
Representing Uncertainty in Simple PlannersRobert P. GoldmanHoneywell Technology CenterMN 65-22003660 Technology DriveMinneapolis, MN 55418goldman@src.honeywell.com Mark S. BoddyHoneywell Technology CenterMN 65-22003660 Technology DriveMinneapolis, MN 55418boddy@src.honeywell.comAbstractIn this paper, we present an analysis of plan-ning with uncertain information regardingboth the state of the world and the e�ectsof actions using a Strips- or (propositional)Adl-style representation [4, 17]. We provideformal de�nitions of plans under incompleteinformation and conditional plans, and de-scribe Plinth, a conditional linear plannerbased on these de�nitions. We also clarifythe de�nition of the term \conditional ac-tion," which has been variously used to de-note actions with context-dependent e�ectsand actions with uncertain outcomes. Weshow that the latter can, in theory, be viewedas a special case of the former but that to doso requires one to sacri�ce the simple, single-model representation for one which can dis-tinguish between a proposition and beliefsabout that proposition.1 INTRODUCTIONIn this paper, we present an analysis of planning withuncertain information regarding both the state of theworld and the e�ects of actions. Our focus on planningleads us to limit the expressive and inferential powerof the formal systems we consider in the interests ofe�ciency. We do not develop with a full theory ofknowledge and action of the sort which has concerned,e.g. Moore [13], Konolige [7], Haas [6], or Morgen-stern [14]. In particular, we do not address what Mor-genstern calls knowledge preconditions for actions andplans: determining when one knows enough to performan action or successfully execute a plan, respectively.We are concerned only with taming uncertainty aboutthe results of actions or uncertainty about the state ofthe world in the process of planning with a Strips- or(propositional) Adl-style representation [4, 17]. Forthe sake of computational e�ciency, we restrict our-selves to a single model of the world, representing

the planner's state of knowledge, rather than a morecomplex formalization including both epistemic andground formulas. Our goal in this investigation is anincreased understanding of conditional plans: plans inwhich the course of events is dictated by the actualoutcome of actions whose e�ects cannot be predicteda priori [19, 5].We clarify the de�nition of the term \conditional ac-tion." This term has been variously used to denote ac-tions with context-dependent e�ects and actions withuncertain outcomes. We show that the latter can, intheory, be viewed as a special case of the former. How-ever, we also show that to do so requires one to sac-ri�ce the simple, single-model representation for onewhich can distinguish between a proposition and be-liefs about that proposition. Using this de�nition, weprovide formal de�nitions of plans under incompleteinformation and conditional plans.Section 2 provides some preliminary de�nitions usedin the rest of the paper. Section 3 presents an exten-sion of Strips-rule planning to handle cases where theplanner has only a partial model of the initial situa-tion, and in which (a restricted kind of) informationmay be gained and lost through actions. We extendthe Strips add and delete lists to include three truthvalues of true, false and unknown, losing in the pro-cess the use of negation-as-failure over the propositionsthat hold in a given situation. The primary limitationof this framework is that it assumes that the plan-ner has su�cient knowledge to completely predict theoutcomes of its actions | although one e�ect of theseactions may be to forfeit information. There is noprovision for actions with unpredictable outcomes. InSection 5 we remedy this omission, building on theconditional planning work of Peot and Smith.Following this, we contrast conditional actions withcontext-dependent actions (Section 7). We show someproblems with using context-dependent actions forplanning under conditions of partial information. Fi-nally, we compare our work with other work in thearea, and present a summary and conclusions.

