
Abstraction for Real-time Intelligent Control:Extended AbstractRobert P. Goldman, David J. Musliner, Mark S. Boddy, Kurt D. KrebsbachAutomated Reasoning GroupHoneywell Technology Center3660 Technology DriveMinneapolis, MN 55418fgoldman,musliner,boddy,krebsbacg@htc.honeywell.comIntroductionIn this paper we discuss two abstraction techniqueswe use in CIRCA planning (Musliner, Durfee, & Shin1993; 1995). CIRCA agents construct and executeplans for controlling real-time systems that interactwith a dynamic environment including uncontrolled,exogenous events. In these environments, catastrophicfailure is possible if a timely control action is not takenin certain situations. Control plans for these environ-ments must provide guarantees that failures will notoccur. Therefore, the CIRCA planning problem is oneof generating a timed, discrete event controller (Os-tro� & Wonham 1990) that attempts to achieve goalswhile delivering performance guarantees. In this gener-ation process we abstract temporal information, usinga special-purpose temporal prover to summarize infor-mation about the latency of various events. We alsouse a technique we call Dynamic Abstraction Plan-ning (Goldman et al. 1997) to minimize the (non-temporal) feature space of the controllers.In this position paper we present the two abstrac-tion methods used in CIRCA state-space planning. Westart by reviewing the CIRCA architecture, which cou-ples a deliberative planning component with a sched-uler and a real-time executive. We then present thestate-space planning problem, which is the responsi-bility of CIRCA's AI Subsystem. We then discusstemporal abstraction in state-space planning, and thenpresent Dynamic Abstraction Planning (DAP), a plan-ning technique that dynamically and locally abstractsthe feature space of the controller NFA. We relate thesetechniques to methods used in AI planning, Model(automaton) Minimization and Markov Decision Pro-cesses. CIRCACIRCA is designed to support both hard real-time re-sponse guarantees and unrestricted AI methods thatcan guide those real-time responses. Figure 1 illus-trates the architecture, in which an AI subsystem (AIS)reasons about high-level problems that require its pow-erful but potentially unbounded planning methods,while a separate real-time subsystem (RTS) reactivelyexecutes the AIS-generated plans and enforces guaran-teed response times. The AIS and Scheduler modulescooperate to develop executable reaction plans that
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AI SubsystemFigure 1: The Cooperative Intelligent Real-TimeControl Architecture.will assure system safety and attempt to achieve sys-tem goals when interpreted by the RTS.CIRCA has been applied to real-time planning andcontrol problems in several domains including mobilerobotics and simulated autonomous aircraft. In thispaper we draw examples from a domain in whichCIRCA controls a simulated Puma robot arm thatmust pack parts arriving on a conveyor belt into anearby box. The parts can have several shapes (e.g.,square, rectangle, triangle), each of which requires adi�erent packing strategy. The control system may notinitially know how to pack all of the possible types ofparts| it may have to perform some computation toderive an appropriate box-packing strategy. The robotarm is also responsible for reacting to an emergencyalert light. If the light goes on, the system must pushthe button next to the light before a �xed deadline.In this domain, CIRCA's planning and executionsubsystems operate in parallel. The AIS reasons aboutan internal model of the world and dynamically pro-grams the RTS with a planned set of reactions. Whilethe RTS is executing those reactions, ensuring that thesystem avoids failure, the AIS is able to continue exe-cuting heuristic planning methods to �nd the next ap-propriate set of reactions. For example, the AIS mayderive a new box-packing algorithm that can handle anew type of arriving part. The derivation of this newalgorithm does not need to meet a hard deadline, be-cause the reactions concurrently executing on the RTSwill continue handling all arriving parts, just stackingunfamiliar ones on a nearby table temporarily. Whenthe new box-packing algorithmhas been developed andintegrated with additional reactions that prevent fail-ure, the new schedule of reactions can be downloadedto the RTS.



