Representing Uncertainty in Simple Planners

Robert P. Goldman
Honeywell Technology Center
MN 65-2200
3660 Technology Drive
Minneapolis, MN 55418
goldman@src.honeywell.com

Abstract

In this paper, we present an analysis of plan-
ning with uncertain information regarding
both the state of the world and the effects
of actions using a STRIPS- or (propositional)
ADL-style representation [4, 17]. We provide
formal definitions of plans under incomplete
information and conditional plans, and de-
scribe PLINTH, a conditional linear planner
based on these definitions. We also clarify
the definition of the term “conditional ac-
tion,” which has been variously used to de-
note actions with context-dependent effects
and actions with uncertain outcomes. We
show that the latter can, in theory, be viewed
as a special case of the former but that to do
so requires one to sacrifice the simple, single-
model representation for one which can dis-
tinguish between a proposition and beliefs
about that proposition.

1 INTRODUCTION

In this paper, we present an analysis of planning with
uncertain information regarding both the state of the
world and the effects of actions. Our focus on planning
leads us to limit the expressive and inferential power
of the formal systems we consider in the interests of
efficiency. We do not develop with a full theory of
knowledge and action of the sort which has concerned,
e.g. Moore [13], Konolige [7], Haas [6], or Morgen-
stern [14]. In particular, we do not address what Mor-
genstern calls knowledge preconditions for actions and
plans: determining when one knows enough to perform
an action or successfully execute a plan, respectively.
We are concerned only with taming uncertainty about
the results of actions or uncertainty about the state of
the world in the process of planning with a STRIPS- or
(propositional) ADL-style representation [4, 17]. For
the sake of computational efficiency, we restrict our-
selves to a single model of the world, representing

Mark S. Boddy
Honeywell Technology Center
MN 65-2200
3660 Technology Drive
Minneapolis, MN 55418
boddy@src.honeywell.com

the planner’s state of knowledge, rather than a more
complex formalization including both epistemic and
ground formulas. Our goal in this investigation is an
increased understanding of conditional plans: plans in
which the course of events is dictated by the actual
outcome of actions whose effects cannot be predicted
a priori [19, 5].

We clarify the definition of the term “conditional ac-
tion.” This term has been variously used to denote ac-
tions with context-dependent effects and actions with
uncertain outcomes. We show that the latter can, in
theory, be viewed as a special case of the former. How-
ever, we also show that to do so requires one to sac-
rifice the simple, single-model representation for one
which can distinguish between a proposition and be-
liefs about that proposition. Using this definition, we
provide formal definitions of plans under incomplete
information and conditional plans.

Section 2 provides some preliminary definitions used
in the rest of the paper. Section 3 presents an exten-
sion of STRIPS-rule planning to handle cases where the
planner has only a partial model of the initial situa-
tion, and in which (a restricted kind of) information
may be gained and lost through actions. We extend
the STRIPS add and delete lists to include three truth
values of true, false and unknown, losing in the pro-
cess the use of negation-as-failure over the propositions
that hold in a given situation. The primary limitation
of this framework 1s that it assumes that the plan-
ner has sufficient knowledge to completely predict the
outcomes of its actions — although one effect of these
actions may be to forfeit information. There is no
provision for actions with unpredictable outcomes. In
Section 5 we remedy this omission, building on the
conditional planning work of Peot and Smith.

Following this, we contrast conditional actions with
context-dependent actions (Section 7). We show some
problems with using context-dependent actions for
planning under conditions of partial information. Fi-
nally, we compare our work with other work in the
area, and present a summary and conclusions.

2 PRELIMINARY DEFINITIONS

We start with a set of propositions, {P;} = P. We
define a model, M of P, as a triple, (T, F,U) which
is a partition of the propositions of P into statements
which are true, false and unknown, respectively. A
partial modelis a triple (T, F, U) where T, F' and U are
disjoint subsets of P. A model M = (Tm, Faq, Upa)
is an extension of a partial model # = (T, Fir, Uz) if
T CTm, Fr C Faq and Uy € Upq. In the interests
of brevity, we speak of a model M which extends a
partial model 7 as satisfying or entailing 7: M F 7.

We define a set of operators, O, similar to STRIPS
operators. Operators are defined as ordered pairs
O = (Po, Eo), where Po (the preconditions of O) and
FEo (the postconditions of O) are both partial models.
An operator O defines a partial function from models
to models. The function is partial because fo may
only be applied to a model M which is an extension
of Po: the action represented by O may only be taken
in a state where O’s preconditions are satisfied.

