Constructing Natural Language Interpreters in a Lazy

Functional Language

R. FROST* anD J. LAUNCHBURY?

! School of Computer Science, University of Windsor, Windsor, Ontario N9B P4, Canada
2 Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland

In this paper, we describe a method by which language parsers and interpreters may be implemented in a lazy
functional programming language. The visual appearance of such interpreters mimics the BNF description of the
grammar of the language being interpreted. The method is particularly well suited to the implementation of language
interpreters that are based on the principle of ‘rule to rule’ correspondence (in which each production rule of the
grammar has a translation rule associated with it). The main objective of the paper is to demonstrate that the method
described provides a useful framework within which both grammars and semantic theories of languages may be
investigated. We present the method by example: the simple natural language interpreter we construct is based loosely

on principles proposed by Richard Montague.

Received January 1988, revised November 1988

1. INTRODUCTION

Ever since the introduction of definite clause grammars, *
Prolog has been a natural choice for experimenting with
grammars and semantic theories of natural language. In
this paper we present a similar scheme for a lazy
functional language. The counterparts of definite clause
predicates are functions from the input stream to a list of
possible parses/interpretations. These functions are
combined using higher-order functions to produce
composite parsers/interpreters. The higher-order func-
tions are expressed as infix operators, so that the visual
appearance of the parser mimics the BNF description of
the grammar of the language being interpreted. The
result is a clear and modular program which may be
easily modified.

We present the method by example. We construct a
simple natural-language interpreter that is capable of
answering questions about the solar system, its planets
and their moons, and the people who discovered the
moons. We use a simplistic non-left-recursive grammar
that covers a limited subset of English. The semantic
theory underlying the interpreter is similar, in some
respects, to that proposed by Richard Montague,? except
that all modal and intensional aspects have been
suppressed. In some ways it is more efficient com-
putationally than Montague’s semantic theory, being
based on set theory rather than on a calculus of
characteristic functions of relations.

Following Montague, each word of English is regarded
as denoting a semantic object (which may depend on the
syntactic category in which the word is used). Each
production rule of the grammar has a translation rule
associated with it. Using these rules, the meaning of a
composite expression is defined in terms of the meanings
of its parts.

English sentences can be ambiguous. In Montague’s
approach, English expressions (both basic and com-
posite) are translated to one or more expressions of an
unambiguous language of intensional logic, called IL.

* To whom correspondence should be addressed. Each author
contributed equally to this work.

The semantics of IL then provide the meaning of the
English expression. In our approach we use the un-
ambiguous language of set theory, which we implement
in the functional language.

In this paper, we do not intend to argue that the
semantics we use to interpret natural language are any
better than any other. Rather, we intend to demonstrate
that lazy functional languages are suitable for investi-
gating both grammars and semantic theories of language.

1.1 Example session

We translate expressions of English into expressions in
the functional language in which the interpreter is
written. These are then reduced according to the
reduction rules of the functional language, and the results
are mapped into English expressions. These are returned
to the user as answers to the questions asked. The
following is an example of an interactive session with the
interpreter.

which planets are orbited by a moon?
earth, mars, jupiter, saturn, uranus, neptune, and
pluto.

how many red planets exist?

three.

does every moon orbit a red planet?

no.

mars is a red planet?

true.

which moons orbit mars?

phobos and deimos.

who discovered phobos?

Hall.

did Hall discover deimos?

yes.

which moons were discovered by Kuiper?
miranda and nereid.

which planets are orbited by the moons that were discovered
by Kuiper?

uranus and neptune.

does nereid orbit uranus?

no.

108 THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989

R.FROST ANDJ.LAUNCHBURY

nereid orbits neptune ?

true.

which moons orbit a solid planet ?

luna, phobos, deimos and charon.

every red planet is a gaseous planet?

false.

how many men discovered a moon that orbits jupiter ?
siX.

which men discovered a moon that orbits jupiter?
Barnard, Galileo, Kowal, Perrine, Nicholson and
Melotte.

In the remainder of the paper, we present a (nearly)
complete program for a natural-language interpreter
written in the notation of Bird and Wadler,! but the
program requires only minor changes to be run in
concrete lazy functional languages such as Miranda or
Lazy ML. We have divided the program into four parts.
In Section 2 of the paper we present the ‘dictionary’ of
the interpreter; in Section 3 the semantic theory on which
the interpreter is based; in Section 4 the method for
constructing interpretation functions, together with the
particular functions for our example ; and in Section 5 we
describe how to make the interpreter interactive. We

conclude by discussing possible extensions to justify the
claim that the method is sufficiently flexible to encourage
experimentation.

2. THE DICTIONARY

The dictionary of the interpreter consists of a number of
lists of words, paired with their translation. A shortened
version is shown in Figs 1, 2 and 3. The structure of the
dictionary is dependent on the grammar chosen for the
language: there is a separate list for each of the basic
syntactic categories of the language to be interpreted.
The grammar we use is discussed in Section 4.

Each part of the dictionary is a list of pairs. The first
element of each pair is a single word; the second is the
translation of the word when used in the given syntactic
context. For example, the translation of the word “man”
when used as a common noun is the expression
commonnoun_man (which we define later).