EVENT emergency-alert ;; Emergency light goes onPRECONDS: ((emergency nil))POSTCONDS: ((emergency T))TEMPORAL emergency-failure ;; Fail if don't attend toPRECONDS: ((emergency T)) ;; light by deadlinePOSTCONDS: ((failure T))MIN-DELAY: 30 [seconds]ACTION push-emergency-buttonPRECONDS: ((part-in-gripper nil))POSTCONDS: ((emergency nil) (robot-position over-button))WORST-CASE-EXEC-TIME: 2.0 [seconds]Figure 2: Example transition descriptions given to CIRCA's planner.CIRCA's planning system builds reaction plansbased on a world model and a set of formally-de�nedsafety conditions that must be satis�ed by feasibleplans (Musliner, Durfee, & Shin 1995). To describea domain to CIRCA, the user inputs a set of transitiondescriptions that implicitly de�ne the set of reachablestates. For example, Figure 2 illustrates several transi-tions used in the Puma domain. These transitions areof three types:Action transitions represent actions performed bythe RTS.Temporal transitions represent the progression oftime and continuous processes.Event transitions represent world occurrences as in-stantaneous state changes.The AIS plans by generating a nondeterministic �-nite automaton (NFA) from these transition descrip-tions. The AIS assigns to each reachable state eitheran action transition or no-op. Actions are selected topreempt all transitions that lead to failure states, thusensuring system safety. Actions are also selected todrive the system towards states that satisfy as manygoal propositions as possible. The assignment of ac-tions determine the topology of the NFA: preemptionof temporal transitions removes edges and assignmentof actions adds them.The NFA is then translated into a memoryless con-troller for downloading to the RTS. This is donethrough a two-step process. First, the action assign-ments in the NFA are compiled into a set ofTest-ActionPairs(TAPs). The tests are a set of boolean expres-sions that distinguish between states where a particularaction is and is not to be executed. The test expressionis a function of the plan as a whole, rather than localaction assignments, because the same action may beassigned to more than one state.Eventually, the TAPs will be downloaded to the RTSto be executed. The RTS will loop over the set ofTAPs, checking each test expression and executing thecorresponding action if the test is satis�ed. The tests

consist only of sensing the agent's environment, ratherthan checking any internal memory, so the RTS is asyn-chronous and memoryless.However, before the TAPs can be downloaded, theymust be assembled into a loop that will meet all of thedeadlines. These deadlines are captured as constraintson the maximum period of the TAPs. This secondphase of the translation process is done by the sched-uler. In this phase, CIRCA's scheduler veri�es thatall actions in the TAP loop will be executed quicklyenough to preempt the transitions the planner has de-termined need preempting. The tests and actions thatthe RTS can execute as part of its TAPs have associ-ated worst-case execution times that are used to verifythe schedule. It is possible that scheduling will not suc-ceed. In this case, the AIS will backtrack to the plannerfor the NFA to be revised, a new set of TAPs generatedand scheduled. The planning process is summarized inFigure 3. CIRCA Planning ModelIn this paper, we are concerned with the problem ofstate-space planning in CIRCA. This is the generationof the NFA describing the (real-time) discrete eventcontroller. The state-space planning model for CIRCAconsists of states, each of which has an associated as-signment of values to the set of features, and transi-tions, which allow movement from state to state. Tran-sitions can be partitioned on the basis of volition: inthe current planner, actions are volitional, events andtemporals are not. A transition is enabled in any statefor which its preconditions are satis�ed. The possiblestates resulting from a transition from a given state arethose satisfying the transition's postconditions.Transition postconditions are speci�ed, per the con-ventional Strips assumption, by listing only those lit-erals that change values | other literals retain theirvalues. The Strips assumption is loosened to a limitedextent by permitting nondeterministic actions;1 such1There is no need to have nondeterministic events or
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SCHEDULERFigure 3: Summary of the CIRCA planning process.actions have multiple sets of postconditions. The delayassociated with a transition is known only in terms ofupper and lower bounds. For a sample set of transitiondescriptions, see Figure 2.In the simplest model of CIRCA planning, a CIRCAstate-space plan is a graph, in which nodes correspondto states and arcs represent enabled transitions be-tween these states. A transition is enabled if its pre-conditions are satis�ed by the state features. Thissimple model corresponds to the original CIRCA plan-ner (Musliner, Durfee, & Shin 1995).A well-formed plan is one in which an arc is presentfor every enabled nonvolitional transition betweennodes which is not preempted, and each node has out-going arcs for at most one action (non-deterministicactions may require more than one arc).A non-volitional transition, t may be preemptedby planning an action that is guaranteed to occurbefore t can. That is, an action whose delay isless than the latency of t. For example, in thedomain described in Figure 2, CIRCA would at-tempt to preempt emergency-failurewith the actionpush-emergency-button. This may or may not suc-ceed, depending on the context in which the preemp-tion is attempted. It is not enough to choose an ac-tion that is faster than the delay on the temporal: thestate-space planner must also ensure that this actionis started before too much of the delay has elapsed.Timing information for a CIRCA plan is derivedfrom bounds on the delay associated with arcs out of anode, which is taken directly from the delay bounds forthe corresponding transitions. The latency of a transi-tion arc with respect to a node in the plan is the timebefore that transition will occur, if no other transitiontemporals | for those it su�ces simply to have multipletransitions.