One could extend the operators to be total functions
from models to models by defining fo(M) = {(#, 0, P)
for any M that does not satisfy the preconditions of
O. As there is little reason to plan to achieve complete
ignorance, 1t makes more practical sense to insist that
actions only be performed when their preconditions
are satisfied.

We refer to models which entail Po as satisfying the
preconditions of O. For any operator O with effects
Fo = (Tg, Fg,Ug) and model M satisfying the pre-
conditions of O, the corresponding function, fo(M) is
defined as follows:

(TM—(FEUUE))UTE,
Fo(M) =< (Fm — (Tg UUEg)) U Fg, >

(UM —(TEUFE))UUE

This definition generalizes the STRIPS assumption
to a three-valued logic. For a (possibly partial)
model M, let true(M) = Tuy, false(M) = Fpaq
and unk(M) = Upxq. Additionally, for an operator
O = (P, (T, F,,Uy)), let precond(0) = P, (a par-
tial model) and affected(O) = T, U F, U U, (a set of
propositions).

Note that the U sets represent lack of knowledge on
the part of the agent while the plan is being executed,
rather than the state of knowledge of the planner while
it is constructing the plan. For example, a regression
planner like McDermott’s PEDESTAL [10] will not, in
general, project the full state of the world after one of
the steps of its plan is done. The planner cannot afford
to compute this complete knowledge; it only commits
to the truth value of propositions which are needed
to ensure that its plan will be successful. However,
PEDESTAL’s completed plan could be used to project
a series of complete truth assignments to the proposi-
tions describing the world. Once the plan is complete,

all uncertainty has been banished. This is not the case
in our framework.

3 THE SIMPLE PLANNING
PROBLEM

A planning problem is a pair (G, S) where G is the goal
of the planning problem and S is the initial state. The
initial state .S is a complete (i.e., not partial) model of
P, while the goal GG is a partial model. The solution
of a planning problem is a plan whose result satisfies
G. In the following paragraphs we describe the result
of a plan and how such a plan may be derived.

Following Lifschitz [9], we define a sequence of actions,
or plan, as & = («1,...,ay). Assuming that this se-
quence of actions starts in initial situation Mg, we say
the plan is accepted by My iff there exists a sequence
of models M ... My such that

Vi,1<i< N, fo,(M;i_1)=M;and
M;_1 F precond(«;)

We refer to M as the result of the plan «.

4 REGRESSION

Regression [24] can be described informally as reason-
ing backward from the desired effects of an action to
what had to be true when the action was executed.
One rationale for regression was the need to prove that
plan steps used to achieve one goal would not clobber
another goal of the same plan. Waldinger suggested a
further use for regression: to determine where a step
should be added to a linear plan. If a precondition of a
new step 1s threatened by an existing step, put the af-
fected step before the offender, and then protect that
precondition (i.e., use regression to ensure that any
further additions to the plan leave it unchanged). This
is the way regression is employed in PEDESTAL [10].

In STRIPS-rule planners, regression only requires ver-
ifying that the proposition does not unify with the
results of a given operator. Since those results are by
definition the sole effect, known or unknown, of apply-
ing that operator, the proposition is unaffected by the
action. Adding context-dependent effects as in ADL
[17] complicates matters. Instead of just verifying that
an operator will not affect a given proposition, regres-
sion involves deriving the conditions under which the
operator will not affect that proposition.

Pednault[17] gives the conditions under which a propo-
sition, p, will hold after the execution of an action a
(for the propositional case) as follows:

I{a,p) = cq V (p A —dy)

where ¢4 1s the condition under which p is on a’s add
list and d is the condition under which p is deleted by

a. More precisely p will hold after act a is performed
iff I(a, p) holds before a is performed:

faM)Fp=MFE I(a,p)

Regression for the operators described here is some-
what more complex; our use of three truth values pre-
cludes use of the excluded middle, which can otherwise
be used to good effect in simplifying the computation
of causation and preservation preconditions. For the
language described above, the regression operators are
as follows (for p meaning p is true, p meaning p is false
and p meaning p is unknown):

I{a,p) = (pAp¢ affected(a)) Vp € true(a)
I{a,p) = (PAp ¢ affected(a))V p € false(a)
I{a,p) = (pAp¢ affected(a)) Vp € unk(a)

The regression operator I(a,p) may be interpreted as
“p will be true following a,” and similarly for the other
truth values.