2 PRELIMINARY DEFINITIONSWe start with a set of propositions, fPig = P. Wede�ne a model, M of P, as a triple, hT; F; U i whichis a partition of the propositions of P into statementswhich are true, false and unknown, respectively. Apartial model is a triple hT; F; U i where T; F and U aredisjoint subsets of P. A modelM = hTM; FM; UMiis an extension of a partial model � = hT� ; F�; U�i ifT� � TM, F� � FM and U� � UM. In the interestsof brevity, we speak of a model M which extends apartial model � as satisfying or entailing �: M` �.We de�ne a set of operators, O, similar to stripsoperators. Operators are de�ned as ordered pairsO = hPO; EOi, where PO (the preconditions of O) andEO (the postconditions of O) are both partial models.An operator O de�nes a partial function from modelsto models. The function is partial because fO mayonly be applied to a modelM which is an extensionof PO: the action represented by O may only be takenin a state where O's preconditions are satis�ed.One could extend the operators to be total functionsfrom models to models by de�ning fO(M) = h;; ;;Pifor any M that does not satisfy the preconditions ofO. As there is little reason to plan to achieve completeignorance, it makes more practical sense to insist thatactions only be performed when their preconditionsare satis�ed.We refer to models which entail PO as satisfying thepreconditions of O. For any operator O with e�ectsEO = hTE ; FE; UEi and modelM satisfying the pre-conditions of O, the corresponding function, fO(M) isde�ned as follows:fo(M) = * (TM � (FE [UE)) [TE ;(FM � (TE [UE)) [FE;(UM � (TE [FE)) [UE +This de�nition generalizes the Strips assumptionto a three-valued logic. For a (possibly partial)model M, let true(M) = TM, false(M) = FMand unk(M) = UM. Additionally, for an operatorO = hPo; hTo; Fo; Uoii, let precond(O) = Po (a par-tial model) and a�ected(O) = To [Fo [Uo (a set ofpropositions).Note that the U sets represent lack of knowledge onthe part of the agent while the plan is being executed ,rather than the state of knowledge of the planner whileit is constructing the plan. For example, a regressionplanner like McDermott's Pedestal [10] will not, ingeneral, project the full state of the world after one ofthe steps of its plan is done. The planner cannot a�ordto compute this complete knowledge; it only commitsto the truth value of propositions which are neededto ensure that its plan will be successful. However,Pedestal's completed plan could be used to projecta series of complete truth assignments to the proposi-tions describing the world. Once the plan is complete,

all uncertainty has been banished. This is not the casein our framework.3 THE SIMPLE PLANNINGPROBLEMA planning problem is a pair hG;Si where G is the goalof the planning problem and S is the initial state. Theinitial state S is a complete (i.e., not partial) model ofP, while the goal G is a partial model. The solutionof a planning problem is a plan whose result satis�esG. In the following paragraphs we describe the resultof a plan and how such a plan may be derived.Following Lifschitz [9], we de�ne a sequence of actions,or plan, as � = (�1; : : : ; �N). Assuming that this se-quence of actions starts in initial situationM0, we saythe plan is accepted byM0 i� there exists a sequenceof modelsM1 : : :MN such that8i; 1 � i � N; f�i(Mi�1) =Mi andMi�1 ` precond(�i)We refer toMN as the result of the plan �.4 REGRESSIONRegression [24] can be described informally as reason-ing backward from the desired e�ects of an action towhat had to be true when the action was executed.One rationale for regression was the need to prove thatplan steps used to achieve one goal would not clobberanother goal of the same plan. Waldinger suggested afurther use for regression: to determine where a stepshould be added to a linear plan. If a precondition of anew step is threatened by an existing step, put the af-fected step before the o�ender, and then protect thatprecondition (i.e., use regression to ensure that anyfurther additions to the plan leave it unchanged). Thisis the way regression is employed in Pedestal [10].In STRIPS-rule planners, regression only requires ver-ifying that the proposition does not unify with theresults of a given operator. Since those results are byde�nition the sole e�ect, known or unknown, of apply-ing that operator, the proposition is una�ected by theaction. Adding context-dependent e�ects as in ADL[17] complicates matters. Instead of just verifying thatan operator will not a�ect a given proposition, regres-sion involves deriving the conditions under which theoperator will not a�ect that proposition.Pednault[17] gives the conditions under which a propo-sition, p, will hold after the execution of an action a(for the propositional case) as follows:I(a; p) = ca _ (p ^ :da)where cA is the condition under which p is on a's addlist and da is the condition under which p is deleted by

