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Introduction

In this paper we discuss two abstraction techniques
we use in CIRCA planning (Musliner, Durfee, & Shin
1993; 1995). CIRCA agents construct and execute
plans for controlling real-time systems that interact
with a dynamic environment including uncontrolled,
exogenous events. In these environments, catastrophic
failure 1s possible if a tsmely control action is not taken
in certain situations. Control plans for these environ-
ments must provide guarantees that failures will not
occur. Therefore, the CIRCA planning problem is one
of generating a timed, discrete event controller (Os-
troff & Wonham 1990) that attempts to achieve goals
while delivering performance guarantees. In this gener-
ation process we abstract temporal information, using
a special-purpose temporal prover to summarize infor-
mation about the latency of various events. We also
use a technique we call Dynamic Abstraction Plan-
ning (Goldman et al. 1997) to minimize the (non-
temporal) feature space of the controllers.

In this position paper we present the two abstrac-
tion methods used in CIRCA state-space planning. We
start by reviewing the CIRCA architecture, which cou-
ples a deliberative planning component with a sched-
uler and a real-time executive. We then present the
state-space planning problem, which is the responsi-
bility of CIRCA’s Al Subsystem. We then discuss
temporal abstraction in state-space planning, and then
present Dynamic Abstraction Planning (DAP), a plan-
ning technique that dynamically and locally abstracts
the feature space of the controller NFA. We relate these
techniques to methods used in Al planning, Model
(automaton) Minimization and Markov Decision Pro-
cesses.

CIRCA

CIRCA 1s designed to support both hard real-time re-
sponse guarantees and unrestricted Al methods that
can guide those real-time responses. Figure 1 illus-
trates the architecture, in which an AT subsystem (AIS)
reasons about high-level problems that require its pow-
erful but potentially unbounded planning methods,
while a separate real-time subsystem (RTS) reactively
executes the AIS-generated plans and enforces guaran-
teed response times. The AIS and Scheduler modules
cooperate to develop executable reaction plans that
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Figure 1: The Cooperative Intelligent Real-Time
Control Architecture.

will assure system safety and attempt to achieve sys-
tem goals when interpreted by the RTS.

CIRCA has been applied to real-time planning and
control problems in several domains including mobile
robotics and simulated autonomous aircraft. In this
paper we draw examples from a domain in which
CIRCA controls a simulated Puma robot arm that
must pack parts arriving on a conveyor belt into a
nearby box. The parts can have several shapes (e.g.,
square, rectangle, triangle), each of which requires a
different packing strategy. The control system may not
initially know how to pack all of the possible types of
parts— it may have to perform some computation to
derive an appropriate box-packing strategy. The robot
arm is also responsible for reacting to an emergency
alert light. If the light goes on, the system must push
the button next to the light before a fixed deadline.

In this domain, CIRCA’s planning and execution
subsystems operate in parallel. The AIS reasons about
an internal model of the world and dynamically pro-
grams the RTS with a planned set of reactions. While
the RTS is executing those reactions, ensuring that the
system avoids failure, the AIS is able to continue exe-
cuting heuristic planning methods to find the next ap-
propriate set of reactions. For example, the AIS may
derive a new box-packing algorithm that can handle a
new type of arriving part. The derivation of this new
algorithm does not need to meet a hard deadline, be-
cause the reactions concurrently executing on the RTS
will continue handling all arriving parts, just stacking
unfamiliar ones on a nearby table temporarily. When
the new box-packing algorithm has been developed and
integrated with additional reactions that prevent fail-
ure, the new schedule of reactions can be downloaded

to the RTS.



EVENT emergency-alert
PRECONDS: ((emergency nil))
POSTCONDS: ((emergency T))

TEMPORAL emergency-failure
PRECONDS: ((emergency T))
POSTCONDS: ((failure T))
MIN-DELAY: 30 [seconds]

ACTION push-emergency-button
PRECONDS: ((part-in-gripper nil))

;; Emergency light goes on

Fail if don’t attend to

;; light by deadline

POSTCONDS: ((emergency nil) (robot-position over-button))

WORST-CASE-EXEC-TIME: 2.0 [seconds]

Figure 2: Example transition descriptions given to CIRCA’s planner.