5 ACTIONS WITH UNCERTAIN
OUTCOMES

In their paper on conditional non-linear planning [19],
Peot and Smith extend the STRIPS model of actions to
include actions whose outcomes are uncertain. They
use these conditional actions to model observation ac-
tions. In this section, we extend our operator repre-
sentation to include conditional actions and provide
regression operators for them.

The operator semantics we have defined thus far is
insufficient to model the use of observation to gain
information. Information may be “gained” in a way
analogous to the use of compliant motion for robots:
operators may be selected in such a way as to reduce
the set of unknown propositions whatever the initial
state (e.g., ram into the wall as a way of reducing
uncertainty in your position).!

The problem is that there is no way to describe an ac-
tion with uncertain effects. Different effects must be
the result of different operators or the same operator
with context-dependent effects in different states. As
long as the initial state S 1s a complete model, obser-
vations cannot be modelled in this way, because the
resulting state is completely determined by the state
in which the observation occurs.

Peot and Smith’s operators are pairs O = (Pp,00).
As before, Py, the set of preconditions, is a partial
model. Og is a set of mutually exclusive and exhaus-
tive possible outcomes when an action of type O is per-
formed (i.e., exactly one of the outcomes will be the re-
sult of the action). Each outcome is a pair of the form

!This is the way that BURIDAN handles uncertainty [8].

(i, F,). The a;’s are unique identifiers for outcomes.
Let us define Olabels(O) = J, o; (for the sake of tidi-
ness, we require the Olabels sets for different operators
to be disjoint). If O is not a conditional operator, then
Olabels(O) = {—}. Ea, = {T0,0:, Fo,0,,U0,a,) 1s a
partial model describing the effects of O in the event
of outcome «;.

We define a new set of partial functions f,
Olabels(O) x M — M to describe the effects of the
new operators. If an action of type O is performed
in state M = (Tiat, Faa, Usq) (which satisfies Po) and
outcome «; occurs, the effect will be

(Tt — (F0,0: UU0,0,)) UT0 oy,
M = (Fm—(T0,a, UU0,0a,)) UFo o,
(UM - (TO,oz, U FO,Q,)) U UO,oz,

That is, f5(a;, M) = M’. For actions that are not
conditional, we define f5(—, M) = fo(M). The
(partial) functions f§ : Olabel(O) x M +— M may
be mapped straightforwardly to a (still partial) func-
tion f : O x Olabels x M — M, where Olabels =
Uoeco Olabels(O).

We extend our definition of action sequences, given in
section 3 to sequences of action, outcome pairs. Sim-
ilarly, we may extend our earlier definitions of regres-
sion operators to:

I{a,a,p) = (pAp¢ affected(a,a))V p € true(a, «)
I{a,0,p) = (PAp¢ affected(a,a))V p € false(a, o)
I{a,0,p) = (pAp¢ affected(a,®))Vp € unk(a, o)

The conditional actions permit us to describe observa-
tion operators. For example, we might want to have a
planner which is able to find out what the weather 1s
and plan travel accordingly:

listen to weather report

preconditions: at(home), unknown(storm)
postconditions:

Olabels | effects

aq storm

Qs not(storm)

Note that it is the need to properly formalize obser-
vation operators which forces the third truth value on
us. We must insist that unknown(storm) be a precon-
dition of this operator in order that the planner not
construct a pathological plan in which it keeps observ-
ing the weather over and over again until it gets an
observation it likes.

Conditional operators may be used for uncertain ac-
tions other than observations. In domains in which
actions are fallible, conditional operators allow us to
build planners which can plan for contingencies in
which actions fail to achieve desired effects. For ex-
ample, in an image-processing domain, one may have
a number of possible operations that can remove noise
from an image. These operations are fallible; they do

not always succeed in cleaning up the target image. If
we describe these operations as conditional actions, we
can build plans in which either the operation succeeds,
or we must take other, additional actions to clean up
the image.

This representation of conditional actions makes it
cumbersome to represent and reason about effects that
are common to all outcomes of a given operator. One
might revise the representation to make this easier,
but we do not believe it would repay the effort. In
general, conditional actions will be introduced into a
plan in the interest of varying outcomes. To take Peot
and Smith’s example, one might introduce an obser-
vation action to determine the state of a road between
two points. One would be unlikely to do so simply to
expend time (Peot 2 calls for conditional plans to be
“without augury”).

We view conditional action sequences as action se-
quences which branch forward in time. A conditional
sequence is a tree, each of whose nodes corresponds to
an action (an instance of an operator). Each edge in
the tree will be labeled with an outcome label of the
action at the tail of the edge.