a. More precisely p will hold after act a is performedi� I(a; p) holds before a is performed:fa(M) ` p �M ` I(a; p)Regression for the operators described here is some-what more complex; our use of three truth values pre-cludes use of the excluded middle, which can otherwisebe used to good e�ect in simplifying the computationof causation and preservation preconditions. For thelanguage described above, the regression operators areas follows (for p meaning p is true, p meaning p is falseand ~p meaning p is unknown):I(a; p) � (p ^ p 62 a�ected(a)) _ p 2 true(a)I(a; p) � (p ^ p 62 a�ected(a)) _ p 2 false(a)I(a; ~p) � (~p ^ p 62 a�ected(a)) _ p 2 unk(a)The regression operator I(a; p) may be interpreted as\p will be true following a," and similarly for the othertruth values.5 ACTIONS WITH UNCERTAINOUTCOMESIn their paper on conditional non-linear planning [19],Peot and Smith extend the Strips model of actions toinclude actions whose outcomes are uncertain. Theyuse these conditional actions to model observation ac-tions. In this section, we extend our operator repre-sentation to include conditional actions and provideregression operators for them.The operator semantics we have de�ned thus far isinsu�cient to model the use of observation to gaininformation. Information may be \gained" in a wayanalogous to the use of compliant motion for robots:operators may be selected in such a way as to reducethe set of unknown propositions whatever the initialstate (e.g., ram into the wall as a way of reducinguncertainty in your position).1The problem is that there is no way to describe an ac-tion with uncertain e�ects. Di�erent e�ects must bethe result of di�erent operators or the same operatorwith context-dependent e�ects in di�erent states. Aslong as the initial state S is a complete model, obser-vations cannot be modelled in this way, because theresulting state is completely determined by the statein which the observation occurs.Peot and Smith's operators are pairs O = hPO; OOi.As before, PO, the set of preconditions, is a partialmodel. OO is a set of mutually exclusive and exhaus-tive possible outcomes when an action of type O is per-formed (i.e., exactly one of the outcomes will be the re-sult of the action). Each outcome is a pair of the form1This is the way that Buridan handles uncertainty [8].

h�i; E�ii. The �i's are unique identi�ers for outcomes.Let us de�ne Olabels(O) = Si �i (for the sake of tidi-ness, we require the Olabels sets for di�erent operatorsto be disjoint). If O is not a conditional operator, thenOlabels(O) = f?g. E�i = hTO;�i ; FO;�i; UO;�ii is apartial model describing the e�ects of O in the eventof outcome �i.We de�ne a new set of partial functions f 0O :Olabels(O) �M 7! M to describe the e�ects of thenew operators. If an action of type O is performedin stateM = hTM; FM; UMi (which satis�es PO) andoutcome �i occurs, the e�ect will beM0 = * (TM � (FO;�i [UO;�i)) [TO;�i ;(FM � (TO;�i [UO;�i)) [FO;�i ;(UM � (TO;�i [FO;�i)) [UO;�i +That is, f 0O(�i;M) = M0. For actions that are notconditional, we de�ne f 0O(?;M) = fO(M). The(partial) functions f 0O : Olabel(O) � M 7! M maybe mapped straightforwardly to a (still partial) func-tion f : O � Olabels � M 7! M, where Olabels =SO2O Olabels(O).We extend our de�nition of action sequences, given insection 3 to sequences of action, outcome pairs. Sim-ilarly, we may extend our earlier de�nitions of regres-sion operators to:I(a; �; p) � (p ^ p 62 a�ected(a; �)) _ p 2 true(a; �)I(a; �; p) � (p ^ p 62 a�ected(a; �)) _ p 2 false(a; �)I(a; �; ~p) � (~p ^ p 62 a�ected(a; �)) _ p 2 unk(a; �)The conditional actions permit us to describe observa-tion operators. For example, we might want to have aplanner which is able to �nd out what the weather isand plan travel accordingly:listen to weather reportpreconditions: at(home), unknown(storm)postconditions: Olabels e�ects�1 storm�2 not(storm)Note that it is the need to properly formalize obser-vation operators which forces the third truth value onus. We must insist that unknown(storm) be a precon-dition of this operator in order that the planner notconstruct a pathological plan in which it keeps observ-ing the weather over and over again until it gets anobservation it likes.Conditional operators may be used for uncertain ac-tions other than observations. In domains in whichactions are fallible, conditional operators allow us tobuild planners which can plan for contingencies inwhich actions fail to achieve desired e�ects. For ex-ample, in an image-processing domain, one may havea number of possible operations that can remove noisefrom an image. These operations are fallible; they do

