Implementing Projection-based Strictness Analysis

Ryszard Kubiak, John Hughes, John Launchbury
Department of Computing Science
University of Glasgow

Abstract

Projection-based backwards strictness analysis has been understood for
some years. Surprisingly, even though the method is fairly simple and
quite general, no reports of its implementation have appeared. This
paper describes ideas underlying our prototype implementation of the
analysis for a simple programming language. The implementation serves
as a case study before applying the method in the Glasgow Haskell
compiler.

1 Introduction

The method of projection-based backwards strictness analysis for first-order, lazy
functional languages was first presented by Wadler and Hughes [8] in 1987. Since
then it has been generalised by Hughes [4] and Hughes and Launchbury [3] to work
for user-defined types and for polymorphism. Yet, to our knowledge, it has never
been implemented even though the method is fairly simple and quite general. The
time has come for projection-based strictness analysis to meet practice.

This paper describes a prototype implementation. Initially we expected that
building the prototype would involve little more than a routine application of the
theory developed over the last few years. We were wrong. Many difficulties arose
which corresponded either to loose ends, or to issues that were not explored in
previous papers. Specifically, these involved the combination of polymorphism and
user-defined types. To overcome these problems, we had to spend considerable effort
tying the theory down sufficiently for its implementation to become practicable. The
prototype is based on a heavily cut down version of Haskell, as our ultimate aim is
to incorporate a projection-based strictness analysis phase in the Glasgow Haskell
compiler. In particular, we restrict ourselves to a first-order polymorphic language.

Another reason for expecting the implementation to be straightforward was
that an implementation of projection-based program analysis already existed. In his
thesis [7], Launchbury implemented a binding-time analysis using projections, which
analysed programs written in a polymorphic, first-order language with user defined
types. In particular, he demonstrated that projections (which are functions) can
effectively be manipulated in a concrete implementation. Unfortunately, strictness
analysis involves additional complications which meant that the extensions to the
binding-time analyser were not trivial.

In this paper we begin with a brief review of the method of projection-based
strictness analysis. Then we introduce our example language, with its model for
types and its semantics. We provide an abstract semantics based on projections
which defines a strictness analysis. Implementation issues follow. We provide a
generic method of generating finite lattices of projections (called contexts) over user-
defined data types, and show how to model certain operations by manipulating their
concrete representations. Finally, after covering more details of the implementation
and giving some examples, we discuss the difficulties we face in extending it to
Haskell.

The contributions this paper makes may be summarised as follows.

o We provide an explicit closure semantics for our example language, and give
a new presentation of the projection analysis.

o We provide a complete set of rules for constructing finite domains of projections
over polymorphic ground types, and describe how operations on these may be
performed by an implementation.

o We provide a short suite of examples of the analyser at work, showing how the
analysis of polymorphism and data structures interacts.

2 Projection-based Strictness Analysis

Early strictness analysis methods could discover nothing informative about functions
on lazy data-structures, and projection-based strictness analysis was developed in
an attempt to solve this problem. Recall that, in domain theory, a projection is a
function p such that p o p = p and p C Ide (= Az.x). The essential intuition is that
a projection performs a certain amount of evaluation of a lazy data-structure. For
example, the projection

Left : Nat x Nat — Nat x Nat
Left ($7y) = (_7_) if v =—
= (oy) fet-

may be thought of as evaluating the first component of a pair, while

Both : Nat x Nat — Nat x Nat
Both (z,y) = (—,—) ifa=—ory=—
= (z,y) otherwise

evaluates both. Now we can regard a function as Both-strict—performing as much
evaluation as Both—if evaluating its argument with Both before the call does not
change its result. For example, the function + : Nat x Nat — Nat evaluates both its
arguments, and so + = + o Both. More generally, there may be parts of a function’s
argument that are evaluated only if certain parts of its result are evaluated—a
function may evaluate more or less of its argument depending on context. Take
swap for example.

swap : Nat x Nat — Nat x Nat
swap (v, y) = (y,)

While swap is not Both-strict, but it is Both-strict in a Both-strict context since
Both o swap = Both o swap o Both. Thus, if both components of swap’s result will
be evaluated, then the components of its argument can be evaluated before the call
without changing the meaning. We make the following definition:

Definition
Let f be a function and p and ¢ be projections. We say f is p-strict in a ¢-strict
context if go f = qofop (orequivalently, go f C f o p). O

