On embedding a microarchitectural design language within Haskell

John Launchbury, Jeff Lewis and Byron Cook
Oregon Graduate Institute

Abstract

Based on our experience with modelling and verifying mi-
croarchitectural designs within Haskell, this paper examines
our use of Haskell as host for an embedded language. In
particular, we highlight our use of Haskell’s lazy lists, type
classes, lazy state monad, and unsafePerformI0. We also
point to several areas where Haskell could be improved.

1 Introduction

There are many ways to design and implement a language —
not all of them imply building from the ground up. Landin’s
vision of the next 700 programming languages [18], for ex-
ample, was to build domain-specific vocabularies on top of
a generic language substrate. In the verification community,
this is known as a shallow embedding of one language or logic
into another. From our programming language perspective
we believe that, in effect, every abstract type defines a lan-
guage. Admittedly, most abstract types by themselves make
poor languages, but when interesting combinators are pro-
vided the language suddenly becomes rich and vibrant in
its own right. This explains the continuing popularity of
combinator libraries, from the time of Landin until now.

The animation language/library Fran is a beautiful ex-
ample [10, 9]. Fran provides two families of abstract types
in Haskell: behaviors and events. To construct a term of
type Behavior Int, for example, is to write a sentence in
the Fran language, using Fran primitives and Fran combi-
nators. To build complex Fran entities, however, the full
power of Haskell can be brought to bear. Fran objects are
just another abstract data type.

How good is Haskell at hosting other languages? This is
one of those questions that can only be answered through
experience—and is precisely where we can contribute. In
this paper we describe our use of Haskell as a host to a
microarchitectural modelling language, calling attention to
the aspects of Haskell that helped us, those that hindered us,
and the features we wish we had. In particular, we highlight
our use of Haskell’s lazy lists, type classes [15], the lazy state
monad [19], and unsafePerformI0 [17]. This paper contains
no deep theory, but rather a dose of measured introspection.

The remainder of this paper is organized as follows: In
Section 2 we provide the motivation to our work in microar-
chitectural modelling. In Section 3 we introduce Hawk and
show how we use lazy lists to model wires. In Sections 4, 5,
and 6, we show how type classes, the lazy state monad, and
unsafePerformI0, respectivly, are put to use in Hawk. In

Section 7 we describe an application that makes use of all
four features. In the final sections we outline where Haskell
has constrained us, and discuss future work.

2 Building a microarchitectural description lan-
guage

Contemporary superscalar microarchitectures employ
tremendously aggressive strategies to mitigate dependencies
and memory latency. Their complexity taxes current design
techniques to the limit. The trend continues, as the size of
design teams grows exponentially with each new generation
of chip.

To gain an appreciation for the complexity of modern mi-
croarchitectures, take as an example the model of an instruc-
tion reorder buffer (ROB) which occurs frequently in out-of-
order microprocessors like the Pentium III. The function of
the ROB is to maintain a pool of instructions, and to deter-
mine dynamically which of them are eligible for delivery to
an execution unit once their operands have been computed.
This way, instructions are executed at the earliest possible
moment. Furthermore, instructions are introduced spec-
ulatively, based upon numerous successive branch predic-
tions. Consequently, instructions that have previously been
scheduled and executed must sometimes be rescinded when
a branch is discovered to have been mispredicted. Thus the
ROB must keep track of instructions up to the point that
they can either be retired (committed) or flushed.

Since some instructions following a branch may already
have been executed when a branch misprediction is discov-
ered, register contents are also affected. At a branch mis-
prediction, register mapping tables must be modified to in-
validate the contents of registers that contain results of re-
scinded instructions. The contents of registers that are pos-
sibly live must be preserved until after the branch has been
resolved, thus increasing the complexity of the interaction
between a ROB and the registers.

In addition, there are all the issues of managing on-chip
resources, of ensuring rapid and correct communication of
results, of cache coherence and so on. It will get worse.
The next generation of microarchitectures will address many
more issues such as explicit instruction parallelism [13] and
multiple instruction threads [29].