not always succeed in cleaning up the target image. Ifwe describe these operations as conditional actions, wecan build plans in which either the operation succeeds,or we must take other, additional actions to clean upthe image.This representation of conditional actions makes itcumbersome to represent and reason about e�ects thatare common to all outcomes of a given operator. Onemight revise the representation to make this easier,but we do not believe it would repay the e�ort. Ingeneral, conditional actions will be introduced into aplan in the interest of varying outcomes. To take Peotand Smith's example, one might introduce an obser-vation action to determine the state of a road betweentwo points. One would be unlikely to do so simply toexpend time (Peot 2 calls for conditional plans to be\without augury").We view conditional action sequences as action se-quences which branch forward in time. A conditionalsequence is a tree, each of whose nodes corresponds toan action (an instance of an operator). Each edge inthe tree will be labeled with an outcome label of theaction at the tail of the edge.More formally, a conditional sequence, C �f(n; l; n0)jn; n0 2 uid(C); l 2 Olabels(op(n))g. uid(C)is a set of unique identi�ers for acts in the conditionalsequence C. op is a function mapping uids of acts tothe operator of which the act is an instance.In order to be nonredundant, a conditional sequencemust have only one triple (n; l; n0) for every pair (n; l).Unconditional sequences may be drawn from a con-ditional sequence. Each such unconditional sequenceis a rooted path through the tree C. That is,an unconditional sequence, P is written as P =(n1; l1) : : : (nN ; lN) where there must exist an edge(ni; li; ni+1) 2 C and where n1 = root(C). In orderto be well-formed, an unconditional sequence startingin an initial stateM0 must meet the following condi-tions:1. f(op(ni);Mi�1; li) =Mi for all 1 � i � N .2. Mi�1 ` precond(op(ni)) for all 1 � i � N .We de�ne result(P) = MN . An uncondi-tional sequence is complete if it is a path P =(n1; l1) : : : (nN ; lN) for nN 2 leaves(C).In order for a conditional sequence, C to be well-formed, it must be non-redundant and every uncon-ditional path contained in C must be well-formed. Inorder to be complete, a conditional sequence mustbe well-formed and have an out-edge for every pair(n; l) for n an interior (non-leaf) node and l an el-ement of Olabels(op(n)) where n corresponds to aninstance of operator o. A conditional sequence C is2Personal communication.

a complete conditional plan for the planning problem(M0;G;O) if C is complete and for all complete pathsP = (n1; l1) : : : (nN ; lN) in C, result(P) ` G.6 CNLP AND PLINTHIn this section we brie
y discuss two recently-developed conditional planners. The �rst, Cnlp, isa non-linear conditional planner for which conditionalactions were developed; our original intent in this re-search was to clearly understand Cnlp. In the courseof our investigations, we came to suspect that the casefor non-linear planning was less strong for conditionalplanning than conventional, \classical" planners. Thesecond planner we discuss here, Plinth, is a linearconditional planner which we have developed to in-vestigate the e�ciency tradeo�s between linear andnonlinear approaches to conditional planning.Peot and Smith's Cnlp [19] is a conditional, nonlinearplanner based on Rosenblitt and MacAllester's Snlp.Like Snlp, Cnlp constructs its plans by a series ofinterleaved goal satisfaction and threat removal oper-ations. Cnlp di�ers in adding conditional actions likethose described here.Cnlp augments the Snlp algorithm to accomodateconditional actions. The labels of conditional out-comes are propagated along causal and conditioninglinks in the plan graph to record to which branch ofthe plan each action belongs. These conditioning linksare added by a new threat-removal operation, \con-ditioning apart," which is used to assign steps to dif-ferent contexts. E�ectively one resolves a threat to agiven step by adding a constraint that the threatenerand the threatened step not both be part of the samebranch of the plan. As of yet no results have beenpublished concerning the soundness and completenessof Cnlp.Given the current prevalence and popularity of non-linear planning, our decision to construct a linear con-ditional planner may require some explanation. Inconventional, \classical" planning applications, non-linear planning is usually an improvement over linearplanning because fewer commitments yields a smallersearch space, at a relatively minimal added cost toexplore each element of that search space [12]. How-ever, it is not clear that this tradeo� operates in thesame way for conditional planners. When plans havemultiple branches, the savings from considering fewerorderings is likely to be much less and may not repaythe cost in the added complexity of individual planexpansion actions. In particular, the domain in whichwe have applied Plinth is one in which subgoal inter-actions are minor, and thus in which a linear plannercan be e�ectively employed. Conditional linear plan-ning is simpler in conception as well as in implemen-tation. In particular, our conditional linear plannercan be shown to be sound and complete; we do not