CIRCA’s planning system builds reaction plans
based on a world model and a set of formally-defined
safety conditions that must be satisfied by feasible
plans (Musliner, Durfee, & Shin 1995). To describe
a domain to CIRCA, the user inputs a set of transition
descriptions that implicitly define the set of reachable
states. For example, Figure 2 illustrates several transi-
tions used in the Puma domain. These transitions are
of three types:

Action transitions represent actions performed by

the RTS.

Temporal transitions represent the progression of
time and continuous processes.

Event transitions represent world occurrences as in-
stantaneous state changes.

The AIS plans by generating a nondeterministic fi-
nite automaton (NFA) from these transition descrip-
tions. The AIS assigns to each reachable state either
an action transition or no-op. Actions are selected to
preempt all transitions that lead to failure states, thus
ensuring system safety. Actions are also selected to
drive the system towards states that satisfy as many
goal propositions as possible. The assignment of ac-
tions determine the topology of the NFA: preemption
of temporal transitions removes edges and assignment
of actions adds them.

The NFA 1is then translated into a memoryless con-
troller for downloading to the RTS. This is done
through a two-step process. First, the action assign-
ments in the NFA are compiled into a set of Test-Action
Pairs(TAPs). The tests are a set of boolean expres-
sions that distinguish between states where a particular
action is and is not to be executed. The test expression
is a function of the plan as a whole, rather than local
action assignments, because the same action may be
assigned to more than one state.

Eventually, the TAPs will be downloaded to the RTS
to be executed. The RTS will loop over the set of
TAPs, checking each test expression and executing the
corresponding action if the test is satisfied. The tests

consist only of sensing the agent’s environment, rather
than checking any internal memory, so the RTS is asyn-
chronous and memoryless.

However, before the TAPs can be downloaded, they
must be assembled into a loop that will meet all of the
deadlines. These deadlines are captured as constraints
on the maximum period of the TAPs. This second
phase of the translation process is done by the sched-
uler. In this phase, CIRCA’s scheduler verifies that
all actions in the TAP loop will be executed quickly
enough to preempt the transitions the planner has de-
termined need preempting. The tests and actions that
the RTS can execute as part of its TAPs have associ-
ated worst-case execution times that are used to verify
the schedule. It 1s possible that scheduling will not suc-
ceed. In this case, the AIS will backtrack to the planner
for the NFA to be revised, a new set of TAPs generated
and scheduled. The planning process is summarized in
Figure 3.

CIRCA Planning Model

In this paper, we are concerned with the problem of
state-space planning in CIRCA. This is the generation
of the NFA describing the (real-time) discrete event
controller. The state-space planning model for CIRCA
consists of states, each of which has an associated as-
signment of values to the set of features, and transi-
tions, which allow movement from state to state. Tran-
sitions can be partitioned on the basis of wvolition: in
the current planner, actions are volitional, events and
temporals are not. A transition is enabled in any state
for which its preconditions are satisfied. The possible
states resulting from a transition from a given state are
those satisfying the transition’s postconditions.
Transition postconditions are specified, per the con-
ventional STRIPS assumption, by listing only those lit-
erals that change values — other literals retain their
values. The STRIPS assumption is loosened to a limited
extent by permitting nondeterministic actions;! such

!There is no need to have nondeterministic events or



Transition Descriptions Goals

™~

PLANNER
NFA
Temporal TAP Compiler
Constraints
TAPs
SCHEDULER
Verified TAP Schedule

Figure 3: Summary of the CIRCA planning process.

actions have multiple sets of postconditions. The delay
associated with a transition is known only in terms of
upper and lower bounds. For a sample set of transition
descriptions, see Figure 2.

In the simplest model of CIRCA planning, a CIRCA
state-space plan 1s a graph, in which nodes correspond
to states and arcs represent enabled transitions be-
tween these states. A transition is enabled if its pre-
conditions are satisfied by the state features. This
simple model corresponds to the original CIRCA plan-
ner (Musliner, Durfee, & Shin 1995).