As if all these algorithms did not provide enough de-
sign complexity, commercially viable microarchitectures are
also subject to legacy requirements. For example Intel’s
Pentium IIT must deal with dozens of exception types to
remain compatible with earlier versions of the X86 archi-

tecture. Pentium IIT also struggles with the variable length
of X86 instructions. It tries to fetch three each cycle, and
it turns out that dynamically determining the length of in-
structions before decoding is one of Pentium III’s primary
performance bottlenecks. Again, this type of problem is not
going to go away. Intel’s upcoming Merced processor will
execute not only its new instruction set [8], but X86 as well
[12].

With designs of this complexity, it is hard to imagine that
designers will not stumble upon subtle concurrency bugs.
The need for powerful and effective modelling and verifica-
tion has never been greater. By couching microarchitecture
modelling in terms of higher-level abstractions and empha-
sizing the modularity of a design it is possible to regain
control of the design space. This is what we have done.
In conjunction with Intel’s Strategic CAD Laboratory, we
have developed Hawk as an executable modelling language
embedded in Haskell. Hawk is very high level compared
with other hardware description languages. Consequently,
even complex microarchitecture models remain remarkably
brief, allowing designers to retain a high level of intellectual
control over the model. For example, the complete formal
model of a speculative, superscalar, out-of-order microar-
chitecture based on the Pentium III required less than 1000
lines of code [5].

3 Lazy lists: adding signals to Haskell

Effectively, Hawk is an embedding of Lustre-style signals [4]
into Haskell. Signals model values that change over time,
like wires in a microprocessor. Following O’Donnell [24],
Srivas & Bickford [28], and many others, we implement sig-
nals as lazy lists. The idea is very simple: the n'* element
of the list represents the value of the wire at clock tick n.
Thus the value of each wire is a complete description of its
behavior over time. This approach leads to circuit seman-
tics with a definite denotational flavor. In contrast, state
transition systems (another popular style) are much more
operational in their nature. There are naturally advantages
and disadvantages to each.

To represent units with clocked inputs and clocked
outputs we use functions from signals to signals, known
as list transformers (or stream transformers). Com-
binational circuits can be turned into clocked circuits
simply by mapping them down their input lists. So
if add::(Int,Int)->Int acts like a simple addition cir-
cuit, thenmap add :: [(Int,Int)] -> [Int] isits clocked
equivalent.

The fundamental non-combinational circuit is the delay.
The delay is what makes feedback loops in clocked circuits
possible—without any delays, a feedback loop would just
generate smoke! A delay is defined so that the (n + 1)
element of the output is equal to the nt" element of its in-
put, with an initial value output for the very first clock tick.
The implementation of delay :: a -> [a]l -> [al is sim-
ply “cons”.

Some care is needed within this paradigm, however.
Arbitrary use of list processing functions, especially those
which discard elements, such as filter, can cause problems
in that they may require infinite buffers to implement. To
restrict the way in which a signal can be constructed or al-
tered, we make the signal type abstract in Hawk and provide
a basic set of manipulation functions that are known to be
safe.

newtype Signal a

delay :: a -> Signal a -> Signal a
1ift0 :: a -> Signal a
1iftl :: (a -> b) -> Signal a -> Signal b

1ift0 returns a constant signal; and 1lift1 is just map.
Later we will use the derived operator bundle, which takes
a pair of signals, and produces a signal of pairs. Restrict-
ing access to the implementation in this way gives the usual
freedoms to provide alternative implementations, or even to
refine the semantics somewhat. For example, we could im-
plement signals as functions from the natural numbers to
values.