yet know of a sound and complete conditional non-linear planner. Finally, the operation which is neededto properly construct branching non-linear plans |resolving clobberers through conditioning apart | isa very di�cult operation to direct.Plinth's conditional linear planning algorithm is non-deterministic and regressive.3 Plans are built by ma-nipulating three important data structures: a partialplan, a set of protections and a set of as-yet-unrealizedgoals. The planner operates by selecting an unrealizedgoal and nondeterministically choosing an operator toresolve that goal while respecting existing protections.New goals may be introduced when steps are intro-duced, either to satisfy preconditions or to plan forcontingencies introduced by conditional actions. Es-sentially this algorithm is the same as that of a con-ventional linear planner. The crucial di�erence is inthe e�ect of adding a conditional action to the plan.When adding a conditional action, A, there will besome outcome, O, such that A � O will establish thegoal literal (otherwise A would not have been chosenfor insertion). This outcome will establish what onecan think of as the \main line" of the plan. However,there will also be some set of alternative outcomes,fOig. In order to derive a plan which is guaranteedto achieve the goal, one must �nd a set of actionswhich can be added to the plan such that the goalsare achieved after A � Oi. for all i. This is done byadding new goal nodes to the plan, which are madesuccessors of the other outcomes. The planner willnow plan to realize these other goals as well as the\main-line" goal. Note that actions to handle alterna-tive outcomes may be added either before or after therelevant conditional action. Loosely speaking, we canadd to our conditional plans either remedial actions orprecautionary actions.Plinth is described in greater detail elsewhere [5]. Wehave demonstrated that the algorithm is sound andcomplete. The algorithm has been implemented inQuintus Prolog. The implementation uses a depth-�rst iterative-deepening search strategy so it preservesthe theoretical properties of soundness and complete-ness (up to hardware limitations). Plinth is be-ing applied to planning image processing operationsfor NASA's Earth Observing System, in collaborationwith Nick Short, Jr. and Jacqueline LeMoigne-Stewartof NASA Goddard.7 UNCERTAINTY ANDSECONDARY PRECONDITIONSIn his work on Adl [15, 17], Pednault introduces op-erators which have context-dependent e�ects. Thismight seem to be an attractive method to represent3Our development of the algorithm was inspired by Mc-Dermott's linear planner Pedestal [10], hence the name.

problems of planning under incomplete information.For example, one attempt at representing an observa-tion operator is the following:4Check the road from ?x to ?y.observe(clear(?x,?y))preconditions: at(?x), unknown(clear(?x,?y))e�ects: clear(?x,?y) clear(?x,?y)not clear(?x,?y) not clear(?x,?y)For those not familiar with Adl: Adl operators areakin to Strips operators, but their preconditions arepartitioned. Strips preconditions are conditions un-der which the operator can be performed. If the pre-conditions do not hold when the operator is to beperformed, the plan is ill-formed. Adl departs fromStrips in allowing one to attach additional conditionsto the individual e�ects of operators. For example, onecould formalize the action of crossing a bridge by truckas having the preconditions of being at the bridge andin a truck. There might be two possible e�ects: beingon the other side of the bridge, which has as additionalprecondition that the bridge is sound; and being inthe ravine below, which has as additional preconditionthat the bridge is not sound. We indicate additionalpreconditions using the \backward chaining arrow," . Note that the original Adl syntax uses add listsand delete lists; we use e�ects instead in the interestsof a consistent notation within the body of this paper.One problem with this representation is apparent inthe observation operator given above. Each of the ef-fects has itself as additional precondition! The reasonfor this paradoxical situation is that planning underuncertainty in this way violates an common planningassumption: that we can treat the planner's model ofthe world and the state of the world as interchange-able. To handle observations properly, we need to beable to represent and reason about both the state ofthe world (the road is clear, so when we look, we will�nd it so) and the planner's state of knowledge (theobservation operator makes sense because the plannerdoesn't know whether the road is clear).A related problem is that this formalization leads us toan unrealistic model for planning. The obvious way touse an operator like the above is to insert it into one'splan and then continue planning in two contexts: onewhere the road is clear and one where it is not. Butnote an undesirable feature of these two contexts: ineach of them the road not only is clear, but has alwaysbeen clear, and the planner should know this. As inthe famous problem of Schrodinger's cat, performingthe observation seems to cause the entire history ofthe world to change. Closer to home, this paradoxis akin to McDermott's \little Nell" problem [11], inwhich planning to prevent an action seemed to makeplanning to prevent it unnecessary. Without explicit4We have tried to follow Pednault's notation fairlyclosely.