A well-formed plan is one in which an arc is present
for every enabled nonvolitional transition between
nodes which is not preempted, and each node has out-
going arcs for at most one action (non-deterministic
actions may require more than one arc).

A non-volitional transition, ¢ may be preempted
by planning an action that is guaranteed to occur
before ¢ can. That i1s, an action whose delay 1s
less than the latency of ¢t. For example, in the
domain described in Figure 2, CIRCA would at-
tempt to preempt emergency-failure with the action
push-emergency-button. This may or may not suc-
ceed, depending on the context in which the preemp-
tion is attempted. It is not enough to choose an ac-
tion that is faster than the delay on the temporal: the
state-space planner must also ensure that this action
1s started before too much of the delay has elapsed.

Timing information for a CIRCA plan is derived
from bounds on the delay associated with arcs out of a
node, which is taken directly from the delay bounds for
the corresponding transitions. The latency of a transi-
tion arc with respect to a node in the plan is the time
before that transition will occur, if no other transition

temporals — for those it suffices simply to have multiple
transitions.

occurs first, once that node has been reached.

The model we have outlined is a simplified timed
discrete-event control model (Ostroff & Wonham
1990). Kabanza provides a controller synthesis algo-
rithm that works with such models in a straightforward
way, Interleaving non-volitional and volitional transi-
tions, and with state feature spaces augmented by a
feature corresponding to elapsed time (Kabanza, Bar-
beau, & St.-Denis 1997). However, in the applications
we have examined, this approach is not feasible. The
reason is that our applications involve both very long
latency processes (e.g., the warming up of a rocket en-
gine) and short latency processes (tests and actions in
the RTS controller loop). Explicitly recording tempo-
ral indices would yield an enormous state-space explo-
sion. Accordingly, we treat time specially.

Another complicating issue is the fact that the la-
tency of a transition in a particular state 1s path-
dependent. For example, consider a state A, in which
a temporal transition f is enabled. The delay of tran-
sition ¢ 1s d;. Let us assume the controller can reach
state A from two other states, B and C'; in state B,
transition ¢ 1s enabled,; and in state C' it is not. Now,
the latency of ¢ in state A depends on how state A is
reached: if it is reached from state B, then the latency
is dy — dwell(B)?; if from state C, the latency is sim-
ply di. This 1s only a very simple example; in a real
problem there are typically many ways to reach a given
state and in general we need to deal with chains of mul-
tiple states in which a transition is enabled, not just a
single predecessor. In the following section we discuss
how we address the problem of temporal abstraction in
CIRCA state-space planning.

Temporal Abstraction

We wish to avoid explicitly recording temporal infor-
mation in the states of the CIRCA NFA. However,
as mentioned above, the latency of a transition in
a state depends on the path along which that state
was reached, which breaks the Markov assumption for
nodes. We restore this property by calculating and
employing path-independent bounds on latency in pro-
viding timing guarantees (most significantly, in deter-
mining preemption of transitions by actions). This ab-
straction is critical to successful function of the CIRCA
state-space planning algorithm, but regrettably sacri-
fices completeness.

To understand the technique, one must consider how
the state-space planner establishes the safety of a con-
troller. The controller is an NFA containing edges
for actions and non-volitional transitions and a distin-
guished failure state, reached through transitions to
failure (e.g., emergency-failure in Figure 2. A con-
troller is safe if the distinguished failure state is not
reachable from the start state(s). The state-space plan-
ner uses two techniques for making a controller safe:

2Where dwell(B) is the amount of time spent in state

B.



e It avoids actions that lead to dangerous states;

e It chooses actions to preempt transitions that lead
to dangerous states.

By “dangerous state” we mean, informally, a state that
leads to failure, either directly or transitively.

For each reachable state in the plan, CIRCA must
compute, for each transition to be preempted, a lower
bound on its latency. The latency itself is a property
of the path taken to the state. We avoid the explosion
in effort by computing bounds for each state that are
path independent. At every state, we compute a lower
bound on the latency, based on the weakest bound from
the set of incoming edges.