occurs �rst, once that node has been reached.The model we have outlined is a simpli�ed timeddiscrete-event control model (Ostro� & Wonham1990). Kabanza provides a controller synthesis algo-rithm that works with such models in a straightforwardway, interleaving non-volitional and volitional transi-tions, and with state feature spaces augmented by afeature corresponding to elapsed time (Kabanza, Bar-beau, & St.-Denis 1997). However, in the applicationswe have examined, this approach is not feasible. Thereason is that our applications involve both very longlatency processes (e.g., the warming up of a rocket en-gine) and short latency processes (tests and actions inthe RTS controller loop). Explicitly recording tempo-ral indices would yield an enormous state-space explo-sion. Accordingly, we treat time specially.Another complicating issue is the fact that the la-tency of a transition in a particular state is path-dependent. For example, consider a state A, in whicha temporal transition t is enabled. The delay of tran-sition t is dt. Let us assume the controller can reachstate A from two other states, B and C; in state B,transition t is enabled, and in state C it is not. Now,the latency of t in state A depends on how state A isreached: if it is reached from state B, then the latencyis dt � dwell(B)2; if from state C, the latency is sim-ply dt. This is only a very simple example; in a realproblem there are typically many ways to reach a givenstate and in general we need to deal with chains of mul-tiple states in which a transition is enabled, not just asingle predecessor. In the following section we discusshow we address the problem of temporal abstraction inCIRCA state-space planning.Temporal AbstractionWe wish to avoid explicitly recording temporal infor-mation in the states of the CIRCA NFA. However,as mentioned above, the latency of a transition ina state depends on the path along which that statewas reached, which breaks the Markov assumption fornodes. We restore this property by calculating andemploying path-independent bounds on latency in pro-viding timing guarantees (most signi�cantly, in deter-mining preemption of transitions by actions). This ab-straction is critical to successful function of the CIRCAstate-space planning algorithm, but regrettably sacri-�ces completeness.To understand the technique, one must consider howthe state-space planner establishes the safety of a con-troller. The controller is an NFA containing edgesfor actions and non-volitional transitions and a distin-guished failure state, reached through transitions tofailure (e.g., emergency-failure in Figure 2. A con-troller is safe if the distinguished failure state is notreachable from the start state(s). The state-space plan-ner uses two techniques for making a controller safe:2Where dwell(B) is the amount of time spent in stateB.