representation of belief, ground truth and the relationsbetween them, it is impossible to model the acquisitionof information with only deterministic operators.8 CASSANDRACassandra is a conditional nonlinear planner that usessecondary preconditions for planning under uncer-tainty [20]. In order to encode uncertainty, certainactions are given secondary preconditions which areunknowable; Cassandra must plan to gain informationabout these unobservable pseudo-propositions. Read-ing about Cassandra bears out our conclusions aboveabout the drawbacks of secondary preconditions forencoding uncertainty.Cassandra is built on top of the nonlinear plannerUcpop [18]. Ucpop is sound and complete, and usesPednault's ADL for its action representation. In Cas-sandra, rather than positing conditional actions likethose described here, uncertain outcomes are capturedby giving actions secondary preconditions which are\unknowable." These unknowable preconditions havemultiple outcome labels, like our outcome labels, andlike our outcome labels are mutually exclusive andexhaustive. Instead of branching at conditional ac-tions, Cassandra plans branch at decisions. Decisionscontain condition-action rules which specify the condi-tions under which the planner should conclude that agiven outcome has occurred. When the plan is ex-ecuted, the execution monitor should perform onlythose actions labeled consistently with the outcomesof its decisions. These decision rules provide a mecha-nism for relaxing an assumption common to both cnlpand Plinth: that the outcomes of conditional actionsare always known.While we �nd Cassandra's model of uncertainty at-tractive, it appears to require more expressive powerthan its ADL action representation provides. It isconsequently di�cult to say exactly what Cassandra'splans mean. In particular, Cassandra's decisions andtheir knowledge preconditions cannot be expressed inADL. Cassandra's decisions have preconditions of theform \knowif(proposition)," but such preconditionsare beyond its expressive capacity; Cassandra, like theother planners described here, appears to make no dis-tinction between truth in the world and the planner'sbeliefs about the world. Accordingly, there can be nosatisfactory ADL representation for actions which col-lect information, as we have argued in the previoussection.9 INFORMATION-GATHERINGACTIONSRecent work on planning under uncertainty done atthe University of Washington has brought to the fore

a number of issues concerning information-gatheringactions [2]. In particular, the UW group has shownthat planners must be able to distinguish goals ofinformation-gathering from other goals of achieve-ment. They provide the following persuasive example:Suppose that the planner is told that the hid-den treasure it is seeking is located behind\the blue door." Painting a door blue doesnot satisfy the goal of �nding \the blue door"| it merely obscures the identity of the ap-propriate door. [2, p. 116]In order to capture the distinc-tion between information-gathering goals and achieve-ment goals, the Uwl planning language provides goalannotations: satisfy, hands-o� and �nd-out. Sat-isfy goals are to be achieved as normal planner goals.Hands-o� goals, on the other hand, are restricted toinformation-gathering. If the planner has a goal an-notated with (hands-o� P), it must achieve its othergoals without a�ecting the truth value of P . Finally,(�nd-out P) goals are a hybrid | the planner shouldprefer to simply observe the truth or falsehood of P ,but if the planner must change the value of P for someother reason, that is acceptable. The UW group hasdeveloped a conditional planner, Sensp, for Uwl, inwhich the process of matching pre- and post-conditionsis altered in order to handle these annotations.5As far as we can tell, the hands-o� and �nd-outgoals are similar encodings of radically di�erent phe-nomena. The hands-o� goals are apparently only aspecial class of preservation goals. They appear di�er-ent because conventional planning languages are notexpressive enough to say \maintain the truth value ofP , whatever it may be now." and to permit observationof P without modi�cation. Within our framework, wecapture this restriction by ruling out the use of oper-ators which would change the truth value of P overpart or all of a given plan. We do so by ruling out alloperators O such thatP 2 a�ected(O) ^ ~P 62 precond(O)That is, any operator whose use a�ects the truth valueof P with the exception of those operators that sim-ply inform us whether or not P holds. That is thecondition captured by the second conjunct of the con-dition above: observation operators are those that set(reveal) the value of P and that require that the valueof P be unknown beforehand. Once the truth valueof P has been determined (either given in the initialconditions or established by observation), we may usethe conventional planning technique of protecting P ,rather than the criterion above.5In personal communication, Etzioni reports that twofurther planners based on the UWL language have beendeveloped since this paper was drafted, both nonlinear andinterleaving planning and execution.