More formally, a conditional sequence, C C
{(n,{,n)|n,n" € uid(C),l € Olabels(op(n))}. uid(C)
1s a set of unique identifiers for acts in the conditional
sequence C. op is a function mapping uids of acts to
the operator of which the act is an instance.

In order to be nonredundant, a conditional sequence
must have only one triple (n,{, n’) for every pair (n,!).

Unconditional sequences may be drawn from a con-
ditional sequence. Each such unconditional sequence
is a rooted path through the tree C. That is,
an unconditional sequence, P is written as P =
(n1,0h)...(ny,In) where there must exist an edge
(ni,l;,n;41) € C and where n; = root(C). In order
to be well-formed, an unconditional sequence starting
in an initial state Mg must meet the following condi-
tions:

1. flop(n;), M;_1,0;) = M; forall 1 <i< N.
2. M;_1 F precond(op(n;)) forall 1 <i < N.

We define result(P) = My. An uncondi-
tional sequence 1is complete if it is a path P =
(n1,0) ... (nn, Iy) for ny € leaves(C).

In order for a conditional sequence, C to be well-
formed, it must be non-redundant and every uncon-
ditional path contained in C must be well-formed. In
order to be complete, a conditional sequence must
be well-formed and have an out-edge for every pair
(n,l) for n an interior (non-leaf) node and ! an el-
ement of Olabels(op(n)) where n corresponds to an
instance of operator o. A conditional sequence C is

2 . .
Personal communication.

a complete conditional plan for the planning problem
(Mo, G,0)if C is complete and for all complete paths
P =(ny,li)...(nn,In) in C, result(P) F G.

6 CNLP AND PLINTH

In this section we briefly discuss two recently-
developed conditional planners. The first, CNLP, is
a non-linear conditional planner for which conditional
actions were developed; our original intent in this re-
search was to clearly understand CNLP. In the course
of our investigations, we came to suspect that the case
for non-linear planning was less strong for conditional
planning than conventional, “classical” planners. The
second planner we discuss here, PLINTH, 1s a linear
conditional planner which we have developed to in-
vestigate the efficiency tradeoffs between linear and
nonlinear approaches to conditional planning.

Peot and Smith’s CNLP [19] is a conditional, nonlinear
planner based on Rosenblitt and MacAllester’s SNLP.
Like SNLp, CNLP constructs its plans by a series of
interleaved goal satisfaction and threat removal oper-
ations. CNLP differs in adding conditional actions like
those described here.

CNLP augments the SNLP algorithm to accomodate
conditional actions. The labels of conditional out-
comes are propagated along causal and conditioning
links in the plan graph to record to which branch of
the plan each action belongs. These conditioning links
are added by a new threat-removal operation, “con-
ditioning apart,” which is used to assign steps to dif-
ferent contexts. Effectively one resolves a threat to a
given step by adding a constraint that the threatener
and the threatened step not both be part of the same
branch of the plan. As of yet no results have been
published concerning the soundness and completeness
of CNLP.

Given the current prevalence and popularity of non-
linear planning, our decision to construct a linear con-
ditional planner may require some explanation. In
conventional, “classical” planning applications, non-
linear planning is usually an improvement over linear
planning because fewer commitments yields a smaller
search space, at a relatively minimal added cost to
explore each element of that search space [12]. How-
ever, 1t is not clear that this tradeoff operates in the
same way for conditional planners. When plans have
multiple branches, the savings from considering fewer
orderings is likely to be much less and may not repay
the cost in the added complexity of individual plan
expansion actions. In particular, the domain in which
we have applied PLINTH is one in which subgoal inter-
actions are minor, and thus in which a linear planner
can be effectively employed. Conditional linear plan-
ning is simpler in conception as well as in implemen-
tation. In particular, our conditional linear planner
can be shown to be sound and complete; we do not

yvet know of a sound and complete conditional non-
linear planner. Finally, the operation which 1s needed
to properly construct branching non-linear plans —
resolving clobberers through conditioning apart — is
a very difficult operation to direct.

PLINTH’s conditional linear planning algorithm is non-
deterministic and regressive.> Plans are built by ma-
nipulating three important data structures: a partial
plan, a set of protections and a set of as-yet-unrealized
goals. The planner operates by selecting an unrealized
goal and nondeterministically choosing an operator to
resolve that goal while respecting existing protections.
New goals may be introduced when steps are intro-
duced, either to satisfy preconditions or to plan for
contingencies introduced by conditional actions. Es-
sentially this algorithm is the same as that of a con-
ventional linear planner. The crucial difference is in
the effect of adding a conditional action to the plan.