If the above signature seems to be missing something

it is. The rest comes from Haskell itself, in particular,
lazy recursive definitions. You could say that the missing
operator of the abstract type is a (lazy) fixpoint operator.
Consider a resettable counter circuit like:

reset

out
LIFT 0 MUX

LIFT (+1)
next
DELAY 0

which, in Hawk, we might model as:

counter reset = out

where
next = delay 0 (1ift1l (+1) out)
out = mux reset (1ift0 0) next

Note the mutual recursion between signals. The laziness
of Haskell is vital for this definition to have the intended
meaning.

One thing that is not missing is a way to observe a list
by taking its head or tail. This is intentional. A circuit that
was specified to take the tail of a list would be asking for an
infinite buffer. We do allow signals to be viewed as lists for
the purpose of viewing simulation results, but this operation
is only provided for use at the top-level.

4 Organizing microarchitectural abstractions with
type classes

The point of Hawk has been to build abstractions that in-
crease the concision of microarchitectural models [5], and
facilitate the verification process [22].

In order for microarchitectural abstractions to be rele-
vant, they must be extraordinarily flexible in the types that
they operate over. Instruction sets differ in variety of de-
tails: size and type of data, number and types of registers,
and the instructions themselves. Internally, machines may
use other instruction sets. For example, the AMD K6[27]
implements the X86 instruction set, but uses a RISC in-
struction set within its execution core.

We use type classes to facilitate the description of circuits
that operate over all instruction sets. For example, the type
of an ALU might be:

alu :: (Instruction i, Bits w) => (i,w,w) > w

This way alu can be used in a X86 model (where w is set
to 32-bit words and i to X86 instructions) or a 64-bit RISC
instruction set, like that of the Alpha. The Bits class is an
extension of Haskell’s Num class that adds operators related
to word size, signedness, etc. The Instruction class cap-
tures the common elements between different instructions
sets.

With common architectural characteristics captured
with type classes, we are then able to build abstractions
that help organize microarchitectural models. For example,
transactions [1, 23] are a simple yet powerful grouping of
control and data. A transaction is a machine instruction
grouped together with its state. This state might include:

e Operand values.

e A flag indicating that the instruction has caused an
exception.

e A predicted jump target, if the instruction is a branch.

Microarchitectures models that utilize transactions can then
make decisions locally rather than with a seperate control
unit.

Hawk provides a library of functions for creating and
modifying transactions. For example, bypass takes two
transactions and builds a new transaction where the val-
ues from the destination operands of the first transaction
are forwarded to the source operands of the second. If i is
the transaction:

(r4,8) <- (r2,4) + (r1,4)

and j is the transaction:
ri0 <- (r4,6) + (ri1,4)

then bypass i j produces the transaction:
ri0 <- (r4,8) + (r1,4)

That is, bypass inserted i’s more recent valuation of r4 into
the destination operand of j.

By parameterizing over the instances of finite words and
registers:

bypass (Bits w, Register r) =>

Trans i r w -> Trans i r w -> Trans i r w

bypass can be used in many contexts. Within our Pentium
[II-like microarchitectural model we use bypass on both in-
structions with real register references and virtual register
references (both are instances of the type class Register).
In our Merced-like model [6], we use the same bypass with
IA-64 instructions.

5 Lazy state: using state-based components

There has been debate in the Haskell community about the
merits of strictness within the state monad. In this section
we describe an application where a lazy state monad is the
right thing.

Some microarchitectural components, such as register
files, are more naturally (and effeciently) presented as state
transition systems than list transformers. Fortunately, we
can easily embed state-based models into the list trans-
former idiom using the lazy state monad and runST [19)].

Imagine modelling a register file as an array which, on
each clock tick, is both written to and read from.

reg :: Register r => Signal (r,w) -> Signal r ->
Signal w
reg writes reads
= runST (
do { reg <- newArray (minAddr, maxAddr) init
; loopST (regFile reg) (bundle writes reads)
}
)

STArray s Addr Val -> ((Addr,Val), Addr)
-> ST s Val
regFile reg ((a,w),r)
= do { writeArray reg a w
; readArray reg r

}

where loopST is a monadic map on signals:

loopST :: (a -> ST s b) -> Signal a
-> ST s (Signal b)

The semantics of lazy state is as follows. The monadic
structure sequentializes the operations of the monad but
forces mothing. As the result of the state thread is de-
manded, so execution proceeds, but in the order determined
by the monadic sequentialization. Thus execution proceeds
on demand, but some of that demand is transmitted through
the state sequencer.