Projections capture the notion of evaluating a component of a data-structure.
To capture evaluation of a single value we must embed it in a “data-structure” with
a single component, which we can think of as representing an unevaluated closure.
Thus we think of a closure of type t as an element of ¢, , and we “evaluate” it with
the projection

Str:tj_—>tj_

Str — = —

Str (lift x) = — if 2 =—
= lift x if ¢ # —

(writing the lifted elements in the form lift «). Now, any function f : s — ¢ induces
a function f, : s; — t; which behaves like f on elements of s, but maps the new —
to —. It is easy to show that,

f is strict if and only if Stro fi T f, o Str

From f, together with a projection ¢ representing the demand for the result of f,
we want to find an p such that qo fi C fi o p. We can always choose p to be Ide,
but this is uninformative: Ide corresponds to performing no evaluation at all. We
would like to find the smallest p such that the condition holds. In general this is
equivalent to the halting problem, but [8] gives methods for finding quite small ps,
for monomorphic functions. Later in this paper we give a revised version of these
methods.

There are four fundamental projections over lifted types which capture various
degrees of evaluation. We have already seen Ide (no evaluation), and Str (evaluate).

In addition there is Abs defined by
Abs : t, —t,
Abs — = —
Abs (lift ©) = lift —

and the constant bottom function Bot (= Az.—). These are discussed in more detail
later.

3 The Language

The language we use for the prototype implementation is a polymorphic, first-order
lazy functional language with user-defined data types.

3.1 Syntax

Programs consist of type definitions, then function definitions, and finally an
expression giving the meaning of the program. Each function definition and final
expression must be given explicit type information. An example program is

List a = Nil + Cons a (List a)

append:: List a -> List a —-> List a;

append xs ys = case Xs
in Nil -> ys
[l Cons u us -> Cons u (append us ys)
end;

append (Cons Nil Nil) Nil:: List (List a)

In the abstract syntax which follows, we use {pattern} to signify zero or more

repetitions.
Prog — {TypeDef} {FnType FnDef} e::t
TypeDef — T {a} = Sum
FnType — f::{t ->}t
FnDef — f {X} = e;
e — X
| c{e}
| £ {e}
| case e in ¢; {x;}-> e; ...c, {x,}-> e, end
Sum — c; {t;}+ ... +c, {t_n}
t —
|

T {t}

The grammar uses the following (possibly indexed) variables to denote the elements
in various syntactic classes.

e € Furpr [Value Expressions]
x € Var [Value Variables]

f € Fname [Function names]

c € Cname [Constructor names]
t € Texpr [Type Expressions]
a € Tvar [Type variables]

T € Tname [Type names]

Note that the language does not have a special syntax for products and tuples. The
programmer may introduce a type of polymorphic pairs, say, and define selectors
appropriately. For example,

type Pair a b = MkPair a b;

fst:: Pair a b —> a;

fst z = case z in MkPair x y —-> x end;

The reason for this omission is to remove confusion between pairing in the language,
and product in the semantics. The former is modelled by a lifted product.

3.2 Semantics

In order to use Str to discover simple strictness, the methods of [8] demand that
instead of analysing a function f: A — B, its lifted version f, : A} — B, is used
instead. At first this seems to be just a technical trick. However, lifting plays a role
both in theory and in practice for modelling lazy evaluation.

Non-strict semantics requires that the evaluation of an argument to a function
call should be postponed until it is certain the argument is needed. In practice,
when evaluating a function call, the arguments are stored in the form of closures,
i.e. graphs representing the expressions, and it is only evaluation of the function’s
body which causes evaluation of the closures. We model closures by lifted values.

3.2.1 Denotations of Types

We depart slightly from the standard model of types in lazy functional languages.
Usually the right hand side of a type definition of the form

Fab=C1lRS+C2T
is modelled by the domain
RxS + T

where R, S and T model R, S and T respectively, the product is cartesian product,
and the sum is separated sum. Instead, we model the type by

RL®S & T.
using smash sum and smash product. Because of the well-known isomorphisms
R+S=R, &S5 and (Rx S), = R, ® 5, this is isomorphic to the usual, but it

is more convenient for us as it allows us to make explicit where closures reside. As
an example, consider lists, defined as follows.

