
Conditional Linear PlanningRobert P. Goldman and Mark S. BoddyHoneywell Technology Centerf goldman j boddy g@htc.honeywell.comHoneywell Technology Center, MN65-22003660 Technology DriveMinneapolis, MN 55418AbstractIn this paper we present a sound and complete lin-ear planning algorithm which accomodates conditionalactions: actions whose e�ects cannot be predictedwith certainty. Conditional linear planning is signif-icantly simpler than conditional non-linear planningin conception and implementation. Furthermore, thee�ciency tradeo�s which favor non-linear planningdo not necessarily carry over with the same force toplanning with conditional actions. We have appliedour conditional linear planner, Plinth, to the prob-lem of planning image processing actions for NASA'sEarth Observing System. We discuss the extension ofPlinth to probabilistic planning.IntroductionClassical planning has been criticized for its relianceon a complete model of actions (Brooks 1991). Con-structing an elaborate plan to achieve some set of goalsmakes little sense if the environment is su�ciently un-predictable that the plan is likely to fail at an earlystage. There are several approaches to the problem ofgenerating plans for use in a changing and uncertainworld. These fall generally into three classes: makingplans more robust in the face of changes in the environ-ment (Firby 1987), modifying plans as new informa-tion becomes available (Krebsbach, Olawsky, & Gini1992) and conditional planning (more precisely, plan-ning with conditional actions): planning which takesinto account the uncertain outcomes of actions.Conditional planning provides a limited relaxationof the Strips assumption. In this model we do notspecify exactly what updates to the world model willoccur, given the preconditions of an action are satis-�ed (if they are not satis�ed, the action sequence is notvalid). Instead, for each action we specify a set of pos-sible outcomes, each of which is a world model update(as for an unconditional Strips operator). Which ofthese outcomes actually occurs, given the action takesplace, is beyond our control. Accordingly, we mustplan for all (or at least the most likely) contingencies.We have explored the foundations of conditional ac-tion planning in work reported elsewhere (Goldman &Boddy 1994b).

We argue that conditional action planning is suitablefor domains in which there is limited uncertainty andin which plans are constructed at a fairly high level ofgranularity. Planning for organizations is such a do-main. We are also experimenting with the planningof image analysis operations for NASA (Boddy, Gold-man, & White 1994). The latter application is akin toEtzioni's Softbot application (Etzioni & Segal 1992), adomain in which conditional action planning is beingapplied (Etzioni et al. 1992). Robot planning is prob-ably not such an application, unless it can be carriedout at a level of abstraction su�ciently high that muchof the uncertainty can be ignored.Warren's Warplan-C (Warren 1976) was the �rstconditional planner. Warplan-C was a linear plan-ner using STRIPS rules extended to express uncer-tain outcomes, designed to support automatic pro-gramming. The system was purely forward-planning.Peot and Smith (1992) have developed a non-linearplanner for conditional planning. Given the currentprevalence and popularity of nonlinear planning, ourdecision to construct a linear conditional planner mayrequire some explanation. In conventional, \classical"planning applications, non-linear planning is usuallyan improvement over linear planning because fewercommitments yields a smaller search space, at a rel-atively minimal added cost to explore each elementof that search space (Minton, Bresina, & Drummond1991). However, it is not clear that this tradeo� oper-ates in the same way for conditional planners. Whenplans have multiple branches, the savings from consid-ering fewer orderings is likely to be much less and maynot repay the cost in the added complexity of individ-ual plan expansion actions. In particular, the domainin which we have applied Plinth is one in which sub-goal interactions are minor, and thus in which a lin-ear planner can be e�ectively employed. Conditionallinear planning is simpler in conception as well as inimplementation. In particular, our conditional linearplanner can be shown to be sound and complete; we donot yet know of a sound and complete conditional non-linear planner. Finally, the operation which is neededto properly construct branching non-linear plans | re-

