message order because none was required to prove the crit-
ical property. However, when we attempted to modify the
box manager implementation for fault tolerance, we dis-
covered that our fault tolerance model explicitly assumes
first-in-first-out (FIFO) communication [5], so the unmod-
ified box manager implementation failed to meet the basic
assumptions for fault tolerance! The obvious solution was
to modify the implementation to exhibit FIFO behavior.

Replication. A system is fault tolerant if it behaves like
a fault free system. Our specification for the fault toler-
ance application includes two levels of abstraction: the high
level is the fault free system, and the low level is the fault
tolerant implementation. We decided that it is sufficient to
demonstrate that the fault tolerant system is a refinement of
the fault free system. Refinement in the other direction is
better demonstrated through other methods, such as testing,
because a refinement mapping may not exist.

The most unique characteristic of a fault tolerant system
is component replication. We discovered that component
replication complicates the search for a refinement map-
ping. A fault tolerant architecture contains multiple, redun-
dant data paths, some of which may be faulty. The outputs
from these paths are combined through a majority vote (for
Byzantine systems at least) into a single response, which
must be the same response that a fault free system would
give. The refinement mapping must choose the non-faulty
path in the fault tolerant model that contains the fewest mes-
sages and define the data path in the fault free model in terms
of that path. If there is more than one non-faulty path, the
choice might change in any state transition. The refinement
mapping must account for this situation. Note that the re-
finement mapping depends upon knowledge of which paths
are faulty. The information is needed in the model anyway
to express the hypothesis that a sufficient number of compo-
nents are non-faulty; however, it is “metastate” information
that is not accessible to any implementation.

Separation of concerns. The fault tolerance application
gave us the opportunity to highlight separation of concerns
as a major benefit of composition. For the fault tolerant
prototype, we specified the unique functions of a fault toler-
ant architecture, i.e., data replication and voting, as separate
components rather than introducing them into existing com-
ponents. We also needed to model faulty behavior, so we
specified a fault generator component and composed it into
each data path. This approach allowed us to reuse these
components with little change when we modified the box
manager implementation to be fault tolerant.

Fairness. An interesting realization was that fairness con-
ditions in a high-level specification can never be imple-
mented entirely. There must be some fairness condition at
each refinement level. For example, even though a spe-
cific scheduling algorithm might be added to lower levels
to define how the high-level actions governed by fairness
conditions are scheduled, it will still be necessary to in-
clude a fairness condition at the lower level requiring that
the scheduler itself be treated fairly.

4. Summary and conclusions

We have a described a mathematical framework for per-
forming composition and refinement analysis, and we have
discussed lessons from its use. We continue to apply the
framework on other projects at SCC and to discover new
and better ways to use it. In particular, requirements-based
specifications, as opposed to design-based specifications,
have shown great promise, especially at the higher levels
of abstraction. We anticipate that many evolutionary im-
provements could be made to the framework itself and to its
supporting tools, particularly the analyst’s assistant.

References

[1] M. Abadi and L. Lamport. Conjoining specifications. Tech-
nical Report 118, Digital Equipment Corporation, Systems
Research Center, Dec. 1993.

[2] T. Fine. A Framework for Composition. In Proceedings of the
Eleventh Annual Conference on Computer Assurance , pages
199–212, Gaithersburg, Maryland, June 1996.

[3] L. Lamport. The Temporal Logic of Actions. ACM Trans.
Prog. Lang. Syst., 16(3):872–923, May 1994.

[4] S. Owre, N. Shankar, and J. Rushby. The PVS Specification
Language. Computer Science Laboratory, SRI International,
Menlo Park, CA 94025.

[5] F. B. Schneider. Implementing Fault-Tolerant Services Using
the State Machine Approach: A Tutorial. ACM Computing
Surveys, 22(4):299–319, December 1990.

[6] N. Shankar. A lazy approach to compositional verification.
Technical Report TSL-93-08, SRI International, Dec. 1993.