� It avoids actions that lead to dangerous states;� It chooses actions to preempt transitions that leadto dangerous states.By \dangerous state" we mean, informally, a state thatleads to failure, either directly or transitively.For each reachable state in the plan, CIRCA mustcompute, for each transition to be preempted, a lowerbound on its latency. The latency itself is a propertyof the path taken to the state. We avoid the explosionin e�ort by computing bounds for each state that arepath independent . At every state, we compute a lowerbound on the latency, based on the weakest bound fromthe set of incoming edges.The latency of a particular temporal transition, t,for a state s, with respect to a predecessor state, p,may be determined according to a limited number ofcases:t is not enabled in p: The delay of t does not start\running" until state s is entered. latency(t; p !s) = delay(t).t is enabled in p: We must count the time spent instate p (and in predecessors to p in which t is en-abled); let's refer to this as the dwell in state p. So,recursively:latency(t; p! s) = � minp0jp0!p latency(t; p0 ! p)��dwell(p)Fortunately, dwell(p) may easily be determined: theamount of time the system spends in a state isbounded by the action assignment to that state.AlgorithmWe have implemented an algorithm for computing thelatencies described above. The bounds we describeabove may be computed using a simple depth-�rstgraph search, from nodes to their enabling predeces-sors. The algorithm has an additional termination con-dition: terminate when the latency goes to zero. Thistermination condition allows this algorithm to com-plete even in plans (graphs) with cycles.The latency computations are used as an oracle bythe planner. When the state-space planner adds edgesto the graph (by assigning actions), removes them (bypreemption), or, in DAP planning, re�nes a state de-scription, this algorithm is run to recompute transitionlatencies. Latency computations may trigger back-tracking for two reasons:� they indicate that the current action assignment failsto achieve necessary preemptions;� they indicate that, because of a change in the NFAtopology, a previous action assignment no longerachieves its preemptions.IncompletenessThere are classes of real-time plans that CIRCA is un-able to �nd because of the temporal reasoning it does.
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it can be executed correctly.Related WorkAs we mentioned earlier, Kabanza et al. (Kabanza,Barbeau, & St.-Denis 1997) have developed a planningmethod for reactive agents based on a model similar toours. Their architecture di�ers in emphasis, however.The NFAs it constructs are \clocked:" they make tran-sitions at times that are the least common denomina-tor of all possible transitions. This scheme will su�er astate space explosion in domains where there is a widerange of possible transition delays, like those to whichCIRCA has been applied.Dynamic Abstraction PlanningThe original CIRCA planner used a forward planningalgorithm with full state descriptions. This led to anexplosion in the state space of the planner. In recentwork (Goldman et al. 1997), we have addressed thisstate-space explosion using a new planning techniquethat we call Dynamic Abstraction Planning (DAP).Abstraction is used to omit detail from the state rep-resentation, reducing both the size of the state spacethat must be explored to produce a plan, and the sizeof the resulting plan itself. The abstraction method wedescribe has three useful features:1. The abstraction method does not compromise safety-preserving guarantees: the world model used forplanning is reduced, but not in ways that a�ect thesystem's ability to make rigorous statements aboutthe safety assurances of plans it is building.2. The method is fully automatic, and dynamically de-termines the appropriate level of abstraction duringthe planning process itself.3. The method uses di�erent levels of abstraction indi�erent parts of the search space, individually ad-justing how much detail is omitted at each step.The intuition behind DAP is fairly simple: in some sit-uations, certain world features are important, while inother situations those same features are not important.An optimal state space representation would captureonly the important features for any particular state.In essence, DAP allows a planner to search for usefulstate space abstractions at the same time it is searchingfor a plan.DAP TechniqueRecall that the problem of planning for CIRCA (set-ting aside the question of TAP generation and schedul-ing), is to assign to every reachable state in the statespace, an action that preserves safety. As mentionedabove, the original CIRCA planner assigned these ac-tions working forward from a set of start states. TheCIRCA planner would maintain a frontier of reachablestates and would assign a suitable action to each reach-able state.
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Experimental EvaluationDynamic abstraction provides the greatest bene�tsin domains where uncertainty is present and can bereasoned about or managed in abstract ways, ratherthan requiring fully-detailed reasoning at all points inthe state-space. We have experimented with DAP inrandomly-generated domains with various kinds of un-certainty, demonstrating signi�cant speed-ups.In the CIRCA planning paradigm, there are severalpossible sources of uncertainty that can be advanta-geous for DAP:Events and Temporals | These nonvoli-tional transitions are outside of the system's control,and therefore lead to uncertainty in the planned tra-jectory through the state-space, as they can movethe system o� the direct planned path. The originalplanner must consider each state that results froman event or temporal and the resulting sequences,possibly not overlapping with the direct plan, thatare required to move towards the goal.Initial conditions | The system can be told it maybegin in one of several possible initial conditions.This uncertainty requires the original planner to con-sider explicit paths leading from each initial state,while DAP may be able to ignore the di�erences be-tween initial states and �nd a single plan.Nondeterministic actions | Because actions canhave nondeterministic outcomes, they can causebranching in the original planner that DAP may beable to avoid.Dynamic Abstraction Planning is not applicable toCIRCA planning alone. The DAP technique couldbring automated abstraction to other planners with dif-ferent state representation, transition semantics, andtemporal models. Therefore, we have evaluated thebene�ts of DAP independent of many of the CIRCA-speci�c details of the planning model. In particular,to evaluate DAP independent of the complex CIRCAtemporal model, we avoid using temporal transitions.In turn, this means that the issue of preemption doesnot arise in the evaluation problems discussed here.Our evaluation consisted of running both the DAPand Classic CIRCA state-space planners on numerousdomains that were automatically generated to meetseveral sets of de�ning characteristics. Each of thesesets of domains (or \domain classes") highlights par-ticular ways in which DAP di�ers from, and usuallyimproves upon, Classic CIRCA and other state-spaceplanners.In particular, we present results for test domains thatfocus on:� \Benign" events;� Uncertainty in initial conditions;� Interactions between events and goal achievement.Our random problem design is based on techniquesdeveloped by Barrett and Weld for \classical" plan-ning (Barrett & Weld 1994). Throughout our experi-ments, we consider domains in which there is a causal