The state within the scope of runST is completely hid-
den from the outside world. Thus as far as the rest of the
program is concerned, reg is completely pure, as indicated
by its type. The encapsulation of the state occurs because
of the type of runST. Inside the implementation of regFile,
however, the situation is quite different. The array writes
are “imperative”, having effects immediately visible to sub-
sequent reads.

In the use of 1oopST above, the state machine is executed
step by step, consuming its list input and generating its list
output on the way. In particular, the loop construct did
not attempt to execute the state machine completely before
releasing the output list. It is this behavior we require of the
state monad and, fortunately, though not officially a part of
Haskell, most implementations provide it.

regFile ::

6 Monitoring circuits with unsafePerformI0

When embedding a language, one often needs “language
primitives” that provide good things in bad ways. Fran for
example, has a function :

importBitmap :: Filename -> Bitmap

which imports a bitmap file in the I0 monad but uses
unsafePerformI0 to treat the bitmap as a pure value.
When using Hawk we find that one often wants to ob-
serve the values flowing across a signal. Unfortunately,
Haskell’s semantic purity makes this viewing rather diffi-
cult. Often, without re-coding a model, it is not possible to
observe the signal. Therefore we provide the function:

probe :: Filename -> Signal a -> Signal a

As far as Hawk-level models are concerned, a probe is simply
an identity. However, the external world receives a differ-
ent view. Probes are fundamentally side-effecting, writing
values to a file, even though they apparently have a pure
type. Thus probes cannot be defined within Haskell-proper.
Instead, they required some Haskell system hacking through
the use of unsafePerformlIO.

probe name vals = zipWith (write name) [1..] vals

write name clock val = unsafePerformI0
do { h <- openFile name AppendMode
; hPutStrLn h (show clock ++ ":" ++ outp val)
; hClose h
; return val

}

Notice that we are careful not to change the strictness of
lazy lists.

We have found that unsafePerformI0 is a powerful fa-
cility for building of domain-specific tools that observe, but
do not affect the microarchitectural models.

7 Verification in Hawk

The past several sections have, one-by-one, demonstrated
the usefulness of lazy lists, type classes, the state monad,
and unsafePerformI0. In this section we discuss a particu-
larly exciting application that requires all four features.

Hawk provides tools that can be used to formally ver-
ify properties of models. Suppose that we want to prove
the following properties about the resettable counter from
Section 3:

1. when the reset line is low on the next clock cycle, the
output is the value at the current cycle plus 1,

2. and when the reset line is high at the current clock
cycle, the output is zero.

In Hawk, we might express these properties as follows.
Assume that r0 and r1 are the values of the reset line at
time ¢ and ¢t + 1 respectively, and that n and m are the
corresponding outputs.

prop_counter = prop_one && prop_two
where

prop_one

prop_two = r0 ==> (n =

=not rl ==> (n + 1 === m)

== 0)
The trick is to show that these properties hold for arbitrary
values of r0 and r1. To do that, we will use symbolic values
for r0 and r1, and symbolically simulate the circuit.

The approach we take to symbolic simulation [7] is
straightforward. Take a sufficiently polymorphic function,
and instantiate it at a symbolic datatype. What we mean
by a symbolic datatype is any datatype that is enriched
with variables and additional term structure. For example,
we have used the following datatype for symbolic simulation
of simple arithmetic circuits.

data Symbo a =
Const a
| Var String
| Plus (Symbo a) (Symbo a)
| Times (Symbo a) (Symbo a)

The catch is that some care is required in making func-
tions “sufficiently” polymorphic. This means that over the
parts of the program that you wish to symbolically evaluate,
you cannot use concrete types, because those types must be
able to become symbolic.