When adding a conditional action, A, there will be
some outcome, O, such that A — O will establish the
goal literal (otherwise 4 would not have been chosen
for insertion). This outcome will establish what one
can think of as the “main line” of the plan. However,
there will also be some set of alternative outcomes,
{O;}. In order to derive a plan which is guaranteed
to achieve the goal, one must find a set of actions
which can be added to the plan such that the goals
are achieved after A — O;. for all ¢. This is done by
adding new goal nodes to the plan, which are made
successors of the other outcomes. The planner will
now plan to realize these other goals as well as the
“main-line” goal. Note that actions to handle alterna-
tive outcomes may be added either before or after the
relevant conditional action. Loosely speaking, we can
add to our conditional plans either remedial actions or
precautionary actions.

PLINTH is described in greater detail elsewhere [5]. We
have demonstrated that the algorithm is sound and
complete. The algorithm has been implemented in
Quintus Prolog. The implementation uses a depth-
first iterative-deepening search strategy so it preserves
the theoretical properties of soundness and complete-
ness (up to hardware limitations). PLINTH is be-
ing applied to planning image processing operations
for NASA’s Earth Observing System, in collaboration
with Nick Short, Jr. and Jacqueline LeMoigne-Stewart
of NASA Goddard.

7 UNCERTAINTY AND
SECONDARY PRECONDITIONS

In his work on ADL [15, 17], Pednault introduces op-
erators which have context-dependent effects. This
might seem to be an attractive method to represent

?Our development of the algorithm was inspired by Mc-
Dermott’s linear planner PEDESTAL [10], hence the name.

problems of planning under incomplete information.
For example, one attempt at representing an observa-
tion operator is the following:*

Check the road from %z to ?y.
observe(clear(7x,7y))

at(?x), unknown(clear(?x,?7y))
clear(?x,7y) «— clear(7x,7y)

not clear(?x,7y) — not clear(7x,7y)

preconditions:
effects:

For those not familiar with ADL: ADL operators are
akin to STRIPS operators, but their preconditions are
partitioned. STRIPS preconditions are conditions un-
der which the operator can be performed. If the pre-
conditions do not hold when the operator is to be
performed, the plan is ill-formed. ADL departs from
STRIPS in allowing one to attach additional conditions
to the individual effects of operators. For example, one
could formalize the action of crossing a bridge by truck
as having the preconditions of being at the bridge and
in a truck. There might be two possible effects: being
on the other side of the bridge, which has as additional
precondition that the bridge is sound; and being in
the ravine below, which has as additional precondition
that the bridge is not sound. We indicate additional
preconditions using the “backward chaining arrow,”
—. Note that the original ADL syntax uses add lists
and delete lists; we use effects instead in the interests
of a consistent notation within the body of this paper.

One problem with this representation is apparent in
the observation operator given above. Each of the ef-
fects has itself as additional precondition! The reason
for this paradoxical situation is that planning under
uncertainty in this way violates an common planning
assumption: that we can treat the planner’s model of
the world and the state of the world as interchange-
able. To handle observations properly, we need to be
able to represent and reason about both the state of
the world (the road is clear, so when we look, we will
find it so) and the planner’s state of knowledge (the
observation operator makes sense because the planner
doesn’t know whether the road is clear).

A related problem is that this formalization leads us to
an unrealistic model for planning. The obvious way to
use an operator like the above is to insert it into one’s
plan and then continue planning in two contexts: one
where the road is clear and one where it is not. But
note an undesirable feature of these two contexts: in
each of them the road not only is clear, but has always
been clear, and the planner should know this. As in
the famous problem of Schrodinger’s cat, performing
the observation seems to cause the entire history of
the world to change. Closer to home, this paradox
is akin to McDermott’s “little Nell” problem [11], in
which planning to prevent an action seemed to make
planning to prevent it unnecessary. Without explicit

*We have tried to follow Pednault’s notation fairly
closely.

representation of belief, ground truth and the relations
between them, it is impossible to model the acquisition
of information with only deterministic operators.

8 CASSANDRA

Cassandra 1s a conditional nonlinear planner that uses
secondary preconditions for planning under uncer-
tainty [20]. In order to encode uncertainty, certain
actions are given secondary preconditions which are
unknowable; Cassandra must plan to gain information
about these unobservable pseudo-propositions. Read-
ing about Cassandra bears out our conclusions above
about the drawbacks of secondary preconditions for
encoding uncertainty.