The latency of a particular temporal transition, ¢,
for a state s, with respect to a predecessor state, p,
may be determined according to a limited number of
cases:

t 1s not enabled in p: The delay of ¢ does not start
“running” until state s is entered. latency(t,p —
s) = delay(t).

t is enabled in p: We must count the time spent in
state p (and in predecessors to p in which ¢ is en-
abled); let’s refer to this as the dwell in state p. So,
recursively:

latency(t,p — s) = ( min latency(t,p’ — p)) —dwell(p)

p'lp'—p

Fortunately, dwell(p) may easily be determined: the
amount of time the system spends in a state is
bounded by the action assignment to that state.

Algorithm

We have implemented an algorithm for computing the
latencies described above. The bounds we describe
above may be computed using a simple depth-first
graph search, from nodes to their enabling predeces-
sors. The algorithm has an additional termination con-
dition: terminate when the latency goes to zero. This
termination condition allows this algorithm to com-
plete even in plans (graphs) with cycles.

The latency computations are used as an oracle by
the planner. When the state-space planner adds edges
to the graph (by assigning actions), removes them (by
preemption), or, in DAP planning, refines a state de-
scription, this algorithm is run to recompute transition
latencies. Latency computations may trigger back-
tracking for two reasons:

e they indicate that the current action assignment fails
to achieve necessary preemptions;

e they indicate that, because of a change in the NFA
topology, a previous action assignment no longer
achieves its preemptions.

Incompleteness

There are classes of real-time plans that CIRCA is un-
able to find because of the temporal reasoning it does.
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Figure 4: A simple problem unsolvable by the
CIRCA planner.

The problem arises because, instead of individually
considering the possible ways that the CIRCA NFA
could reach a particular state, CIRCA simply computes
worst-case bounds on how much time it has to preempt
a particular transition. In this section we give a simple
example of such a problem.

Figure 4 shows a simple, valid plan that CIRCA is
unable to generate.® In this situation, there are two
bad processes active, A-Fail and B-Fail. These tem-
poral transitions to failure are active when the corre-
sponding feature has the value false. There are tem-
poral transitions that falsify the corresponding propo-
sitions, A-Falsify and B-Fualsify. The CIRCA agent
has at i1ts disposal the two actions A-Establisher and
B-Establisher, which make the corresponding propo-
sitions true.

Why can’t CIRCA find this simple, sound plan? The
reason lies in the way the CTRCA planners (both origi-
nal and DAP) compute temporal bounds in order to de-
termine whether transitions will be preempted. When
CIRCA considers whether a state is safe, it computes
bounds on the latency of all temporals, based on all
the possible ways of reaching that state. These bounds
consider the best and worst cases for each transition
independently. However, in order to determine that
some plans, like the one in this example, are safe, one
has to consider the interaction between temporals.

Note that this is a problem of the CIRCA planner,
not of the CIRCA execution model. The plan given in
Figure 4 s executable by the RTS. It is not necessary
to consider how CIRCA reaches a state in order for it
to execute the plan — only in order to determine that

°This example is an abstraction of a problem in the
Puma robot arm domain.



it can be executed correctly.

Related Work

As we mentioned earlier, Kabanza et al. (Kabanza,
Barbeau, & St.-Denis 1997) have developed a planning
method for reactive agents based on a model similar to
ours. Their architecture differs in emphasis, however.
The NFAs it constructs are “clocked:” they make tran-
sitions at times that are the least common denomina-
tor of all possible transitions. This scheme will suffer a
state space explosion in domains where there is a wide
range of possible transition delays, like those to which

CIRCA has been applied.