solving clobberers through conditioning apart | is avery di�cult operation to direct.In this paper, we introduce Plinth, a linear condi-tional planner loosely based on McDermott's regressionplanner Pedestal (McDermott 1991). We show thatthis planner is sound and complete with respect to itsaction representation. This planner has been imple-mented in Quintus Prolog, running on Sun SPARC-stations. It has been tested on Peot and Smith's \SkiWorld" sample problem and on a simpli�ed model ofthe EOS (Earth Observing System) image processingdomain. Action representationWe assume a variant of the STRIPS action notation(with action schemas), expanded to include conditionalactions and propositions with a third truth value (un-known). This representation is essentially that devel-oped by Peot and Smith (1992), tidied up somewhatby ourselves (Goldman & Boddy 1994b).A domain is described by a set of atomic propo-sitions. A particular state of this domain is de-scribed by partitioning the atomic propositions intothree sets: propositions which hold, negated propo-sitions and propositions which are unknown. Notethat this representation conates the state of the worldand the planner's knowledge of the state of the world.When possible, this is a convenient way of simplifyingthe planner's reasoning. We discuss elsewhere condi-tions under which this simpli�cation is and is not pos-sible (Goldman & Boddy 1994b).A simple action in this framework is a partial func-tion from world states to world states. This functioncan be represented by three lists of propositions: thosemade true by the action, those made false, and thoserendered unknown. The conditions under which an ac-tion is applicable are represented by another triple ofproposition sets, the preconditions.We enter operators into our planner as predicatesof three arguments: operator name, operator precon-ditions and operator postconditions. The latter twoarguments are lists of literals, propositions, negatedpropositions or unknown propositions (unk). As anotational convenience, we record operator schemasrather than operators.A conditional action is one which has more than onepossible outcome. Which outcome occurs cannot bepredicted by the planner. This distinguishes condi-tional actions from actions with context-dependent ef-fects, like those in Pednault's Adl (Pednault 1989).We discuss the relationship between conditional ac-tions and context-dependent actions in more depthelsewhere (Goldman & Boddy 1994b).Instead of having a single list of postconditions, aconditional action will have a list of h <outcome-label,postcondition list i pairs. A sample conditional opera-tor is given as Figure 1.

This operator describes the application of a classi�-cation algorithm (implemented on a MASPAR) to animage. In order for this operator to be applicable, wemust have an image to be classi�ed, that image mustbe clean (noise has been removed), that image shouldnot already be classi�ed and that image should not beknown to be unclassi�able by this algorithm. This lastprecondition is necessary in order to keep the plannerfrom repeatedly applying the same operator in the fu-tile hope that \this time it will work." The need toencode this kind of precondition is the reason why thethird truth value is necessary.There are two possible outcomes of this operator. Ei-ther the operator will work (outcome 1), Image will beclassi�ed according to the given classi�cation scheme,or the operator will fail and the planner will come toknow that this algorithm is not a suitable method forclassifying the image (outcome 2).Plan representationConditional operators complicate the representation ofplans. Unlike a conventional linear plan, a conditionallinear plan is in the form of a tree. The nodes of the theplan tree are operator instances and edges are markedwith outcome labels.1 Each conditional operator intro-duces a branch into the tree. From an intuitive stand-point, when the planner introduces a conditional oper-ator, it will be introduced to achieve some e�ect, whichis achieved by some outcome of the operator. Since thise�ect is not guaranteed to occur, the planner must \re-pair" its plan by constructing a new plan to the goalfrom each \unforeseen" outcome. A more detailed andmore formal treatment of the plan representation isgiven elsewhere (Goldman & Boddy 1994b).Figure 2 gives a conditional plan tree for a plan toclassify an input image according to the USGS II classi-�cation scheme and to determine a level of con�dencein this classi�cation. A con�dence level can be de-termined by taking the results of a classi�cation by atrained classi�er and comparing it with the results of akmeans classi�er applied to the same image. The planin �gure 2 contains branches twice, once for each ofthe operators available to classify images according toUSGS II. This is a version of a plan generated by ourconditional linear planner for the EOS domain. Thehas been substantially simpli�ed to �t in this paper;the actual generated plan has 16 nodes (counting threegoal nodes and a start node). Many of the additionalnodes correspond to operators to change the format ofvarious �les in order to meet the preconditions of theclassi�cation operators.Planning algorithmPlinth's conditional linear planning algorithm is non-1In the interests of mathematical tidiness, think of sim-ple operators as degenerate conditional operators with onlya single outcome.