chain from the initial state(s) to the goal. To auto-matically generate one of these domains, we build a se-quence of simple actions that rely on each others pre-conditions, and must be chained together to achievethe �nal goal. Using a notation derived from that usedby Barrett and Weld (Barrett & Weld 1994), we candescribe these actions by the template:(make-instance 'action :name Achieve-Goal-i:preconds ( (Gi F) (Gi�1 T) ):postconds ( (Gi T) ))A set of actions like this creates a sequence of goal fea-tures, G1; G2; : : :Gn. In our experiments we vary thelength of these causal chains and show how this pa-rameter a�ects run-time and the size of the plan graphgenerated.Eval-1 Domain: Benign Events The �rst eval-uation domain, Eval-1, shows DAP's ability to ig-nore irrelevant nonvolitional transitions. By ignoringthese irrelevant transitions, and the features they af-fect, DAP avoids an exponential state-space explosionthat plagued the original state-space planner. In Eval-1 we focus on one type of irrelevant transition, a be-nign event. A benign event is an event establishing aproposition that does not appear in any preconditionsor postconditions of actions on the \causal chain" tothe goal. The Eval-1 domains show how DAP can buildsmall, abstract plans that accurately characterize muchlarger state spaces connected by benign events. On theother hand, the original planner must enumerate theentire exponential state spaces.To introduce benign events, we create an additionalset of \external" features that are irrelevant to thecausal chain. The values of these external features maychange over time due to events. We de�ne a number ofevents that establish these propositions. These eventsdo not interact with the causal chain, for good or ill.Figure 7 shows the di�erent structure of the plansgenerated by DAP and the classic CIRCA planner.These pictures illustrate the results for one Eval-1 do-main, in which the causal chain is of length three, thereare three external features and three establisher events.The performance of the two planners on this highly-structured domain can be predicted analytically. Asthe number of benign events increases, the DAP plan-ner's �nal plan size does not change at all. All theevents are su�ciently modeled by the simple self-loopsshown in Figure 7(a). On the other hand, the origi-nal CIRCA planner's state space grows exponentially.Each benign event in the domain forces the originalplanner to replicate the entire path from initial stateto goal (which is n+1 states long). For each of the 2mcombinations of values of the external features, thereis one such path. So the size of the original planner'sstate space is (n + 1) � 2m. We have con�rmed thisrelationship experimentally.Figure 8 shows that the savings in state-space trans-late to savings in terms of runtime. As expected, DAPruntime is linear in both the number of goals and be-
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(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 4