The �nd-out goals, on the other hand, do not deter-mine what constitutes a plan that satis�es the speci�edgoals. Rather, they specify a preference over di�erent,but equally valid, plans. This insight suggests thatthe somewhat cumbersome criterion for satisfaction of�nd-out goals [2, p. 119] might be removed, withthe associated preference being expressed instead inthe cost function over operators. In most cases, thecost of observations should be lower than the cost ofachievement. There are three advantages to factor-ing this concern into the cost function: �rst, we avoidfurther complication of the planning problem; second,the cost informationmay more readily be used in plan-ning search than the �nd-out criterion and third, thecost mechanism allows us to capture a wider range oftradeo�s.Distinguishing these two annotations as di�erent phe-nomena within our framework allows us to consider-ably simplify their treatment. hands-o� goals can beenforced using a slight variation on protection assump-tions or preservation preconditions, while �nd-out an-notations are re
ected in the planner's search controlmechanism.Note Recent exchanges reveal that in new versionsofUwl the �nd-out annotation has been revised from\satisfy without altering if possible" to \satisfy with-out altering."6 Our criticisms above apply only to thecurrently-available paper on Uwl [2].10 OTHER RELATED WORKEarly work on modeling knowledge in AI systems byMoore [13], Haas [6] and Konolige [7] provides a dif-ferent view on modeling knowledge for planning sys-tems. This early work was primarily concerned withmodeling knowledge, rather than the development ofplanning algorithms. More recent work by Morgen-stern [14] and Scherl and Levesque [22] brings suchwork much closer to the point of constructing work-ing planners. However, these representations are stillfar more complex than those used by most workingplanners. In particular, they require the use of com-plex logical machinery (string manipulations or modallogics) in order to capture the distinction between be-liefs and the state of the world. We have attempted tomaintain the simplicity of existing approaches and, inparticular, maintain the single model approach.11 POSSIBLE EXTENSIONSOur extension to the use of a third truth value is in-tended to model lack of knowledge about a proposi-tion. Another use for three-valued logics has been toallow truth-functional treatment of statements which6Oren Etzioni, personal communication.

are meaningless [23], particularly the problem of pred-icating properties of inexistent objects. We may en-counter a prosaic version of this problem in planningunder uncertainty. For example, consider the prob-lem of an oil-wildcatter7 who has the option of takinga core sample before drilling. Imagine that we havethree propositions describing mutually exclusive andexhaustive outcomes of such a test: (result os), (resultcs), (result ns). What is the truth value of these state-ments in the initial situation? The truth value of thisproposition is not well-de�ned because the propositionpredicates a property of an inexistent object.We suspect that related issues will arise in Etzioni'swork on Unix Softbots [2, 3], which act within the Unixoperating system. For example, what is the status ofa predication about a �le which has yet to be created?We note that Etzioni, et. al. have so far avoided con-structing any operators which either create or destroy�les. One way of addressing this problem would be toadd a fourth \truth value" for propositions that areill-formed in this way.For some applications, allowing Adl-style operatorswith secondary preconditions may make planningmore e�cient. Such operators allow the planner to de-fer some commitments to precise methods for achiev-ing goals, in the interests of allowing later reuse ofoperators for additional goals. We would like to retainthis advantage, but doing so will require revision ofPednault's regression operators [16], since many of theidentities he uses are not valid in three-valued logic.12 SUMMARY ANDCONCLUSIONSWe have provided a formal analysis of Strips-styleplanning under conditions of incomplete informationand where the outcomes of actions are not known withcertainty. We have also provided a precise de�nition ofconditional plans. This work provides a unifying theo-retical framework and vocabulary for a number of dis-parate conditional planners such as Cnlp, Sensp andPlinth. In the process of de�ning this framework, wehave clari�ed the relationship between conditional ac-tions and actions with context-dependent e�ects, andshown that the latter are not su�cient for modellinginformation-gathering actions (i.e., observations). Wehave shown that our analysis simpli�es the treatmentof information-gathering acts and goals.Acknowledgements The authors would like tothank Alan D. Christiansen, Oren Etzioni and our twoanonymous reviewers for helpful comments.7A now-standard problem due to Rai�a [21].