Cassandra is built on top of the nonlinear planner
Ucpor [18]. Ucpop is sound and complete, and uses
Pednault’s ADL for its action representation. In Cas-
sandra, rather than positing conditional actions like
those described here, uncertain outcomes are captured
by giving actions secondary preconditions which are
“unknowable.” These unknowable preconditions have
multiple outcome labels, like our outcome labels, and
like our outcome labels are mutually exclusive and
exhaustive. Instead of branching at conditional ac-
tions, Cassandra plans branch at decisions. Decisions
contain condition-action rules which specify the condi-
tions under which the planner should conclude that a
given outcome has occurred. When the plan is ex-
ecuted, the execution monitor should perform only
those actions labeled consistently with the outcomes
of its decisions. These decision rules provide a mecha-
nism for relaxing an assumption common to both ¢NLP
and PLINTH: that the outcomes of conditional actions
are always known.

While we find Cassandra’s model of uncertainty at-
tractive, 1t appears to require more expressive power
than its ADL action representation provides. It 1is
consequently difficult to say exactly what Cassandra’s
plans mean. In particular, Cassandra’s decisions and
their knowledge preconditions cannot be expressed in
ADL. Cassandra’s decisions have preconditions of the
form “knowif(proposition),” but such preconditions
are beyond its expressive capacity; Cassandra, like the
other planners described here, appears to make no dis-
tinction between truth in the world and the planner’s
beliefs about the world. Accordingly, there can be no
satisfactory ADL representation for actions which col-
lect information, as we have argued in the previous
section.

9 INFORMATION-GATHERING
ACTIONS

Recent work on planning under uncertainty done at
the University of Washington has brought to the fore

a number of issues concerning information-gathering
actions [2]. In particular, the UW group has shown
that planners must be able to distinguish goals of
information-gathering from other goals of achieve-
ment. They provide the following persuasive example:

Suppose that the planner is told that the hid-
den treasure it is seeking is located behind
“the blue door.” Painting a door blue does
not satisfy the goal of finding “the blue door”
— it merely obscures the identity of the ap-
propriate door. [2, p. 116]

In order to capture the distinc-
tion between information-gathering goals and achieve-
ment goals, the UWL planning language provides goal
annotations: satisfy, hands-off and find-out. Sat-
1sfy goals are to be achieved as normal planner goals.
Hands-off goals, on the other hand, are restricted to
information-gathering. If the planner has a goal an-
notated with (hands-off P), it must achieve its other
goals without affecting the truth value of P. Finally,
(find-out P) goals are a hybrid — the planner should
prefer to simply observe the truth or falsehood of P,
but if the planner must change the value of P for some
other reason, that is acceptable. The UW group has
developed a conditional planner, SENSp, for UWL, in
which the process of matching pre- and post-conditions
is altered in order to handle these annotations.’

As far as we can tell, the hands-off and find-out
goals are similar encodings of radically different phe-
nomena. The hands-off goals are apparently only a
special class of preservation goals. They appear differ-
ent because conventional planning languages are not
expressive enough to say “maintain the truth value of
P, whatever it may be now.” and to permit observation
of P without modification. Within our framework, we
capture this restriction by ruling out the use of oper-
ators which would change the truth value of P over
part or all of a given plan. We do so by ruling out all
operators O such that

P € affected(O) A P ¢ precond(O)

That is, any operator whose use affects the truth value
of P with the exception of those operators that sim-
ply inform us whether or not P holds. That is the
condition captured by the second conjunct of the con-
dition above: observation operators are those that set
(reveal) the value of P and that require that the value
of P be unknown beforehand. Once the truth value
of P has been determined (either given in the initial
conditions or established by observation), we may use
the conventional planning technique of protecting P,
rather than the criterion above.

°In personal communication, Etzioni reports that two
further planners based on the UWL language have been
developed since this paper was drafted, both nonlinear and
interleaving planning and execution.

The find-out goals, on the other hand, do not deter-
mine what constitutes a plan that satisfies the specified
goals. Rather, they specify a preference over different,
but equally valid, plans. This insight suggests that
the somewhat cumbersome criterion for satisfaction of
find-out goals [2, p. 119] might be removed, with
the associated preference being expressed instead in
the cost function over operators. In most cases, the
cost of observations should be lower than the cost of
achievement. There are three advantages to factor-
ing this concern into the cost function: first, we avoid
further complication of the planning problem; second,
the cost information may more readily be used in plan-
ning search than the find-out criterion and third, the
cost mechanism allows us to capture a wider range of
tradeoffs.