List a = Nil + Cons a (List a);
We model this type by the domain (actually functor),
List=Ao . pl .1, & (ap @ L))

We write ing;; and ing,,, for the injection functions into a named smash sum.
Normally, we will drop the explicit Aa, and simply use successive Greek letters for
successive polymorphic parameters (a sort of de Bruijn index).

3.2.2 Dynamic Semantics
The semantics are given in terms of two semantic functions,

PR : FunDefs — FunFnv
& Funknv — Expr — ValEnv — Value

where

v € Value = Urerype T
p € ValEnv = Var — Value,
¢ € Funknv = Fname — (Value, @ --- @ Value, — Value)

Given a program containing function definitions, the semantic function PR
constructs a global environment of functions. & interprets expressions in a given
function environment. £ is defined as follows.

Es[%], = drop (p (%))
Elf er.ver], = o () (lift Egler], @--- @ Uift Eglex],)
Eollc er.er], = g (lift Esfles], @@ Llift Egler],)

Eplcase e in ---¢; xy...xp > &+],
= case E4[x], in
— % —

Zné] (V1 ® T ® Vk) — g(b[[e]]:Ip[xz'_}l’z]z

Note our overloading of the symbol @, here to operate on values. Any ambiguity
about the use of such overloaded notation can be resolved by the context.

The novel aspect of the definition of £ is the use of explicit closures. For
example, when a variable is dereferenced, it’s closure is collapsed (i.e. it is evaluated)
using the function drop : t; — t which maps — to —, and [lift z to z. Conversely,
when a function is called, a tuple of closures is constructed strictly containing its
arguments, and so on. This is an accurate simulation of what actually happens
within the machine: if for any reason the tuple of closures for the arguments cannot
be created (e.g. the lack of memory) the function returns —. While the definition of
& looks unusual, it may be obtained from the usual semantics via the isomorphisms
of Section 3.2.1.

The function environment is constructed as the least fixed point of the function
definitions, as follows (where A produces a strict function),

PRI+, £x1 .. xp =€, -]
= fir Ao A+ f = A @ @)l elmimsns - })
3.3 Non-uniform Types

The syntax of types allowed by most lazy functional languages (including the
language used in this paper) allows for non-uniformly recursive types. A type is

uniformly-recursive if it may be defined by equations of the form pX.F(X), where
F is a functor from domains to domains (i.e. F(X) is a type-valued expression
depending on X).

The following are two examples of non-uniform types.

type Moo a b = Msimple + Mcompl (Moo b a);
type Foo t = Fsimple + Fcompl (Foo (Foo t));

To model such types requires abstraction over functors, rather than just over types.
Furthermore, while fairly trivial programs containing non-uniform types can be
successfully type-checked using the widespread Hindley-Milner type system, the
obvious versions of map and fold for such types cannot.

If we allowed them, non-uniform types would also cause problems for us later
on when we define lattices of contexts over each type. For these reasons we rule out
non-uniform types. This may be done with a syntactic check.

It is worth mentioning that the restriction does not exclude definitions such as

type Goo a = Gsimple + Gecompl (List (Goo a))

in which Goo a is the instantiation parameter for List.

4 Abstract Semantics

In this section we define an abstract semantics for our language to perform backward
strictness analysis. It takes the form of a projection transformer.

Wadler and Hughes introduced two operations for combining projections: LI
and &. The first is usual least upper bound (i.e. pointwise). The second is defined
as follows.

(p&q) 2 = — ifpr=—orquo=-—
= (pUgq) x otherwise

This operation is used in the analysis to capture conjunction of demand. In
our presentation, we extend these operations to denote corresponding pointwise
operations on abstract environments. In such an environment

env € AbsEnv = Var — Proj

names are associated with projections over lifted types. We use [] to denote the
initial environment in which every identifier is mapped to Bot. By [(x, p)] we mean
the initial environment extended by binding the variable x to the projection p, and
by p\ {zs,..., %1} we denote the environment differing from p in that the variables
{x7,...,%;} are mapped to Bot.

A forwards projection analysis such as appears in Launchbury’s thesis [7] is
defined by abstract functions which mimic the concrete semantic functions.

PR¥ : FunDefs — ForwardAbsFunFnv
E* . ForwardAbsFunknv — Erpr — (AbsValFEnv — AbsValue)

In the case of backwards strictness analysis the direction of the final arrow is
reversed.