7.1 Fitting symbolic simulation into Haskell

In places, such as with the Num class, Haskell’s prelude is
remarkably amenable to symbolic simulation. In others it
is not. As an example, consider Booleans. To capture the
operations of both concrete and symbolic Booleans we have
defined a class Boolean, which makes all the boolean oper-
ators from the prelude abstract:

class Boolean b where
true :: b
false :: b
(&&)
an
(==>) :: b->b ->b
not :: b -> b

it b->b->Db
:b->Db->Db

We have also defined the class Eql, which is like the
standard Eq class, except that it is also abstracted over the
result type for equality, resulting in a multi-parameter type
class:

class Eql a b where
(===) :: a->a->b

Conditional expressions, too, must be abstract:

class Mux c a where
mux :: € -> a -> a -> a

If the condition on which we branch is symbolic, then it is
clear that the result must be symbolic as well. Hence there
is a relationship between the type of the conditional, and
the type of the result—just the sort of thing that multi-
parameter type classes express well.

To capture the common usage of conditional expressions,
we make Bool an instance of Mux

instance Mux Bool a where
mux X y z = if x then y else z

We can now employ many implementations of Booleans.
In particular we can use binary decision diagrams (BDDs)
[3], which implement semantic equality between symbolic
boolean expressions in constant time. Using H/Direct [11],
the state monad and unsafePerformIO, we have imported
the CMU BDD package into Haskell. In the style of the
modelling language of Voss [26], Hawk treats BDDs just like
Booleans. But, thanks to type classes, a user can also choose
not to use BDDs — so long as their choice is an instance of
Boolean.

7.2 Proving a property

‘We now have the infrastructure to verify our properties. Our
strategy is to simulate the counter with symbolic values on
the reset line for the first two ticks, and then test the desired
property on the first two outputs. We have made the initial
value of the delay in the counter an additional parameter so
that we can place a symbolic value there as well. This makes
our test independent of the internal state of the counter, and
thus makes it valid to test the properties only at the first
two clock ticks.

test :: BDD
test = prop_one && prop_two
where

a = var "a" :: BDD_Vector8

r0 = var "rO" :: BDD

rl = var "r1" :: BDD

reset :: Signal BDD

reset = r1 ‘delay‘ r1 ‘delay‘ false
[n, m] = counter a reset @@@ [0, 1]
prop_one = not rl ==> (n + 1 === m)
prop_two = r0 ==> (n === 0)

(@@@ is an operator for sampling a signal at the specified
times.) By evaluating test we are proving that, for Boolean
vectors of length 8, the counter circuit meets our specifica-
tion. Using types more general that BDD_Vector8, we can
prove the properties for counters of arbitrary size.

8 Where Haskell and Hawk tangle

For our domain, Haskell has turned out to be an excellent
tool for experimenting with language design. However, in a
few places, Haskell is not a perfect match. In this section
we review our use of lazy lists, type classes, the lazy state
monad, and unsafePerformI0 and point to the hinderences
that we have encountered.

8.1 Lazy Lists

In some cases Haskell is a little too generous. Our preferred
semantics for signals is that of truly infinite, or coinductive,
lists—i.e., not that of finite, infinite, and partially defined
lists, as in Haskell. Any feedback loop that did not include
at least one delay should be rejected as being ill-defined.
Haskell, however, will stubbornly do its best to make sense
of even such ill-defined definitions. Could Haskell do bet-
ter? We have constructed a shallow embedding of Hawk in
Isabelle [25], which is much less forgiving. In order to have
Isabelle accept our recursive definitions we have had to de-
velop a richer theory of induction over coinductive datatypes
than previously available [21]. Using this theory, Isabelle is
able to accept all the valid Hawk definitions that we have
thrown at it, while rejecting the invalid ones. It would be
useful if Haskell’s type system could be extended to handle
this—perhaps using unpointed types [20] to express valid
coinductive definitions.