Distinguishing these two annotations as different phe-
nomena within our framework allows us to consider-
ably simplify their treatment. hands-off goals can be
enforced using a slight variation on protection assump-
tions or preservation preconditions, while find-out an-
notations are reflected in the planner’s search control
mechanism.

Note Recent exchanges reveal that in new versions
of UWL the find-out annotation has been revised from
“satisfy without altering if possible” to “satisfy with-
out altering.”® Our criticisms above apply only to the
currently-available paper on UwL [2].

10 OTHER RELATED WORK

Early work on modeling knowledge in Al systems by
Moore [13], Haas [6] and Konolige [7] provides a dif-
ferent view on modeling knowledge for planning sys-
tems. This early work was primarily concerned with
modeling knowledge, rather than the development of
planning algorithms. More recent work by Morgen-
stern [14] and Scherl and Levesque [22] brings such
work much closer to the point of constructing work-
ing planners. However, these representations are still
far more complex than those used by most working
planners. In particular, they require the use of com-
plex logical machinery (string manipulations or modal
logics) in order to capture the distinction between be-
liefs and the state of the world. We have attempted to
maintain the simplicity of existing approaches and, in
particular, maintain the single model approach.

11 POSSIBLE EXTENSIONS

Our extension to the use of a third truth value 1s in-
tended to model lack of knowledge about a proposi-
tion. Another use for three-valued logics has been to
allow truth-functional treatment of statements which

6
Oren Etzioni, personal communication.

are meaningless [23], particularly the problem of pred-
icating properties of inexistent objects. We may en-
counter a prosaic version of this problem in planning
under uncertainty. For example, consider the prob-
lem of an oil-wildcatter” who has the option of taking
a core sample before drilling. Imagine that we have
three propositions describing mutually exclusive and
exhaustive outcomes of such a test: (result os), (result
¢s), (result ns). What is the truth value of these state-
ments in the initial situation? The truth value of this
proposition 1s not well-defined because the proposition
predicates a property of an inexistent object.

We suspect that related issues will arise in Etzioni’s
work on Unix Softbots [2, 3], which act within the Unix
operating system. For example, what is the status of
a predication about a file which has yet to be created?
We note that Etzioni, et. al. have so far avoided con-
structing any operators which either create or destroy
files. One way of addressing this problem would be to
add a fourth “truth value” for propositions that are
ill-formed in this way.

For some applications, allowing ADL-style operators
with secondary preconditions may make planning
more efficient. Such operators allow the planner to de-
fer some commitments to precise methods for achiev-
ing goals, in the interests of allowing later reuse of
operators for additional goals. We would like to retain
this advantage, but doing so will require revision of
Pednault’s regression operators [16], since many of the
identities he uses are not valid in three-valued logic.

12 SUMMARY AND
CONCLUSIONS

We have provided a formal analysis of STRIPS-style
planning under conditions of incomplete information
and where the outcomes of actions are not known with
certainty. We have also provided a precise definition of
conditional plans. This work provides a unifying theo-
retical framework and vocabulary for a number of dis-
parate conditional planners such as CNLP, SENSp and
PLINTH. In the process of defining this framework, we
have clarified the relationship between conditional ac-
tions and actions with context-dependent effects, and
shown that the latter are not sufficient for modelling
information-gathering actions (i.e., observations). We
have shown that our analysis simplifies the treatment
of information-gathering acts and goals.

Acknowledgements The authors would like to
thank Alan D. Christiansen, Oren Etzioni and our two
anonymous reviewers for helpful comments.

"A now-standard problem due to Raiffa [21].

References

(1]

[2]

Allen, James, Hendler, James, and Tate, Austin,
(Eds.), Readings in Planning, (Morgan Kaufmann
Publishers, Inc., 1990).

Etzioni, Oren, Hands, Steve, Weld, Daniel S.,
Draper, Denise, Lesh, Neal, and Williamson,
Mike, An Approach to Planning with Incomplete
Information, Nebel, Bernhard, Rich, Charles; and
Swartout, William, (Eds.), Principles of Knowl-
edge Representation and Reasoning: Proceedings of
the Third International Conference, 1992, 115-
125, Morgan Kaufmann Publishers, Inc.

Etzioni, Oren and Segal, Richard, Softbots as
Testbeds for Machine Learning, Proceedings of the
1992 AAAI Spring Symposium on knowledge as-
stmilation, 1992.