PR¥ : FunDefs — AbsFunEnv
E* : AbsFunEnv — Expr — (AbsValue — AbsValEnv)

where,

p € AbsValue = some domain of projections
p* € AbsValEnv = Var — AbsValue
¢* € AbsFunEnv = Fname — (AbsValue — AbsValEnv)

The projection transformer ¥, takes an expression e and a projection p (which
expresses the demand on the value of e), and builds an environment p = Ej# [elp
in which all free variables x; of e are assigned projections. The environment p is
constructed so that the following safety condition is satisfied for all projections p of
appropriate type:

p o Avy @ @uy)dift Es]elxisn]
C Ay @ @u)ldift Egle]mmn) © (p(x1) @ -+ @ p(xi))

The environment p(x;) is the demand on parameter x; given a demand p on the value
of e, so this condition is just a multi-argument generalisation of the condition given
in Section 2. The best possible environment is one in which variables are associated
with the least projections for which the safety condition is still guaranteed.

To capture strictness properties we will re-express the projection Str using a
strict form of the lifting operation, written (—)®. On domains, t; = {g, but on
functions,

Jo = = -
fo (lift 1) = — if foz=—
= lift (f v) otherwise

Strict lifting is functorial except that it doesn’t preserve the identity. In fact,
Ideq = Str. Writing fg provides a more convenient and compact notation for
(Str o fi), as occurs in earlier papers.

Our first use of strict lifting is in the definition of the projection transformer
E#. The first equation realises the guard operation from [8].

E%ulellr) = €flellre) U Ae.Abs

Recall that all demands are projections over lifted domains. Such projections may
always be expressed in the form either p; or pgp. The intuition behind a demand of
the form p, is, “this value may or may not be required, but if it is then p’s worth
will be needed.” Conversely, a demand of the form pg means, “this value will be
required, and what’s more, p’s worth of it will be needed.” With this intuition, the
equation above may be read as follows, “to compute the demand propagated from
a lazy demand, first compute it as if the demand was strict, and then make all the
resulting demands lazy.” Note that Abs is the weakest lazy demand, as Abs = Bot .

The rest of the equations apply to projections expressible as pg
#
etlxlp = (0]

Ej#[[f er...e Jpo
= Ej#[[ez]]pz&"‘& 5j#ﬂek]]pk
where (p; @@ p) = (¢* f) p

5j#[[c et e (- B (L@ Qpr) B)g
= 5:?#[[91 Ip: & & 5j#[[ek]]pk

Ej#[[case ein ---¢; Xp... X,=>e; -+ end|pg
= L (5j#ﬂeﬂ(5i)@ & pi \{xs,...,x1})
where

pi=Eyleilro
§i=Bot® - (pix, @ Qp; xx) G- D Bot

In these rules we assume that the structure of the contexts corresponding to their
underlying types. For example, in the rule for constructor applications the projection
is a sum of products of projections; the particular summand given is assumed to be
the one associated with the constructor c. Similarly, the Bots appearing in the rule
for case expressions should be understood as the bottom projections over the target
types of the remaining constructors, different from c.

It is worth noticing that our transformer is slightly more efficient than the one
given originally [8]. Like Davis and Wadler [2], we collect the result of the analysis
in an environment of projections, so allowing the contexts for all the arguments to
be found by a single pass through the function’s body.

Because of the first equation for £# we only need to construct the function
environment for strict demands. Again it is constructed as the least fixed point of
the function definitions.

PR¥[---, fx1 .. x4 = e, -]
= fix A* . f = Ap . €7 e] (pa)-})

5 Manipulating Projections

Projections are functions, yet our analyser needs to perform a variety of operations
on them, including comparing for equality. To achieve this we work with a concrete
representation of the projections, syntactically modelling the semantic constructions
and operations. This is reflected in the following development where we use the
semantic notation to represent a syntactic construction.

5.1 Contexts for strictness analysis

Following the approach of Launchbury [6] and Hughes and Launchbury [3] we define
for each type a finite collection of projections called contexts. The following rules

define the family of all contexts by induction on the structure of the denotations of
types.