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 13

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 F)

(P3 F)

State 9

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 F)

(P3 F)

State 5

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

(P3 F)

State 1

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

(P3 F)

(b) Classic CIRCA plan.Figure 7: Plans for the Eval-1 domain with 3 goalsand 3 benign events. In the DAP plan, the3� notation indicates that the self-loopsare triply-replicated, corresponding to theevents a�ecting the three external eventsnot included in each abstract state. In alldiagrams, initial states are lightly shaded,goal states are darker.
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Figure 8: Classic CIRCA's runtime is exponential inthe number of benign events. Note thelogarithmic runtime scale.nign events, while the old state-space planner's runtimegrows exponentially in the number of benign events.Eval-2 Domain: Uncertainty in Initial Condi-tions This domain class shows the advantages ofDAP when there is uncertainty in the initial condi-tions of the planning problem. Unlike Eval-1, there areno external events at all; instead, the only uncertaintyarises in the initial conditions. Multiple initial statesare created by adding external features and randomlychoosing value assignments to them. The randomnessserves only to build di�erent initial conditions.On Eval-2 domains, DAP completely ignores the dif-ferences between the declared initial conditions, build-ing only a single abstract start state. This yields sub-stantial savings in the number of states enumeratedand in the planner's runtime. For example, Figure 9ashows the DAP plan for an Eval-2 domain declaredwith three goal predicates and three initial states.The graph shows only one initial state because DAPnever splits the state space on any of the predicatesthat di�erentiate the declared initial states. In con-trast, Figure 9b shows the Classic planner's output,in which each of the initial states leads to a di�erentpath through the state-space. As this example sug-gests, for Eval-2 domains DAP's plan size is constantwith respect to the number of initial conditions, whilethe Classic plans grow linearly (see Figure 10).Eval-3 Domain: Required Events The Eval-3domain class investigates planner performance whenthe planner must incorporate nonvolitional transitions(events) into the path to the goal. To force the plannerto rely on events in the planned path, we made eachgoal-achieving action include a single external predi-cate as a precondition. These external propositionscan only be established by events; there are no actionsthat establish them. Complicating matters further, wespeci�ed new events that can make the external predi-cates false, or \delete" them, in addition to the original\adding" events from the Eval-1 domain.Ideally, DAP would perform a single split on one ex-



State 6

(G3 T)

State 10

(G1 T)

(G2 T)

(G3 F)

State 11

(G1 T)

(G2 F)

(G3 F)

State 8

(G1 F)

(G3 F)

State 6

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 F)

(P3 T)

State 5

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 4

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 1

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 9

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 F)

(P3 F)

State 8

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 7

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 2

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 12

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 T)

(P3 F)