Fikes, Richard E. and Nilsson, Nils J., STRIPS: A
new approach to the application of theorem prov-

ing to problem solving, Artificial Intelligence, 2
(1971) 189-208.

Goldman, Robert P. and Boddy, Mark S., Con-
ditional Linear Planning, Artificial Intelligence
Planning Systems: Proceedings of the Second In-
ternational Conference, 1994, Morgan Kaufmann
Publishers, Inc., forthcoming.

Haas, Andrew R., A Syntactic Theory of Belief
and Action, Artificial Intelligence, 28 (1986) 245—
292.

Konolige, Kurt, A first-order formalisation of
knowledge and action for a multi-agent planning
system, Hayes, J.E. and Michie, D., (Eds.), Ma-
chine Intelligence 10, chapter 2, 41-72, (Halstead,
New York, 1982).

Kushmerick, Nicholas, Hanks, Steve, and Weld,
Daniel, An Algorithm for Probabilistic Planning,
Technical Report 93-06-03, Department of Com-
puter Science and Engineering, University of
Washington, June 1993.

Lifschitz, Vladimir, On the Semantics of Strips,
In Allen et al. [1], 523-530, Reprinted from Rea-

soning about Actions and Plans.

McDermott, Drew, Regression Planning, Interna-
tional Journal of Intelligent Systems, 6(4) (1991)
357-416.

McDermott, Drew V., Planning and acting, Cog-
nitive Science, 2 (1978) 71-109.

Minton, Steven, Bresina, John L., and Drum-
mond, Mark, Commitment Strategies in Plan-
ning: A Comparative Analysis, Proceedings of the
12th International Joint Conference on Artificial
Intelligence, Morgan Kaufmann Publishers, Inc.,

1991.

Moore, Robert, A Formal Thoery of Knowledge
and Action, Hobbs, J., (Ed.), Formal Theories of

[14]

[15]

[18]

[19]

[20]

[21]

[22]

the Commonsense World, (Ablex, Hillsdale, N.J.,
1984).

Morgenstern, Leora, Knowledge Preconditions for
Actions and Plans, McDermott, John, (Ed.), Pro-
ceedings of the 10th International Joint Confer-
ence on Artificial Intelligence, 1987, 867-874,

Morgan Kaufmann Publishers, Inc.

Pednault, Edwin P.D., Extending Conventional
Planning Techniques to Handle Actions with
Context-dependent effects, Proceedings of the
Seventh National Conference on Artificial Intel-
ligence, 1988, 55-59, Morgan Kaufmann Publish-
ers, Inc.

Pednault, E.P.D., Synthesizing Plans that contain
actions with context-dependent effects, Computa-

tional Intelligence, 4(4) (1988) 356-372.

Pednault, E.P.D., ApL: Exploring the middle
ground between STRIPS and the situation cal-
culus, Furst International Conference on Princi-
ples of Knowledge Representation and Reasoning,
Morgan Kaufmann Publishers, Inc., 1989.

Penberthy, J. Scott and Weld, Daniel S., UCPOP:
A Sound, Complete, Partial Order Planner for
ADL, Nebel, Bernhard, Rich, Charles, and
Swartout, William, (Eds.), Principles of Knowl-
edge Representation and Reasoning: Proceedings of
the Third International Conference, 1992, 103—
114, Morgan Kaufmann Publishers, Inc.

Peot, Mark A. and Smith, David E., Conditional
Nonlinear Planning, Hendler, James, (Ed.), Arti-
ficial Intelligence Planning Systems: Proceedings
of the First International Conference, 1992, 189—
197, Morgan Kaufmann Publishers, Inc.

Pryor, Louise and Collins, Gregg, Cassandra:
Planning for Contingencies, Technical Report 41,
The Institute for the Learning Sciences, North-
western University, June 1993.

Raiffa, Howard, Decision Analysis: Introductory
Lectures on Choices under Uncertainty, Behav-
ioral Science: Quantitative Methods, (Random
House, New York, 1968).

Scherl, Richard B. and Levesque, Hector J., The
Frame Problem and Knowledge-producing Ac-
tions, Proceedings of the Eleventh National Con-
ference on Artificial Intelligence, 1993, 689-695,
AAAT Press/MIT Press.

Turner, Raymond, Logics for Artificial Intelli-
gence, (Ellis Horwood, Ltd., 1984).

Waldinger, Richard, Achieving Several goals Si-
multaneously, Elcock, E. and Michie, D., (Eds.),
Machine Intelligence, volume 8, 94-136, (Ellis
Horwood, Edinburgh, Scotland, 1977).