1extl acxt o
pext T pext T
pLext Ty po cxt T

ppext Ty ... p, ext T,
pl@@pn cxt Tl@@Tn

ppext Ty ... p, ext T,
pl@@pn cxt T1®®Tn

P(p) ext T'(t) [p cxt]
up.P(p) ext pt. T(t)

pext F'oqgrextTy ... g, cxt T,

pq...q, cxt FTy...T,

As an example of contexts we present the familiar head-strict and tail-strict
projections [8] over the the list type uL . 1, & a, @ L.

H:/,Ll].J_ D Oé@@lj_
T=upl.1;, & o @lp

Strictly speaking, the polymorphic projections are represented by (H Ide) and
(T Ide), but we will often be sloppy and understand that uninstantiated parameters
a, (3 etc. are actually instantiated to Ide.

5.2 Modelling Operations

The analysis is defined in terms of operations on projections. In order to implement
the analysis we need to model these semantic operations on contexts. To help us do
this, we need to explore some of the properties of the operations.

First, the least upper bound operation U. If p, ¢ are projections then p U ¢
defined point-wise is also a projection. Furthermore, the following equalities hold.

pUp =P

pUyq = qUp
(pUq)Ur = pU(qur)
p U Bot = p

p U Ide = Ide

pL = AbsUpg

(P& @)U (rds)
(P@qU(res)

I
=
C
NG
@
=
C
N

()
pLUqL = (pUq),
(ro) U qu = (pUq),
(ro) U (1) = (pU g

pp-P(p)Upg.Q(q) = pp.(PUQ)(p)

All these but the last can be easily checked from appropriate definitions. The last
rule requires induction over the context structure of P and (). The equalities in the
distributivity rules guarantee that if p and ¢ are contexts, then p U ¢ is a context
too.

Unfortunately, although contexts are closed under U they are not closed under
&, and so we may need to introduce extra approximation. The following properties
of & may be derived straight from its definition.

p&p = p

p &g = q&yp
(p&q)&r = p&(qg&r)
(pUq) & r = (p&r)U(qg&r)
p & Bol = Bot

pJ_&AbS = P1

Str & Ide = Str

ro & q@ = (p & q)g

ro & qu = (p U (p&q))g

(
L& g (pUq),

pq)&(rds) = (p&r)o(g&s)
r2q &(reos) = (p&r)a(q&s)

While the & operation distributes nicely over products and sums it is not the case
with the fixed-points. This means up.P(p)&uq.Q(q) is not necessarily equal to
up.(P&Q)(p). The familiar projections H and T over lists provide us with an
example of this, that is, H&T # pl . 1, & Ildeg @ lp.

To see this, consider applying each to the list w=1:—:[]. We see that
Twu=1:—:[]and H u=1:—. As neither returns —,

(H&T) u=(H v)U(T u)=1:—:]]

However, (ul . 1, & Ildeq @ lp) v = — and so it is not equal to H& T

This apparently peculiar behaviour of H and T' comes from the fact that T
is strict over its recursive calls while H is not. The actual projection H& T treats
the head of its argument differently from the tail, and so is not a context. Because
we want to disallow such projections in order to retain finite domains, we need a
way to find the least context approximating H& T from above. We may start from

unfolding H and T in H&T.

= 1, & ldeg@ (T U H&T)g

This shows that the desired approximation to H& T' cannot be less than T" U H&T.
We may continue with unfolding the latter

TUH&T
= (1i@®ldeL @ (Tg)) U(1L & ldeq@ (TUH&T))

We obtain a recursive equation with respect to T'U H& T to which the minimal
solution is the context pul . 1, & Ideq @ lp. This is actually 7" which is therefore
the least context above H& T

Let us find out what can be the best approximation to up.P(p)&uq.Q(q) in
general. To ease the notation we will write up.P(p) as P, and likewise for pq.Q(q).

A closer look at the properties of &, especially those dealing with lifted
projections, allow us to conclude that whenever uP & @) is unfolded we will obtain
one of the following combinations: uP & p@, pP U puP&pu@, @ U pP&u@ or
wP U Q). Which of these appear depends on which of the recursive calls inside P
and p(@) are lifted with strict-lifting, and which with usual lazy lifting. There are
four possible cases for the conjunction of the unfolded context:

e it depends only on pP & p@; in this case pP & p@Q = p(P&Q), the latter
being a context (by induction), and we do not need to approximate;

e the conjunction contains uP U p@; this is equal to the context p(P U @) and
we cannot do better than taking this as the approximation;

e both P U pP&u@ and p@ U puP&u@) appear in the result; a further
unfolding of any of these will show the dependence on P U p@) and we again
must take u(P U @) as the approximation; and

e only one of uP U pP&uQ or p@Q U pP&u@ occurs (possibly together with
pP & p@); afurther unfolding will show that P U pP&pu@ or, respectively,
u@ U pP&u@ is the best approximation.