cond_operator(nn_maspar_classify(id:Image, class_scheme:SchemeId),[file_type(Image, image),clean(Image),not classified(Image, SchemeId),unk unclassifiable(Image, SchemeId, nnMASPAR)],[1-[classified(Image,SchemeId),not unclassifiable(Image, SchemeId, nnMASPAR)],2-[unclassifiable(Image, SchemeId, nnMASPAR)]]).Figure 1: A conditional operator for image processing.
Plan fails

Compare K−means and USGS−II
 classifications to determine
 classification confidence level

Apply Bayes Classifier

GOAL−1 GOAL−3

 Apply MASPAR classifier
for USGS−II scheme to input file

Start

 Apply K−means
classifier to input file

Compare K−means and USGS−II
 classifications to determine
 classification confidence level

GOAL−2

1 (success) 2(fail)

1 (success) 2(fail)Figure 2: A conditional plan to classify an image ac-cording to the USGS II classi�cation scheme and de-termine a level of con�dence in the classi�cation.deterministic and regressive. Our development of thealgorithmwas inspired by McDermott'sPedestal andour presentation of the algorithmowes much to McDer-mott's paper. The algorithm maintains three impor-tant data structures: a partial plan, a set of protectionsand a set of as-yet-unrealized goals. The planner oper-ates by selecting an unrealized goal and nondetermin-istically choosing an operator to resolve that goal whilerespecting existing protections. New goals may be in-troduced when steps are introduced, either to satisfypreconditions or to plan for contingencies introducedby conditional actions. Essentially this algorithm isidentical to that of a conventional linear planner. Thecrucial di�erence is in the e�ect of adding a conditionalaction to the plan.The three signi�cant data structures are the par-tial plan tree, the protection set and the set of goals.Partially instantiated plans are represented as trees.Nodes in the tree are operator instances (steps). Theroot of the tree is a distinguished start node and theleaves of the tree are goal nodes. Each edge in the treeis labeled with an outcome of the operator instance atits tail.Protections are triples, < E;P;C >. E and C aresteps of the plan and P is a literal. E is the establisherand C is the consumer. P must hold from the end ofE to the beginning of C. Goals are pairs: < P;C >. P

is a literal and C, the consumer, is a step of the plan.In our description of the algorithm, we use the term\Plan" to refer to a triple containing the plan tree, theprotection set and the goal set.The initial state of the planner, when givena conjunctive goal to achieve ^iPi is as follows:Plan Tree start �! endProtections ;Goals f< P0; end >;< P1; end >; : : :gThe planning algorithm is as follows:plan(Goals, InitConds, Plan) :-% construct the initial plan data structureinitial plan(Goals, InitConds, Plan1),do plan(Plan1, Plan).Initially we construct a Plan data structure, Plan1,from the goals and the initial conditions. Recall thatthis data structure contains plan tree, protections andgoal set. Then we plan until we reach a completedplan, Plan.In the planning process there are two cases. Eitherthere are no more goals, in which case we are done:do plan(Plan, Plan) :- plan goals(Plan, ;).or we (non-deterministically) choose one of the goals,resolve it and continue.do plan(Plan, NewPlan) :-% Plan1 is Plan with Goal removed...pop goal(Goal, Plan, Plan1),resolve goal(Goal, Plan1, Plan2),do plan(Plan2, NewPlan).There are three ways a goal literal can be resolved: itmay hold in the initial conditions, it may be establishedby some step which already exists in the plan, or it maybe established by some new step:% NewPlan is a partial plan derived from Plan, in% which Goal has been achieved.resolve goal(Goal, Plan, NewPlan) :-use ics(Goal, Plan, NewPlan).resolve goal(Goal, Plan, NewPlan) :-use prev step(Goal, Plan, NewPlan).resolve goal(Goal, Plan, NewPlan) :-new step(Goal, Plan, NewPlan).Plinthmay discharge a goal if that goal propositionholds in the initial conditions (clauses 1 and 2 below).In addition, there must be no step between the startof the plan and the consumer of the goal which clob-bers the goal proposition (3 and 4). Finally, in order