Dynamic Abstraction Planning

The original CIRCA planner used a forward planning
algorithm with full state descriptions. This led to an
explosion in the state space of the planner. In recent
work (Goldman et al. 1997), we have addressed this
state-space explosion using a new planning technique
that we call Dynamic Abstraction Planning (DAP).
Abstraction is used to omit detail from the state rep-
resentation, reducing both the size of the state space
that must be explored to produce a plan, and the size
of the resulting plan itself. The abstraction method we
describe has three useful features:

1. The abstraction method does not compromise safety-
preserving guarantees: the world model used for
planning is reduced, but not in ways that affect the
system’s ability to make rigorous statements about
the safety assurances of plans it is building.

2. The method is fully automatic, and dynamically de-
termines the appropriate level of abstraction during
the planning process itself.

3. The method uses different levels of abstraction in
different parts of the search space, individually ad-
justing how much detail is omitted at each step.

The intuition behind DAP is fairly simple: in some sit-
uations, certain world features are important, while in
other situations those same features are not important.
An optimal state space representation would capture
only the important features for any particular state.
In essence, DAP allows a planner to search for useful
state space abstractions at the same time it 1s searching
for a plan.

DAP Technique

Recall that the problem of planning for CTRCA (set-
ting aside the question of TAP generation and schedul-
ing), is to assign to every reachable state in the state
space, an action that preserves safety. As mentioned
above, the original CIRCA planner assigned these ac-
tions working forward from a set of start states. The
CIRCA planner would maintain a frontier of reachable
states and would assign a suitable action to each reach-
able state.

S = 7

emergency-alert emergency-failure
Emergency NIL rEv— Emergency T ———————= FAILURE

(temporal)

Figure 5: A partially-completed CIRCA plan.
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Figure 6: A refinement of the NFA in Figure 5.

In contrast, the DAP planner begins with a very
coarse NFA/plan, with all the non-failure states con-
solidated into a single state. DAP dynamically adds
more detail to this sketchy NFA. DAP refines the NFA
when it is unable to generate a satisfactory plan at the
current level of detail. DAP refines the NFA by tak-
ing an existing state and splitting it into a number of
more specific states, one for each possible value of a
particular feature, F;.

For example, let us consider the partially-completed
plan given in Figure 5. Here there are three states: the
failure state and two non-failure states, one for each
value of emergency, a boolean proposition. This ex-
ample is based on the domain model given in Figure 2.
We assume that emergency is nil when the system
begins operation.

The NFA in Figure 5 is not safe, because there is
a reachable state, 57, from which there is a transi-
tion to the failure state (emergency-failure) that
has not been preempted. One way to fix this problem
would be to choose an action for S; that will preempt
emergency-failure. The domain description contains
such an action, push-emergency-button. Unfortu-
nately, one of push-emergency-button’s preconditions
1s part-in-gripper= nil and S; is not sufficiently
detailed to specify values for part-in-gripper. We
can rectify this omission by splitting S; into a set of
states, one for each value of part-in-gripper. The
resulting NFA is given in Figure 6. We can now assign
push-emergency-button to solve the problem posed
by state S; 1. Further planning is required to resolve
the problem posed by ) », either by finding a preempt-
ing action that does not require part-in-gripper =
nil or by making S » unreachable.

One unusual aspect of DAP is that detail is added
to the NFA only locally. In our example above, we
only added the feature part-in-gripper to the part
of the state space where the emergency feature took
on the value true, rather than refining all of the
states of the NFA symmetrically. This introduces new
nondeterminism: because we do not have a complete
model of the initial state, we cannot say whether the
emergency-alert transition will send the system to
state S1,1 or S 2.



Experimental Evaluation

Dynamic abstraction provides the greatest benefits
in domains where uncertainty is present and can be
reasoned about or managed in abstract ways, rather
than requiring fully-detailed reasoning at all points in
the state-space. We have experimented with DAP in
randomly-generated domains with various kinds of un-
certainty, demonstrating significant speed-ups.

In the CIRCA planning paradigm, there are several
possible sources of uncertainty that can be advanta-
geous for DAP:

Events and Temporals — These nonvoli-
tional transitions are outside of the system’s control,
and therefore lead to uncertainty in the planned tra-
jectory through the state-space, as they can move
the system off the direct planned path. The original
planner must consider each state that results from
an event or temporal and the resulting sequences,
possibly not overlapping with the direct plan, that
are required to move towards the goal.