The last case corresponds to our previous example H& T for which T is the best
approximation.

Our implementation does not unfold puP & p@) when it evaluates its value.
Instead, all the pairs of corresponding recursive calls inside P and p () are analysed.
For each pair of calls only the information whether the call is lifted strictly or lazily
is recorded. Assuming an ordering on pairs as in the picture

(lazy, lazy)

(strict, lazy) (lazy, strict)

N

(strict, strict)

the implementation evaluates the least upper bound of all pairs and on this basis
one of the four discussed cases applies. This approach requires a single traversal
through the structure of uP and p@) in order to find the best approximation to

pP&pn@.

6 Implementation

6.1 Finding Fixed Points

A program containing recursive function definitions gives rise to recursive abstract
equations, which have to be solved at compile time. Of the variety of methods

for finding such solutions (fixed points) we use minimal function graphs [5]. Our
implementation follows that of Launchbury [7].

The minimal function graph contains abstract function results (tuples of
contexts representing the demand for the arguments to the function) for selected
abstract arguments (contexts representing the demand for the function’s result) for
the functions in the program. The process of evaluating the fixed-point starts by
constructing a graph containing the arguments we are interested in, along with an
initial approximation for the function’s result. The following iterative process is
applied in order to improve these approximations.

At each iteration all argument-value pairs recorded in the current function
graph are reevaluated according to the projection transformer. This is done by
applying the transformer to the function body and the argument. When a function
application is encountered within the body, two cases are possible depending on
whether we can find the function value for an argument in the current graph. If we
can, the value of the application is taken from the graph. If we cannot, we compute
the best approximation derivable from the current graph, and add the new point to
the graph.

At each iterative step we construct a fresh graph containing improved
approximations to the values previously recorded, together with argument-value
pairs for newly met arguments. With this new graph the iterative process continues
until successive graphs are equal, that is until the fixed-point solution for the whole
program is reached. As an optimisation to this process, we split the graph into
mutually dependent units, and only iterate those parts that might have changed.

Minimal function graphs appear to be crucial for obtaining strictness analysis
results in a practically acceptable time, given that the number of possible contexts
over arbitrary data types can be quite large. The gain comes from the fact that we
rarely require the whole fixed-point, but only its value for a few specified arguments.

6.2 Concrete Representation of Projections

The following is the LML [1] definition of the type that represents projections in the
implementation

type proj = PStr proj

+ PLift proj

+ PBot

+ PProd (List proj)

+ PMu name (List proj)
+ PRec name

+ PSum (List proj)

The term PLift p corresponds to py and PStr p represents Str o py. Data of the
form PProd [p;,...,pxl, PSum [p;,...,pr] stand for strict products p; ® ... ®px
and sums p; & ...&Hpk, respectively.

The structures PBot and PProd [] represent the monomorphic bottom and
identity projections over the two-point domain 1,, as well as the polymorphic
projections Bot and Ide, respectively. This overloading does not confuse us in
practice because when needed we can deduce from a surrounding context what is

the underlying domain for a projection.

A data of the form PMu £ [p;,....,pr] represents a context over a recursive
type. As we admit mutual recursion on types the representation allows for mutually
recursive contexts py,...,pr over domains mutually recursive with £. Of course,
among these contexts there should be a context over £. The PRec g form can only
be met inside a recursive projection and the name g selects one of the surrounding
mutually recursive projections.

On the proj type a library of basic operations is defined such as generating
the bottom or the identity contexts for a given type, calculation of the L and &,
factorisation of an instance of a polymorphic projection into its polymorphic and
instance parts. The abstract function graphs stores the argument-value pairs for
abstract functions also as data of the type proj.

6.3 Sample Results

Below we present results obtained by the strictness analyser. In the projections
which follow, we write the constructor names in explicitly to aid understanding.