References[1] Allen, James, Hendler, James, and Tate, Austin,(Eds.), Readings in Planning, (Morgan KaufmannPublishers, Inc., 1990).[2] Etzioni, Oren, Hands, Steve, Weld, Daniel S.,Draper, Denise, Lesh, Neal, and Williamson,Mike, An Approach to Planning with IncompleteInformation, Nebel, Bernhard, Rich, Charles, andSwartout, William, (Eds.), Principles of Knowl-edge Representation and Reasoning:Proceedings ofthe Third International Conference, 1992, 115{125, Morgan Kaufmann Publishers, Inc.[3] Etzioni, Oren and Segal, Richard, Softbots asTestbeds for Machine Learning, Proceedings of the1992 AAAI Spring Symposium on knowledge as-similation, 1992.[4] Fikes, Richard E. and Nilsson, Nils J., STRIPS: Anew approach to the application of theorem prov-ing to problem solving, Arti�cial Intelligence, 2(1971) 189{208.[5] Goldman, Robert P. and Boddy, Mark S., Con-ditional Linear Planning, Arti�cial IntelligencePlanning Systems: Proceedings of the Second In-ternational Conference, 1994, Morgan KaufmannPublishers, Inc., forthcoming.[6] Haas, Andrew R., A Syntactic Theory of Beliefand Action, Arti�cial Intelligence, 28 (1986) 245{292.[7] Konolige, Kurt, A �rst-order formalisation ofknowledge and action for a multi-agent planningsystem, Hayes, J.E. and Michie, D., (Eds.), Ma-chine Intelligence 10, chapter 2, 41{72, (Halstead,New York, 1982).[8] Kushmerick, Nicholas, Hanks, Steve, and Weld,Daniel, An Algorithm for Probabilistic Planning,Technical Report 93-06-03, Department of Com-puter Science and Engineering, University ofWashington, June 1993.[9] Lifschitz, Vladimir, On the Semantics of Strips,In Allen et al. [1], 523{530, Reprinted from Rea-soning about Actions and Plans.[10] McDermott, Drew, Regression Planning, Interna-tional Journal of Intelligent Systems, 6(4) (1991)357{416.[11] McDermott, Drew V., Planning and acting, Cog-nitive Science, 2 (1978) 71{109.[12] Minton, Steven, Bresina, John L., and Drum-mond, Mark, Commitment Strategies in Plan-ning: A Comparative Analysis, Proceedings of the12th International Joint Conference on Arti�cialIntelligence, Morgan Kaufmann Publishers, Inc.,1991.[13] Moore, Robert, A Formal Thoery of Knowledgeand Action, Hobbs, J., (Ed.), Formal Theories of

the Commonsense World, (Ablex, Hillsdale, N.J.,1984).[14] Morgenstern, Leora, Knowledge Preconditions forActions and Plans, McDermott, John, (Ed.), Pro-ceedings of the 10th International Joint Confer-ence on Arti�cial Intelligence, 1987, 867{874,Morgan Kaufmann Publishers, Inc.[15] Pednault, Edwin P.D., Extending ConventionalPlanning Techniques to Handle Actions withContext-dependent e�ects, Proceedings of theSeventh National Conference on Arti�cial Intel-ligence, 1988, 55{59, Morgan Kaufmann Publish-ers, Inc.[16] Pednault, E.P.D., Synthesizing Plans that containactions with context-dependent e�ects, Computa-tional Intelligence, 4(4) (1988) 356{372.[17] Pednault, E.P.D., Adl: Exploring the middleground between Strips and the situation cal-culus, First International Conference on Princi-ples of Knowledge Representation and Reasoning,Morgan Kaufmann Publishers, Inc., 1989.[18] Penberthy, J. Scott and Weld, Daniel S., UCPOP:A Sound, Complete, Partial Order Planner forADL, Nebel, Bernhard, Rich, Charles, andSwartout, William, (Eds.), Principles of Knowl-edge Representation and Reasoning:Proceedings ofthe Third International Conference, 1992, 103{114, Morgan Kaufmann Publishers, Inc.[19] Peot, Mark A. and Smith, David E., ConditionalNonlinear Planning, Hendler, James, (Ed.), Arti-�cial Intelligence Planning Systems: Proceedingsof the First International Conference, 1992, 189{197, Morgan Kaufmann Publishers, Inc.[20] Pryor, Louise and Collins, Gregg, Cassandra:Planning for Contingencies, Technical Report 41,The Institute for the Learning Sciences, North-western University, June 1993.[21] Rai�a, Howard, Decision Analysis: IntroductoryLectures on Choices under Uncertainty, Behav-ioral Science: Quantitative Methods, (RandomHouse, New York, 1968).[22] Scherl, Richard B. and Levesque, Hector J., TheFrame Problem and Knowledge-producing Ac-tions, Proceedings of the Eleventh National Con-ference on Arti�cial Intelligence, 1993, 689{695,AAAI Press/MIT Press.[23] Turner, Raymond, Logics for Arti�cial Intelli-gence, (Ellis Horwood, Ltd., 1984).[24] Waldinger, Richard, Achieving Several goals Si-multaneously, Elcock, E. and Michie, D., (Eds.),Machine Intelligence, volume 8, 94{136, (EllisHorwood, Edinburgh, Scotland, 1977).