Initial conditions — The system can be told it may
begin in one of several possible initial conditions.
This uncertainty requires the original planner to con-
sider explicit paths leading from each initial state,
while DAP may be able to ignore the differences be-
tween initial states and find a single plan.

Nondeterministic actions — Because actions can
have nondeterministic outcomes, they can cause
branching in the original planner that DAP may be
able to avoid.

Dynamic Abstraction Planning is not applicable to
CIRCA planning alone. The DAP technique could
bring automated abstraction to other planners with dif-
ferent state representation, transition semantics, and
temporal models. Therefore, we have evaluated the
benefits of DAP independent of many of the CIRCA-
specific details of the planning model. In particular,
to evaluate DAP independent of the complex CIRCA
temporal model, we avoid using temporal transitions.
In turn, this means that the issue of preemption does
not arise in the evaluation problems discussed here.

Our evaluation consisted of running both the DAP
and Classic CIRCA state-space planners on numerous
domains that were automatically generated to meet
several sets of defining characteristics. Each of these
sets of domains (or “domain classes”) highlights par-
ticular ways in which DAP differs from, and usually
improves upon, Classic CIRCA and other state-space
planners.

In particular, we present results for test domains that
focus on:

e “Benign” events;

e Uncertainty in initial conditions;

e Interactions between events and goal achievement.
Our random problem design is based on techniques

developed by Barrett and Weld for “classical” plan-

ning (Barrett & Weld 1994). Throughout our experi-

ments, we consider domains in which there is a causal

chain from the initial state(s) to the goal. To auto-
matically generate one of these domains, we build a se-
quence of simple actions that rely on each others pre-
conditions, and must be chained together to achieve
the final goal. Using a notation derived from that used
by Barrett and Weld (Barrett & Weld 1994), we can
describe these actions by the template:

(make-instance ’action :name Achieve-Goal-i
:preconds ( (G; F) (G;—1 T))
:postconds ( (G; T) )

A set of actions like this creates a sequence of goal fea-
tures, G1,Gy, ... Gy, In our experiments we vary the
length of these causal chains and show how this pa-
rameter affects run-time and the size of the plan graph
generated.

Eval-1 Domain: Benign Events The first eval-
uation domain, Eval-1, shows DAP’s ability to ig-
nore irrelevant nonvolitional transitions. By ignoring
these irrelevant transitions, and the features they af-
fect, DAP avoids an exponential state-space explosion
that plagued the original state-space planner. In Eval-
1 we focus on one type of irrelevant transition, a be-
nign event. A benign event is an event establishing a
proposition that does not appear in any preconditions
or postconditions of actions on the “causal chain” to
the goal. The Eval-1 domains show how DAP can build
small, abstract plans that accurately characterize much
larger state spaces connected by benign events. On the
other hand, the original planner must enumerate the
entire exponential state spaces.

To introduce benign events, we create an additional
set of “external” features that are irrelevant to the
causal chain. The values of these external features may
change over time due to events. We define a number of
events that establish these propositions. These events
do not interact with the causal chain, for good or ill.

Figure 7 shows the different structure of the plans
generated by DAP and the classic CIRCA planner.
These pictures illustrate the results for one Eval-1 do-
main, in which the causal chain 1s of length three, there
are three external features and three establisher events.

The performance of the two planners on this highly-
structured domain can be predicted analytically. As
the number of benign events increases, the DAP plan-
ner’s final plan size does not change at all. All the
events are sufficiently modeled by the simple self-loops
shown in Figure 7(a). On the other hand, the origi-
nal CIRCA planner’s state space grows exponentially.
Each benign event in the domain forces the original
planner to replicate the entire path from initial state
to goal (which is n+ 1 states long). For each of the 2™
combinations of values of the external features, there
is one such path. So the size of the original planner’s
state space is (n 4+ 1) * 2™. We have confirmed this
relationship experimentally.