6.3.1 Lists

We begin with some standard list-based examples.

type List alpha = Nil + Cons alpha (List alpha);

append :: List alpha -> List alpha -> List alpha;
append xs zs = case Xs in
Nil -> zs

[| Cons y ys -> Cons y (append ys zs)

end;

reverse :: List alpha -> List alpha;
reverse rs = case rs in
Nil -> Nil
[| Cons y ys —-> append (reverse ys) (Cons y Nil)

end;

First append. Consider the demand (ul . Nil : 1, & Cons : ag® lL)@ for append’s
result. This is a strict demand (hence the final strict lifting) which is recursively
strict in each list element (hence the strict lifting on the «), but lazy in the list tails
(the non-strict lifting of [). This is what we previously wrote as Hg. From this
result context, the demand on append’s arguments is computed as,

(l . Nil : 1, & Cons:oz®®h)® @ (pl . Nil: 1, & C’ons:oz®®h)L
In summary, a strict, head-strict demand Hg for append’s result is translated to a

strict and head-strict demand for the first argument, and a lazy, head-strict demand

for the second, i.e. Hy @ H .

Alternatively, given a demand (ul . Nil:1, & Cons:ay @ l®)® (that is,
strict and tail-strict, Tq) for the result of append, the analyser deduced a demand
of

(ul . Nil : 1, & Cons:ozL®l®)® @ (pl . Nil:1, & Cons:ozL®l®)®

for its arguments, i.e. both arguments strict and tail strict, Tq @ Tp.
The analyser obtained the following facts about reverse. If its result is
demanded in a strict and head-strict context

(ul . Nil:1;, & Cons:ag® ZL)Q)
then its argument is in a strict and tail-strict context

(l . Nil : 1, & Cons:ou@l@)gg

Likewise, if the result is demanded strictly and tail-strictly, then so is its argument.
Combining these facts, we see that reverse is strict and tail strict, in both Hg and
T'q contexts.

6.3.2 Trees

For the next examples we introduce a polymorphic tree type. As with lists,
the contexts over trees are generated automatically, having a structure which
corresponds to the structure of the type definition.

type Tree alpha = Leaf alpha + Node (Tree alpha) (Tree alpha);

flat :: Tree alpha -> List alpha;
flat t = case t in
Leaf x -> Cons x Nil
|| Node 1 r -> append (flat 1) (flat r)

end;

Whereas particular contexts over lists like H and T have standard names, allowing
the results of the analysis to be written compactly, contexts over trees do not.
However, as with the list contexts, it is very easy to read the strictness from the
contexts.

The function flat collapses a tree down to a list. If that result list is demanded
by a strict, and head-strict context, Hg, that is,

(ul . Nil:1;, & Cons:ag® ZL)Q)
then the analyser deduces a demand on the tree argument of,
(ut . Leaf :ag & Node : lgy@ 11)g

That is, a strict, Leaf-strict, left-strict context. When a tree is built in such a
context its left spine may be constructed strictly, all the way down to the leaf. The
rest of the tree is left unevaluated. If any other part of the tree is required, again
its left spine is evaluated all the way to the leaf, and so on.

Alternatively, if the result of flat is demanded in a strict, and tail-strict context,
Tq, that is,

(pl . Nil:1, & Cons: oy ®l@)®
then the demand on flat’s argument is,
(ut . Leaf oy & Node : ig @ lg) g

which is a strict and left-and-right-strict context. The structure of the tree will be
evaluated, but none of the leaves.

6.3.3 Instances of Polymorphic Functions

All the examples so far have been of polymorphic functions on their own. The final
series of examples are of instances of polymorphic functions. We define a type of
Peano numerals together with addition, and use these to define a function which
sums the leaves of a tree.

type Nat = Zero + Succ Nat;

add :: Nat -> Nat -> Nat;

add a b = case a in Zero -> b || Succ ¢ -> Succ (add ¢ b) end;

sum :: Tree Nat -> Nat;
sum t = case t in
Leaf t >t
[| Node 1 r -> add (sum 1) (sum r)

end;

Because the numerals are non-atomic, add has some interesting strictness. A result
context of

(un . Zero: 1, & Succ: n®)®
produces an argument context of

(un . Zero:1; & Succ: n®)® @ (un . Zero: 1, & Succ: n®)®
Conversely, a result context of

(un . Zero:1; & Succ: nL)®
generates the argument context

(un . Zero:1; & Succ: nL)® @ (un . Zero:1, & Succ:ny),

In other words, if the complete result of add is demanded then both is arguments
are demanded completely. Conversely, if the result of add is only demanded strictly,
then its first argument is demanded strictly, but it’s second lazily.