8.2 Type Classes

Because the type representing an instruction set must re-
main abstract, we cannot directly pattern match on it. In-
stead, the operations of the Instruction class provide pred-
icates to identify common instructions such as nops, arith-
metic ops, loads and stores and jumps.

class (Show i, Eq i) => Instruction i where

isNoOp :: i -> Bool
isAddOp :: i -> Bool
i -> Bool

isSubOp ::

If Haskell allowed arbitrary views of datatypes [30], then
this could be handled much more nicely.

8.3 The State Monad

Haskell’s syntactic support for state is not a perfect fit.
First, Haskell has no way to declare storage statically, but
this is exactly what is required. In the register example, the

array is allocated at the beginning, and nothing else is al-
located afterwards. Since silicon cannot be allocated on the
fly, when we come to consider other interpretations of Hawk
models, it would be useful to guarantee that the body of the
state code did not affect the shape of the store, merely its
contents.

Secondly, in our microarchitectural models, the pattern
loopST f (bundle xs ys) occurs often enough to want a
language construct to describe it. Putting these ideas to-
gether, we may ideally wish to write something like:

reg writes reads
= runST (do {array reg (minAddr, maxAddr) = init
; loop (w<-writes, r<-reads)
{ writeArray reg a w
; readArray reg r

}

8.4 Using unsafePerformI0

Probes often work quite well, but there are some glitches.
While we have been careful to preserve the semantics of
Haskell in introducing probes, the semantics of probes are
not really preserved by Haskell. Due to lazy evaluation,
there’s nothing to assure that probe output will appear in
the order expected. The output of a probe at clock tick 9
might be put in the file before the output of a probe at clock
tick 7. Another, glitch is that, in a model, we are free to
use a given unit more than once. But if that unit has an
embedded probe, you will get the output of both probes in
the file. This is not problematic, except that you have no
way of identifying which output is from which probe.

But these problems have less to do with the perhaps un-
scrupulous nature of using unsafePerformI0, and more to
do with a shortcoming in our overall design. In the sec-
tion on future work, we will discuss an approach that will
mitigate these problems.

8.5 Symbolic simulation

Our drive to make the entire Hawk library sufficiently
polymorphic to perform symbolic evaluation has made us
painfully aware of the shortcomings of Haskell’s type class
system in describing abstract data types. Haskell’s module
system can be used in a limited way to effect abstraction,
as we have used for the signal type. But Haskell’s module
system is only intended as name space management, and is
a poor match when you intend to use abstract types instan-
tiated at many different types.

The type class system at times works brilliantly. And
what is most impressive is how well it has worked for us,
as we use it for tasks far beyond its original intended use
(simply as a system of overloading). However, the fit is not
always perfect. One place is the lack of explicit control over
instancing. One of the neat aspects of symbolic evaluation
is that it allows us to take an existing executable model
and verify properties of it, without changing the model at
all. However, this does not work quite as well as it could
because of limitations in the class system. Ideally, we would
like to instantiate test above at different symbolic types.
However, there is no good way to parameterize test by the
types in question, without resorting to unpleasantries like
adding dummy arguments. The type of the counter data

is purely an intermediate value in the definition of test.
If we were not specific about the type of a, Haskell would
consider the declaration ambiguous. Here we are limited
by the type class system’s restriction to type inference—the
programmer is given no tool to resolve the ambiguity. Just
as type inference can be augmented by type annotations
to help the type system where it can’t help itself, as with
polymorphic recursion, we should be able to provide some
sort of annotation to help Haskell resolve ambiguous uses of
type classes.

9 Future work

9.1 Verification

One of the unsatisfying aspects of the verification exam-
ple is that it was necessary to make the internal state
of the counter an explicit parameter. Doing this in a
complex model would entail passing around a lot of extra
parameters—just the sort of thing we’d like to avoid. Also,
in forcing the model to be explicit about its internal state, it
also undercuts one of the strengths of the signal transformer
model that sets it apart from state transformer models, mak-
ing it a sort of unwelcome hybrid.