that the goal literal not be clobbered later, we add toNewPlan a protection stretching from the start untilthe goal literal is consumed (5).use ics(Goal, Plan, NewPlan) :-1 goal prop(Goal,GoalP),2 init conds(GoalP),3 goal cons(Goal, GoalS),4 no violators(GoalP, start, GoalS, Plan),5 add protect(GoalP,start,GoalS, Plan, NewPlan).Similarly, if there is some step in the plan that al-ready achieves the goal (which is not clobbered by someintervening step), then the goal may be discharged.Again, Plinth must add a protection which strechesfrom the establishing step to the consumer.use prev step(Goal, Plan, NewPlan) :-% Cons = Consumer; Est = Establishergoal step(Goal, Cons),goal prop(Goal, Prop),previous achiever(Prop, Cons, Est, Plan),add protect(Prop, Est, Cons, Plan, NewPlan).Finally, Plinth may discharge a goal through theaddition of a new step which achieves that goal. Theaddition of a new step involves two further choices: ofa position in which to insert that step (1) and of anoperator, which achieves the goal, an instance of whichis to be inserted (2). The step to be added must honorthe existing protections (3). Finally, we must add tothe Plan data structure a protection of the goal literal(4) and add as goals the preconditions of the newly-added operator (5).new step(Goal, Plan, NewPlan) :-goal prop(Goal, GoalP),goal step(Goal, Consumer),1 insert point(Consumer, GoalP, Point, Plan),2 op achieves(GoalP, Op),3 protections honored(Op, Point, Plan),add act(Op, Point, Plan, Plan1, Step),4 add protect(GoalP, Step, Consumer, Plan1, Plan2),5 add preconds(Step, Plan2, NewPlan).Thus far, our description is simply that of a linearplanner without any conditional actions. The essentialdi�erence arises when adding to the plan a conditionalaction. When adding a conditional action, A, therewill be some outcome, O, such that A � O will es-tablish the goal literal (otherwise A would not havebeen chosen for insertion). This outcome will estab-lish what one can think of as the \main line" of theplan. However, there will also be some set of alterna-tive outcomes, fOig. In order to derive a plan which isguaranteed to achieve the goal, one must �nd a set ofactions which can be added to the plan such that thegoals are achieved after A�Oi. for all i. The followingpredicate will be invoked (by add act) when adding aconditional action:add other outcome(OutC, Op, Branch, Pl, NewPl) :-% Create a new goal stepnew goal(Branch, Pl, Pl1, NewGoal),% connect the Outcome with the new goal stepadd act1(Op-OutC,NewGoalGoal-Branch,Pl1,NewPl).Note that actions to deal with alternative outcomesmay be added either before or after the relevant con-ditional action. Loosely speaking, we can add to our

Goals:
{<classified(infile,usgs−ii),stp1>,
 <k−means(infile,classes(usgs−ii)),
 stp1>}

Start

Goal 1

stp1:
compare k−means &
USGS classification

Start

Goal 1

stp1:
compare k−means &
USGS classification

stp2:
apply MASPAR
classifier

Goal 2

1 (success) 2 (fail)