Now let us examine sum. If sum’s result is demanded hyper-strictly then the
analyser deduces that its argument is also demanded hyper-strictly. That is, a result
context,

(un . Zero: 1, & Succ: n®)®
is converted to the argument context,

((ut . Leaf 1 aq & Node : tg @ lg) (un . Zero: 1, & Succ : n®))®

Notice the explicit application of one context to another. As we mentioned earlier,
all the polymorphic contexts like H and T should actually have been applied to Ide,
but this would have cluttered up the examples unnecessarily.

As a final example, suppose the demand for sum’s result is merely strict. Then
the demand for sum’s tree argument is strict, leaf-strict and left-strict. That is, the
analyser converts the result context

(un . Zero: 1, & Succ: nL)®
to the argument context

((ut . Leaf :ag & Node:tg@ty) (un . Zero:1, & Suce: nL))®

7 Extending the Prototype to Haskell

As mentioned previously, our language is pretty close to the Haskell Core language
as used in the Glasgow compiler as an intermediate language after desugaring and
type-checking the input program. However, the Core language is richer the one here
as it covers various phenomena present in Haskell programs.

First of all, Haskell is higher-order. As our method works only for first
order languages we are unable to do more than discover simple strictness when
we encounter a higher-order function. That is, we produce poor but safe results for
higher-order functions. A similar solution applies to non-uniformly recursive types.
The only contexts we use over such types are Ideq, Botg, Bot,, Ide, .

Another difference between the Core language and ours is that the former
admits local definitions in the form of let and letrec expressions. This means
that in the minimal function graphs we should not only keep the values for the
functions defined at the entire level but also the values of functions defined by let
and letrecs.

Similarly, Haskell allows partial function applications. This, and the presence
of lets, letrecs and lambda expressions forces us to change the resulting type of
the projection transformer. The transformer has to distinguish between the free and
bound variables. So, when applied to an expression and a context the transformer
returns a pair consisting of a tuple of safe contexts for the bound variables and a
projection environment for the free variables. Such pairs will also be recorded in the
minimal function graph. Only for the globally defined functions can we be sure the
free-variables part of the result is empty.

The most serious problem comes from modules. If the strictness analyser is to
return results, strictness properties have to be passed from one module to another.
Currently, it is far from clear how to do this.

The only problem that type classes (the major innovation of Haskell) introduce

is that many previously first order functions become higher-order when the

dictionary is passed as an extra parameter. Again, this is a topic for further work.

8

Acknowledgements

Our thanks to Simon Peyton Jones whose many comments were very useful in
improving the paper. This work was funded by ESPRIT basic research action 3124

Semantique.

Bibliography

1]

2]

L. Augustsson. A Compiler for Lazy ML. Proceedings of Lisp and Functional
Programming Conference, Austin, Texas, 1984.

K. Davis and P. Wadler, Strictness Analysis in 4D, Third Annual Glasgow
Workshop on Functional Programming, Ullapool, Workshops in Computing, S-
V., 1990.

R.J.M. Hughes and J. Launchbury, Projections for Polymorphic Strictness
Analysis, To appear in Mathematical Structures in Computer Science, C.U.P.

R.J.M. Hughes, Projections for Polymorphic Strictness Analysis, In Category
Theory in Computer Science, Manchester, 1989.

N.D. Jones and A. Mycroft, Data Flow Analysis of Applicative Programs
Using Minimal Function Graphs, Proc. of the Thirteenth ACM Symposium on
Principles of Programmng Languages, St. Petersburg, Florida, pp. 296-306, 1986

J. Launchbury, Projections for Specialisation, in Bjgrner, Frshov and Jones
(eds), Partial Fvaluation and Mized Computation. Proceedings IFIP TC2
Workshop, Denmark, Oct 1987. North-Holland, 1988.

J. Launchbury, Projection Factorisations in Partial Fvaluation, Ph.D. thesis,
Glasgow University. Distinguished Dissertations in Computer Science, Vol 1,

C'UP, 1991.

P. Wadler and R.J.M. Hughes, Projections for Strictness Analysis, In Functional
Programming and Computer Architecture, Portland, USA, LNCS 274, 1987