However, using ideas from Symbolic Trajectory Evalua-
tion [14], we are currently working with symbolic domains
that have a partial order structure. Symbolic simulation
proceeds by starting with initial states set to bottom, with
iteration of the model gradually adding more information.

We are also currently applying symbolic simulation to
simple pipelined microarchitectures to verify correctness
of hazard avoidance, using a self-consistency checking ap-
proach [16]. The technique is to simulate a stream of sym-
bolic instructions two times. Let us assume that the pipeline
has two stages. In the first case, we feed two symbolic in-
structions followed by a no-op. In the second case, we feed
the same two symbolic instructions separated by the no-op.
The test is that the contents of the registers is the same after
the third instruction, demonstrating that the hazard logic is
working correctly.

9.2 Elaboration monads

One of the shortcomings of Hawk is that it has no explicit no-
tion of elaboration separate from the semantics of the model.
Elaboration is the process of translating a possibly higher-
order Hawk circuit into a first-order description, such as the
hardware languages VHDL or Verilog. This was not always
the case. Inmitially, Hawk was similar to Lava [2], using a
monad to capture circuit elaboration. The monad might
be used to generate net-lists for the purposes of fabrication,
or it might produce logical formulae for input to a theorem
prover. For simulation, the monad is essentially the identity
monad, since all we have to do is glue together functions.
However, during simulation, the monad could also provide
the service of, for example, splitting probes that get dupli-
cated.

One reason that we departed from an explicit monadic
style is that the mutually recursive streams idiom that works
so well is not supported by the do notation. What we pro-
pose is to extend the do notation so that bindings are recur-
sive.

10 Acknowledgements

For their contributions we would like to thank Mark Aa-
gaard, Borislav Agapiev, Todd Austin, Robert Jones, John
O’Leary, and Carl-Johan Seger of Intel Corporation; Tim
Leonard and Abdelillah Mokkedem of Compagq/Digital Cor-
poration; Simon Peyton Jones of Microsoft Corporation;
Per Bjesse, Koen Claessen, and Mary Sheeran of Chalmers;
Elias Sinderson of GlobalStar; and Dick Kieburtz, John
Matthews, Nancy Day, Sava Krsti¢, Thomas Nordin, Tito
Autrey, and Mark Shields of OGI.

This research is supported in part by Intel, the Na-
tional Science Foundation, the Defense Advanced Research
Projects Agency, and Air Force Material Command.

References

[1] AAGAARD, M., AND LEESER, M. Reasoning about
pipelines with structural hazards. In Second Interna-
tional Conference on Theorem Provers in Circuit De-
sign (Bad Herrenalb, Germany, Sept. 1994).

[2

Bugessk, P., CLAEsSEN, K., SHEERAN, M., AND SINGH,
S. Lava: Hardware design in Haskell. In Interna-
tional Conference on Functional Programming (Balti-
more, July 1998).

3

BryanT, R. E. Symbolic boolean manipulation with
ordered binary decision diagrams. ACM Computing
Surveys 24, 3 (1992).

[4] Casp1, P., PiLaubp, D., HALBWACHS, N., AND PLAICE,
J. Lustre: A declarative language for programming
synchronous systems. In Symposium on Principles
of Programming Languages (Munich, Germany, Jan.
1987).

[5] Cook, B., LAUNCHBURY, J., AND MATTHEWS, J.
Specifying superscalar microprocessors with Hawk.
In Workshop on Formal Techniques for Hardware
(Maarstrand, Sweden, June 1998).

[6] Cook, B., LAUNCHBURY, J., MATTHEWS, J., AND
KIEBURTZ, D. Formal verification of explicitly parallel
microarchitectures, 1999. Submitted for publication.