Goals:
{<class−confidence(infile,usgs−ii),Goal >,
 <k−means(infile,classes(usgs−ii)),
 stp1>}

2(a) (b)Figure 3: (a) In order to determine a USGS-II classi�-cation and �nd a con�dence measure, one comparesthe results of classifying according to the USGS-IIscheme with k-means classifying with the same numberof classes. This snapshot of the planner's state showswhat the plan looks like before adding the MASPARclassi�cation action. (b) The state of the planner afteradding the conditional action of applying the MAS-PAR classi�er.conditional plans either remedial actions or precaution-ary actions. For example, if I make a plan to drive aroad which may be snowy, I can either bring chainsas a precaution or plan to return to my house and getchains if I �nd the road to be snowy when I get to it.We establish the requirement for these additional ac-tions by adding a new subtree for every alternativebranch. This new subtree initially contains only theconditional step and a new goal node. For each origi-nal goal conjunct, we also add a new goal to the goalset with the conjunct as literal and the new goal nodeas consumer. Figure 3 revisits the example of �gure 2and shows what happens when the conditional actionof MASPAR classifying the image infile is added tothe plan.Theorem 1 The Plinth algorithm is sound.Proof: The Plinth algorithm generates planswhich satisfy all goals. Assume the contradiction:there exists some plan, constructed according to thePlinth algorithm in which some goal is not satis-�ed. Either (a) the goal was introduced but neverdischarged or (b) the goal was introduced and dis-charged, but is clobbered. Case (a) does not occurbecause the algorithm does not halt until all goals aredischarged. If case (b) occurs then there exists somestep C which consumes some literal P which is estab-lished by E. Intervening between E and C is somestep S which clobbers P . Now, S must be introducedeither (b1) before the goal is discharged or (b2) afterthe goal is discharged. (b1) cannot occur: if there ex-isted a step S meeting the restrictions above, then the

goal would not be discharged by initial conditions be-cause of the no violators test (step 4 of user ics),would not be discharged by use prev step becausethe previous achiever predicate checks for interven-ing clobberers and E would not be inserted before S bynew step because the insert point predicate will notpermit regressing E beyond a clobberer. (b2) cannotoccur because when the goal is discharged, a protec-tion < E;P;C > will be added to the plan, preventingS from being inserted between E and C. 2Theorem 2 The Plinth algorithm generates all well-formed plans.De�nition 1 (Well-formed plans) A plan is well-formed if, for each step S in the plan, there exists someother step S0 in the plan subtree rooted at S such thatS0 has a precondition literal P which is not clobberedby any intervening step S00 and which is established byS. Top-level goals are treated as \preconditions" of a�nal step F along each branch of the plan tree.Proof: Since the algorithm performs nondetermin-istic search (implemented as exhaustive depth-�rstsearch with an increasing depth bound), the programwill eventually try all ways of satisfying any undis-charged goal. Thus it su�ces to show that for anywell-formed plan, there is some choice of goal order-ings and goal resolution methods that will generatethat plan. For any plan P , the following choices willdo the job:1. Order the steps of P , fp1; p2; : : : ; png such that:� For any conditional action A with outcomesfO1; O2; : : :Okg, all of the steps in the subtree ofP rooted at A�Oi come before those in the sub-tree of P rooted at A � Oj, for all i < j, and Ais after the steps in the subtree rooted at A �O1and before the subtrees for all the other outcomes,and� along every branch of P , steps are ordered ininverse chronological order, with the exceptionnoted for conditional actions.2. For each step pi in sorted order:If pi is not a conditional action:(a) Choose one of the goals satis�ed by pi in P , andresolve it by adding pi. Such a goal will exist,because 1) P is well-formed, and 2) we are addingsteps in strict inverse chronological order, so anysuch goal must already be in the set of goals.(b) Resolve all of the other goals satis�ed by pi inP , using pi as an establisher. There will be noclobberers, since there are none in P .If pi is a conditional action, the argument above willapply to the e�ects of the outcome O1 of pi, denotedpi �O1:(a) Choose one of the goals satis�ed by pi �O1 in P ,and resolve it by adding pi. Such a goal will exist,because 1) P is well-formed, and 2) the subtree