State 11

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 10

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 3

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 F)(a) DAP. (b) Classic.Figure 9: Plans for Eval-2 domain with 3 goals and 3 initial states.
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Figure 10: Plan size for Eval-2 domains with uncer-tainty in initial conditions.ternal predicate and then rely on that predicate andthe correspondingly-enabled actions for the rest of theplan. This would make DAP's plans only slightly largerthan for the Eval-1 domains. Unfortunately, in thecourse of doing this experiment, we discovered that theheuristic DAP uses to choose state re�nements is notsmart enough to recognize that it is enough to knowone external predicate. In fact, the current heuristiccode often does as poorly as possible! Figure 11 showsthat even with this poor heuristic, DAP achieves a sub-stantial savings in state-space size. Figure 12 showsthat the state-space savings is not enough to substan-tially improve runtime over the original planner, be-cause of the bookkeeping costs imposed by DAP. Sincethe heuristic code here is misleading DAP badly, this isvery much a worst case. We have identi�ed the 
aw inthe heuristic and a �x for it; we will repair it in futurework.
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Figure 11: Plan size for Eval-3 domains with re-quired events.
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Figure 12: Runtime for Eval-3 domains with re-quired events.



2*

State 415

(G1 F)

(G2 T)

(G3 F)

(P1 F)

(P3 F)

2*

4*

4*

State 110

(G1 F)

(G2 F)

(G3 F)

(P1 F)

2*

6*
State 10

(G3 T)

State 269

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 345

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 F)

(P3 T)

State 389

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 T)

(P3 T)

State 223

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 T)

(P3 T)

State 224

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 T)

(P3 F)

State 200

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 T)

2*

2*

2*

State 390

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 364

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

State 322

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

State 244

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

State 346

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 F)

(P3 F)

State 270

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 141

(G1 F)

(G3 F)

(P1 T)

State 414

(G1 F)

(G2 T)

(G3 F)

(P1 F)

(P3 T)

State 3

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 6

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 T)

(P3 F)

State 4

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 1

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

(P3 F)

State 2

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

(P3 T)

State 5

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 11

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 30

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

(P3 T)

State 14

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 T)

(P3 F)

State 25

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 27

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 F)

(P3 F)

State 28

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 18

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 T)

(P3 F)

State 21

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 T)

(P3 F)

State 23

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 F)

(P3 F)

State 24

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 F)

(P3 F)

State 19

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 F)

(P3 T)

State 15

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 22

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 F)

(P3 T)

State 26

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 F)

(P3 T)

State 20

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 T)

(P3 T)

State 16

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 T)

(P3 T)

State 12

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 T)

State 17

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 T)

(P3 T)

State 13

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 T)

(P3 T)

State 9

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 T)

(P3 T)

State 7

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 T)

(P3 T)

State 8

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 T)

State 10

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 T)

(P3 F)

State 29

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 31

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

(P3 F)

State 32

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

(a) DAP. (b) Classic.Figure 13: Plans for Eval-4 domain with 3 goals.Eval-4 Domain: Complex Event InterleavingBy modifying the Eval-3 domain class slightly, we pro-duced a new class designed to highlight DAP's abilityto abstract the state space in a non-homogeneous fash-ion, including a feature in some parts of the space, andignoring it in others. Eval-4 domains consist of a setof goal-achieving actions that each require a di�erentexternal predicate.Thus an n-goal Eval-4 domain also has n events inthe success path, and at some point even the DAPplanner will have to consider all n external predicates.However, DAP can limit the propagation of those ex-ternal predicates so that it still does not consider theexponential set of their combinations, as illustrated bythe example in Figure 13a. The Classic CIRCA plan-ner, on the other hand, must enumerate all combina-tions , and builds plans like that shown in Figure 13b.The overall performance results are shown in Figure 14.Comparison to Other State-spaceAbstraction TechniquesMany classical planning systems have used abstractionmethods to increase the e�ciency of searching for plans(see (Kambhampati 1994) for a brief survey). However,these abstractions are typically used only as guides insearching for a plan; the system may not know thatits goals will actually be achieved by an abstract plan,and it will not be able to execute the abstracted opera-