[7] DAy, N. A., LEwis, J. R., AND Cook, B. Symbolic
simulation of microprocessor models using type classes
in Haskell. Submitted for publication.

[8] DuLoNG, C. The TA-64 architecture at work. IEEE
Computer 31, 7 (1998).
[9] ELLiorT, C. An embedded modeling language ap-

proach to interactive 3D and multimedia animation. To
appear in IEEE Transactions on Software Engineering

(1999).

[10] ErLioTT, C., AND HUDAK, P. Functional reactive an-
imation. In The International Conference on Func-
tional Programming (Amsterdam, The Netherlands,
June 1997).

[11] FINNE, S., LEuLEN, D., MEUER, E., AND JONES,
S. P. H/Direct: A binary foreign language interface
for Haskell. In International Conference on Functional
Programming (Baltimore, July 1998).

[12]
[13]

[14]

(15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

23]

(24]

(25]

(26]

27]

(28]

29]

GWENNAP, L. First Merced patent surfaces. Micropro-
cessor Report 11, 3 (1997).

GWENNAP, L. Intel, HP make EPIC disclosure. Micro-
processor Report 11, 14 (1997).

HAZELHURST, S., AND SEGER, C.-J. H. Symbolic tra-
jectory evaluation. In Formal Hardware Verification.
Springer-Verlog, 1997.

Jones, M. P. Qualified Types: Theory and Practice.
PhD thesis, Department of Computer Science, Oxford
University, 1992.

Jones, R. B., SEGER, C.-J. H., AND DiLL, D. L. Self-
consistency checking. In Formal Methods in Computer-
Aided Design (Palo Alto, California, 1996).

JonEs, S. P., AND MARLOW, S. Stretching the storage
manager: weak pointers and stable names in Haskell,
1999. Submitted for publication.

LANDIN, P. J. The Next 700 Programming Languages.
Communications of the ACM 9, 3 (March 1966), 157—
164.

LAUNCHBURY, J., AND JONES, S. P. Lazy functional
state threads. In Programming Languages Design and
Implementation (Orlando, Florida, 1994), ACM Press.

LAUNCHBURY, J., AND PATTERSON, R. Parametricity
and unboxing with unpointed types. In The Interna-
tional Conference on Functional Programming (1996).

MaTTHEWS, J. Recursive function definition over coin-
ductive types. Submitted for publication.

MATTHEWS, J., AND LAUNCHBURY, J. Elementary mi-
croarchitecture algebra. In International Conference on
Computer-Aided Verification (Trento, Italy, July 1999).

MATTHEWS, J., LAUNCHBURY, J., AND CoOOK, B.
Specifying microprocessors in Hawk. In IEEE Interna-
tional Conference on Computer Languages (Aug. 1998).

O’DONNELL, J. From transistors to computer architec-
ture: Teaching functional circuit specification in Hydra.
In Symposium on Functional Programming Languages
in Education (July 1995).

PauLson, L. Isabelle: A Generic Theorem Prover.
Springer-Verlag, 1994.

SEGER, C.-J. Voss — a formal hardware verification sys-
tem. Tech. Rep. 93-45, University of British Columbia,
1993.

SHRIVER, B., AND SMITH, B. The Anatomy of a High-
Performance Microprocessor: A Systems Perspective.
IEEE Computer Society Press, 1998.

SrivAs, M., AND BiCKFORD, M. Formal verification of
a pipelined microprocessor. IEEE Software 7, 5 (1990).

TuLLseN, D. M., EGGERs, S. J., EMER, J. S., LEvy,
H. M., Lo, J. L., AND StamMM, R. L. Exploiting
choice: Instruction fetch and issue on an implementable
simultaneous multithreading processor. In 23rd An-
nual International Symposium on Computer Architec-
ture (Philadelphia, PA, May 1996).

[30] WADLER, P. Views: a way for pattern matching to

cohabit with data abstraction. In 1/’th ACM Sympo-
stum on Principles of Programming Languages (Mu-
nich, Germany, January 1987).