rooted at O1 has already been added, so any suchgoal must already be in the set of goals.(b) Resolve all of the other goals satis�ed by pi � O1in P , using pi as an establisher. There will be noclobberers, since there are none in P .3. Finally, resolve the remaining goals against the otheroutcomes of the conditional actions in P .The steps in the other outcomes for each conditionalaction will be added in turn|the goals for those out-comes will have been added when the conditional ac-tion was �rst added. 2ImplementationThe algorithm described here has been implementedin the program Plinth.2 Plinth is written in Quin-tus Prolog. Using a depth-�rst iterative deepeningsearch strategy in Prolog permitted us to directly im-plement the algorithm and retain the properties ofsoundness and completeness. In fact, the planner issimple enough that the algorithm description aboveis simply an annotated presentation of the code, withtwo simpli�cations: code supporting depth-�rst searchand the handling of schema variables has been removedfrom the discussion here. Plinth is being appliedto planning image processing operations for NASA'sEarth Observing System, in collaboration with NickShort, Jr. and Jacqueline LeMoigne-Stewart of NASAGoddard.The automatic generation of plans for image anal-ysis is a challenging problem. Preliminary processing(e.g., removal of sensor artifacts) and analysis (e.g.,feature detection) involve a complex set of alternativestrategies, depending in some cases on the results ofprevious processing. For example, detailed location ofroads and rivers is only worth doing if there is evidencethat those features are present in the image.We have successfully applied Plinth to the gener-ation of conditional plans for image analysis in \EOSworld" (named by analogy to the \blocks world"), aplanning domain based on data analysis problems re-lated to the Earth Observing System's Data and Infor-mation System (EOSDIS). This domain is a rich onefor planning research. Among the capabilities that willbe useful for e�ective automatic planning for satellitedata analysis are conditional actions and informationgathering, parallel actions, deadlines and resource lim-itations, and a distributed environment very reminis-cent of Etzioni's Softbot environment.Conclusions and future workIn this paper, we describe the conditional linear plan-ner Plinth and its application to image analysis plan-ning for earth science data. Our eventual goal is anepsilon-safe version of Plinth, in which probabilities2Plinth is not an acronym; it was suggested by analogywith McDermott's Pedestal.

attached to action outcomes are employed to focusplanning e�ort on those eventualities most likely tooccur, and to bound plan construction using a proba-bility threshold.3. For domains in which many actionsare conditional, resulting in a large number of possiblecourses of action, this kind of reasoning will be abso-lutely necessary. Constructing a complete conditionalplan would be infeasible, but epsilon-safe planning al-lows us to put a principled limit on how much workthe planner does.Our decision to implement a linear planner was bothheuristic (it was easier) and pragmatic (it was su�-cient). The resulting planner is simple (we present theessential code in this paper), provably sound and com-plete, and provides a simple platform for investigatingfuther extensions. One potential pitfall to AI researchin the absence of a particular application|or withoutat least without having some application(s) in mind|is the temptation to add features that are not relevantto solving some problem. A case in point was our ini-tial assumption that an epsilon-safe planner would beneeded for image analysis. As it turns out, the po-tential users of such a planner are not interested inranking outcomes by probability|they wanted all ofthe interesting eventualities covered. The plans gener-ated are small enough so that this was feasible, and sothe current version of Plinth su�ces.4We are investigating various extensions to the plan-ner described here. The combination of probabilitiesand information gathering actions requires proper han-dling of the distinction between what is true and whatthe planner knows. Treating them as the same resultsin a situation in which making an observation resultsin the observed proposition having been known beforethe observation was made (since it was clearly true be-fore the observation was made). Sloppy handling ofthe semantics of observation actions may result in aplanner that makes repeated observations in the hopesof eventually getting the outcome it wants (as distinctfrom the entirely reasonable case of repeated observa-tions with a noisy sensor). Draper, et al. describe anapproach to integrating probablities and observationactions in (Draper, Hanks, & Weld 1993). We presentanother in (Goldman & Boddy 1994a).Another direction we are exploring is the construc-tion of more complicated probabilistic models, allowingthe encoding of dependencies among various observa-tions (e.g., hearing a weather broadcast changes thelikelihood of a road's being passable). It turns out thatsimple dependencies of this form, at least, are easy torepresent: the probabilities for later actions can easilybe made dependent on earlier observation outcomes.We have not addressed the issue of later observations3An identical approach extending the probababilisticplanner Buridan is discussed in (Draper, Hanks, & Weld1993)4We are not quite so naive as to assume that this willbe true in all domains.