tors directly. Instead, traditional abstraction plannersmust eventually expand their current plans down tothe lowest level of detail, removing the abstraction toproduce a �nal executable plan.In the DAP approach, which involves abstractiononly of state descriptions, abstract plans are exe-cutable, because the operators are always completelyspeci�ed. This has two main advantages. First, theplanning process can supply initial plans that preservesafety but might, on further re�nement, do a better jobof goal achievement. Second, the planning process canterminate with an executable abstract plan, which ourresults have shown may be much smaller than the cor-responding plan expanded to precisely-de�ned states.Dearden and Boutilier (1997) have developed an ab-stract planning algorithm for decision-theoretic plan-ning modeled as a Markov decision process (MDP).Their method is similar to the DAP approach in thatit involves aggregating states, but there are some dif-ferences. First, their method is not dynamic: aggrega-tion is performed using a prede�ned set of \relevant"propositions, which is determined using Knoblock's ap-proach (Knoblock 1994). Second, their method is uni-form: the same propositions are relevant everywhere.The underlying model is also signi�cantly di�erentfrom CIRCA's: it does not model exogenous eventsor the timing required for real-time guarantees.In more recent work, Boutilier et al. have developedan approach to MDPs that uses dynamic, local abstrac-tion, much like our own (Boutilier, Dearden, & Gold-szmidt 1995). Their technique is like ours in gradually,dynamically adding information to di�erent parts ofthe state space, and in using regression across actionsto direct state re�nement. The technique di�ers sub-stantially because of the di�erences between CIRCAand MDP planning models: CIRCA has a very de-tailed temporal model and multiple, asynchronous en-vironmental processes, but a very weak model of un-certainty. On the other hand, MDPs have a weak tem-poral model (e�ectively, all processes are \clocked" atthe same rate), but a very sophisticated model of un-certainty.Our DAP planning algorithm is essentially perform-ing on-line model minimization. This model minimiza-tion is based on concepts of regression from \classical"AI planning. In work done simultaneously with our de-velopment of DAP, Givan and Dean have explored theconnection between model minimization and STRIPS-style planning (Givan & Dean 1997). They show howSTRIPS style regression may be interpreted in termsof model minimization. While our work is similar totheirs in exploiting classical planning-inspired notionsof regression, our work is closer to mainstream workin model minimization, since it is focused on NFAs,rather than on �nding a single path to the goal.Godefroid and Kabanza (1991) have developed anabstraction technique based on partial orders. Theirresults allow a system to examine only a single order-ing of independent actions, rather than enumerating
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(a) Runtime (ms). (b) Reachable States.Figure 14: Eval-4 domain shows DAP using non-homogeneous abstraction to advantage.all possible orderings. Unfortunately, these results arenot immediately applicable to CIRCA, because theirworld model does not include exogenous events. Themore recent work by Kabanza et al. (Kabanza, Bar-beau, & St.-Denis 1997) does include exogenous events,but they do not seem to have carried over the earlierabstraction concepts.ConclusionsWe have presented two abstraction techniques used inCIRCA's automatic generation of hard real-time dis-crete event controllers. The controller synthesis is han-dled by constructing a timed NFA. In order to avoidstate-space explosion, we abstract both the tempo-ral and feature space representation. The time spaceis abstracted by using a bounding calculus to avoidhaving to explicitly use a non-Markov representation.Approaches that reason explicitly about paths wouldmake it impossible for us to plan in the domains of in-terest to us. The feature space is compressed throughdynamic abstraction. We have shown that second ab-straction method provides a substantial savings in do-mains that feature uncertainty.ReferencesBarrett, A., and Weld, D. 1994. Partial order plan-ning: Evaluating possible e�ciency gains. Arti�cialIntelligence 67(1):71{112.Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995.Exploiting structure in policy construction. In Pro-ceedings of the Fourteenth International Joint Con-ference on Arti�cial Intelligence, 1104{1113.Dearden, R., and Boutilier, C. 1997. Abstractionand approximate decision-theoretic planning. Arti�-cial Intelligence 89(1{2):219{283.Givan, R., and Dean, T. 1997. Model minimization,regression and propositional STRIPS planning. InPollack, M., ed., Proceedings of the 15th International
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