Figure 8 shows that the savings in state-space trans-
late to savings in terms of runtime. As expected, DAP
runtime is linear in both the number of goals and be-
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Figure 8: Classic CIRCA’s runtime is exponential in
the number of benign events. Note the
logarithmic runtime scale.

nign events, while the old state-space planner’s runtime
grows exponentially in the number of benign events.

Eval-2 Domain: Uncertainty in Initial Condi-
tions This domain class shows the advantages of
DAP when there is uncertainty in the initial condi-
tions of the planning problem. Unlike Eval-1, there are
no external events at all; instead, the only uncertainty
arises in the initial conditions. Multiple initial states
are created by adding external features and randomly
choosing value assignments to them. The randomness
serves only to build different initial conditions.

On Eval-2 domains, DAP completely ignores the dif-
ferences between the declared initial conditions, build-
ing only a single abstract start state. This yields sub-
stantial savings in the number of states enumerated
and in the planner’s runtime. For example, Figure 9a
shows the DAP plan for an Eval-2 domain declared
with three goal predicates and three initial states.
The graph shows only one initial state because DAP
never splits the state space on any of the predicates
that differentiate the declared initial states. In con-
trast, Figure 9b shows the Classic planner’s output,
in which each of the initial states leads to a different
path through the state-space. As this example sug-
gests, for Eval-2 domains DAP’s plan size is constant
with respect to the number of initial conditions, while
the Classic plans grow linearly (see Figure 10).

Eval-3 Domain: Required Events The Eval-3
domain class investigates planner performance when
the planner must incorporate nonvolitional transitions
(events) into the path to the goal. To force the planner
to rely on events in the planned path, we made each
goal-achieving action include a single external predi-
cate as a precondition. These external propositions
can only be established by events; there are no actions
that establish them. Complicating matters further, we
specified new events that can make the external predi-
cates false, or “delete” them, in addition to the original
“adding” events from the Eval-1 domain.

Ideally, DAP would perform a single split on one ex-
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Figure 9: Plans for Eval-2 domain with 3 goals and 3 initial states.
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Figure 10: Plan size for Eval-2 domains with uncer-
tainty in initial conditions. Figure 11: Plan size for Eval-3 domains with re-
quired events.

ternal predicate and then rely on that predicate and
the correspondingly-enabled actions for the rest of the
plan. This would make DAP’s plans only slightly larger
than for the Eval-1 domains. Unfortunately, in the

Classic CIRCA Planner -—
DAP Planner -+-

course of doing this experiment, we discovered that the Runting (me) R .

heuristic DAP uses to choose state refinements is not s8]

smart enough to recognize that it is enough to know 100000

one external predicate. In fact, the current heuristic 10000

code often does as poorly as possible! Figure 11 shows wof

that even with this poor heuristic, DAP achieves a sub- )2

stantial savings in state-space size. Figure 12 shows 1 !
that the state-space savings is not enough to substan- 1 A
tially improve runtime over the original planner, be- Goas T

cause of the bookkeeping costs imposed by DAP. Since
the heuristic code here is misleading DAP badly, this is
very much a worst case. We have identified the flaw in Figure 12: Runtime for Eval-3 domains with re-

the heuristic and a fix for 1t; we will repair it in future quired events.
work.



(a) DAP. (b) Classic.
Figure 13: Plans for Eval-4 domain with 3 goals.

Eval-4 Domain: Complex Event Interleaving
By modifying the Eval-3 domain class slightly, we pro-
duced a new class designed to highlight DAP’s ability
to abstract the state space in a non-homogeneous fash-
ion, including a feature in some parts of the space, and
ignoring it in others. Eval-4 domains consist of a set
of goal-achieving actions that each require a different
external predicate.

Thus an n-goal Eval-4 domain also has n events in
the success path, and at some point even the DAP
planner will have to consider all n external predicates.
However, DAP can limit the propagation of those ex-
ternal predicates so that it still does not consider the
exponential set of their combinations, as illustrated by
the example in Figure 13a. The Classic CIRCA plan-
ner, on the other hand, must enumerate all combina-
tions , and builds plans like that shown in Figure 13b.
The overall performance results are shown in Figure 14.