a�ecting the probability of some previous outcome byproviding information about what must have been trueat that time. ReferencesBoddy, M. S.; Goldman, R. P.; and White, J. 1994. Plan-ning for image analysis. In Proceedings of the 1994 God-dard AI Conference. to appear.Brooks, R. 1991. Intelligence without representation. Ar-ti�cial Intelligence 47:139{159.Draper, D.; Hanks, S.; and Weld, D. 1993. Probabilis-tic planning with information gathering and contingentexecution. Technical report, Dept. of Computer Science,University of Washington.Etzioni, O., and Segal, R. 1992. Softbots as testbeds formachine learning. In Proceedings of the 1992 AAAI SpringSymposium on knowledge assimilation.Etzioni, O.; Hanks, S.; Weld, D. S.; Draper, D.; Lesh,N.; and Williamson, M. 1992. An approach to planningwith incomplete information. In Nebel, B.; Rich, C.; andSwartout, W., eds., Principles of Knowledge Representa-tion and Reasoning:Proceedings of the Third InternationalConference, 115{125. Los Altos, CA: Morgan KaufmannPublishers, Inc.Firby, R. J. 1987. An investigation in reactive planningin complex domains. In Proceedings AAAI-87, 196{201.AAAI.Goldman, R. P., and Boddy, M. S. 1994a. Epsilon-safeplanning. forthcoming.Goldman, R. P., and Boddy, M. S. 1994b. Representinguncertainty in simple planners. In Doyle, J.; Sandewall,E.; and Torasso, P., eds., Principles of Knowledge Rep-resentation and Reasoning: Proceedings of the Fourth In-ternational Conference (KR94). San Mateo, CA: MorganKaufmann Publishers, Inc. To appear.Krebsbach, K.; Olawsky, D.; and Gini, M. 1992. Anempirical study of sensing and defaulting in planning. InHendler, J., ed., Arti�cial Intelligence Planning Systems:Proceedings of the First International Conference, 136{144. Los Altos, CA: Morgan Kaufmann Publishers, Inc.McDermott, D. 1991. Regression planning. InternationalJournal of Intelligent Systems 6(4):357{416.Minton, S.; Bresina, J. L.; and Drummond, M. 1991.Commitment strategies in planning: A comparative anal-ysis. In Proceedings of the 12th International Joint Con-ference on Arti�cial Intelligence. Morgan Kaufmann Pub-lishers, Inc.Pednault, E. 1989. Adl: Exploring the middle groundbetween strips and the situation calculus. In First Inter-national Conference on Principles of Knowledge Repre-sentation and Reasoning. Morgan Kaufmann Publishers,Inc.Peot, M. A., and Smith, D. E. 1992. Conditional non-linear planning. In Hendler, J., ed., Arti�cial IntelligencePlanning Systems: Proceedings of the First InternationalConference, 189{197. Los Altos, CA: Morgan KaufmannPublishers, Inc.Warren, D. H. 1976. Generating conditional plans andprograms. In Proceedings of the AISB Summer Confer-ence, 344{354.