Comparison to Other State-space
Abstraction Techniques

Many classical planning systems have used abstraction
methods to increase the efficiency of searching for plans
(see (Kambhampati 1994) for a brief survey). However,
these abstractions are typically used only as guides in
searching for a plan; the system may not know that
its goals will actually be achieved by an abstract plan,
and 1t will not be able to execute the abstracted opera-

tors directly. Instead, traditional abstraction planners
must eventually expand their current plans down to
the lowest level of detail, removing the abstraction to
produce a final executable plan.

In the DAP approach, which involves abstraction
only of state descriptions, abstract plans are exe-
cutable, because the operators are always completely
specified. This has two main advantages. First, the
planning process can supply initial plans that preserve
safety but might, on further refinement, do a better job
of goal achievement. Second, the planning process can
terminate with an executable abstract plan, which our
results have shown may be much smaller than the cor-
responding plan expanded to precisely-defined states.

Dearden and Boutilier (1997) have developed an ab-
stract planning algorithm for decision-theoretic plan-
ning modeled as a Markov decision process (MDP).
Their method is similar to the DAP approach in that
it involves aggregating states, but there are some dif-
ferences. First, their method is not dynamic: aggrega-
tion is performed using a predefined set of “relevant”
propositions, which is determined using Knoblock’s ap-
proach (Knoblock 1994). Second, their method is uni-
form: the same propositions are relevant everywhere.
The underlying model is also significantly different
from CIRCA’s: it does not model exogenous events
or the timing required for real-time guarantees.

In more recent work, Boutilier ef al. have developed
an approach to MDPs that uses dynamic, local abstrac-
tion, much like our own (Boutilier, Dearden, & Gold-
szmidt 1995). Their technique is like ours in gradually,
dynamically adding information to different parts of
the state space, and in using regression across actions
to direct state refinement. The technique differs sub-
stantially because of the differences between CIRCA
and MDP planning models: CIRCA has a very de-
tailed temporal model and multiple, asynchronous en-
vironmental processes, but a very weak model of un-
certainty. On the other hand, MDPs have a weak tem-
poral model (effectively, all processes are “clocked” at
the same rate), but a very sophisticated model of un-
certainty.

Our DAP planning algorithm is essentially perform-
ing on-line model minimization. This model minimiza-
tion is based on concepts of regression from “classical”
Al planning. In work done simultaneously with our de-
velopment of DAP, Givan and Dean have explored the
connection between model minimization and STRIPS-
style planning (Givan & Dean 1997). They show how
STRIPS style regression may be interpreted in terms
of model minimization. While our work is similar to
theirs in exploiting classical planning-inspired notions
of regression, our work is closer to mainstream work
in model minimization, since it is focused on NFAs,
rather than on finding a single path to the goal.

Godefroid and Kabanza (1991) have developed an
abstraction technique based on partial orders. Their
results allow a system to examine only a single order-
ing of independent actions, rather than enumerating
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Figure 14: Eval-4 domain shows DAP using non-homogeneous abstraction to advantage.

all possible orderings. Unfortunately, these results are
not immediately applicable to CIRCA, because their
world model does not include exogenous events. The
more recent work by Kabanza et al. (Kabanza, Bar-
beau, & St.-Denis 1997) does include exogenous events,
but they do not seem to have carried over the earlier
abstraction concepts.

Conclusions

We have presented two abstraction techniques used in
CIRCA’s automatic generation of hard real-time dis-
crete event controllers. The controller synthesis is han-
dled by constructing a timed NFA. In order to avoid
state-space explosion, we abstract both the tempo-
ral and feature space representation. The time space
is abstracted by using a bounding calculus to avoid
having to explicitly use a non-Markov representation.
Approaches that reason explicitly about paths would
make 1t impossible for us to plan in the domains of in-
terest to us. The feature space is compressed through
dynamic abstraction. We have shown that second ab-
straction method provides a substantial savings in do-
mains that feature uncertainty.
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