Words may be used in different syntactic categories.
For example, the word “orbit” may be used both as a
transitive and as an intransitive verb. Conversely, many
words may share the same translation: both “man” and

commonnoun =

[("thing", commonnoun_thing),
("things", commonnoun_thing),
("man", commonnoun_man) ,
("men", commonnoun_man) ,
("woman", commonnoun_woman) ,
("women", commonnoun_woman) ,

]
propernoun =
[("mars", test_property_wrt 12),
("phobos", test_property_wrt 19),

("Barnard", test_property_wrt 65),

("Bond", test_property_wrt 67),

("Cassini", test_property_wrt 65),
]

relpronoun =
[("that", relpronoun_that),
("which", relpronoun_that)]

("who",

indefinitepronoun =
[("someone",
("something",

meaning_of detphrase

meaning_of detphrase

("somebody", meaning of detphrase

("everyone", meaning_of detphrase

("everything", meaning_of detphrase
o]

adjective =

("red", adjective_red),
("gaseous", adjective_gaseous),
]
Note
The symbol . . . indicates more entries

("discoverer", meaning_of nounclause "person that discovered something."),

[("atmospheric", adjective_atmospheric),

relpronoun_that),

"a person."),

"a thing."),

"a person."),
"every person."),
"every thing."),

Figure 1. Dictionary — nouns, etc.

THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989 109

CONSTRUCTING INTERPRETERS IN A LAZY FUNCTIONAL LANGUAGE

transverb =

[("discover", trans_verb rel_discover),

("discovered", trans_verb rel_discover),

("orbit", trans_verb rel_orbit),
("orbited", trans_verb rel_orbit),
("orbits", trans_verb rel_orbit)]

intransverdb =
[("exist", intransverb_exist),

("exists", intransverb_exist),

("spin", intransverb_spin),
("spins", intransverb_spin),

1

passtrvb =

("orbited",

("orbit", meaning of verbphrase "orbit something."),

("orbits", meaning_of verbphrase "orbit something."),

[("discovered", passtr_verb rel_discover),

passtr_verb rel_orbit)

]

Figure 2. Dictionary — verbs.

13 2

men” are translated to the expression common-
noun_man. Alternatively, although we have not given
an example, a word could have more than one translation
when used in a single syntactic category. One interest-
ing technique we use is to define a word in terms of
some phrase. This is achieved by using the function
meaning_of. Thus a “discoverer” is a ‘“person that
discovers something”.

By looking at the dictionary, we can see which words
can be used in a query, and also deduce some semantic
information. For example, it is easy to see that the
system makes no distinction between singular and plural
forms of common nouns, nor does it distinguish between
the words “a” and “the”. In a more realistic system,
both of these limitations would be rectified.

Each proper noun is ‘associated’ with an entity.
Entities are abstract objects that have meaning only
within the interpreter. In this implementation we repre-
sent entities using integers. For example, the proper
noun “mars” is associated with the entity represented by
the integer 12. Proper nouns correspond to functions
that receive a property, and test whether that property is
true of the associated entity. The rationale for this
approach is discussed in Section 3.

Some words, such as the word “are”, are translated to
the identity function. This indicates to the user that such
words have no effect on the meaning of a composite
expression in which they appear other than as a

grammatical marker. The fact that, in our example
interpreter, the words “are” and ‘“were’’ are both
translated to the identity function may give the (correct)
impression that the semantic theory underlying the
interpreter does not accommodate time.

3. THE UNDERLYING SEMANTIC
THEORY

The semantic theory that we use has some features that
were derived from Richard Montague’s, but it differs
from his in several respects and is much less sophisticated.
However, it has the advantage of being simpler to
understand, and the interpretation of many English
expressions may often be implemented more efficiently.
Take, for example, the word “every”. In Montague’s
approach it is translated to a function that takes two
characteristic functions of sets as arguments. From these
it constructs a new characteristic function, applies this
function to all entities in the universe, and conjoins the
resulting set of boolean values. In our theory, the word
“every” is translated to a set-inclusion test on two
sets.

The basic idea, in both approaches, is that English
words are translated to expressions of an unambiguous
language (according to syntactic category), such that the
translation of a composite expression can be obtained
from the translations of its parts. This is achieved by

110 THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989

R.FROST ANDJ.LAUNCHBURY

linkingverb =
[("is", id), ("was", id),
("are", id), ("were", id)]
determiner =
[("the", determiner_a), ("a",
("some", determiner_a), ("no",
("every", determiner_every), ("all",
("one", determiner_one), ("two",

termphrasejoin =

[

("and", termphrase_and),

verbphrasejoin =

[("and", verbphrase_and),

nounjoin =

[("and", noun_and), ("or", noun_or)

preposition =

[("by", id) 1]

("or", termphrase_or)

("or", verbphrase_or)]

determiner_a),
determiner_none),
determiner_every),

determiner_two),

]

]

Figure 3. Dictionary — auxiliaries.

associating a simple interpretation rule with each syntax
rule (i.e. with each production of the grammar). The
semantics of the unambiguous language is then used to
obtain, indirectly, the meaning(s) of the English expres-
sion.

The difficulty, in building a semantic theory, is in
obtaining translations of the basic words such that (1)
the grammar is concise, (2) the interpretation rules are
simple, and (3) an interpreter based on the theory can be
implemented efficiently.

Clearly, the capability of the grammar and semantic
theory should depend on the purpose for which the
interpreter is to be used. We do not claim that our
semantic theory is adequate for anything other than as
an example. However, it is plausible enough, as is the
unsophisticated grammar on which the interpreter is
based.

Our semantic theory is easy to explain. The primitive
semantic objects are entities and sets of entities. Then we
have functions over these primitive objects. Entities are
abstract objects having meaning only within the inter-
preter. Each entity is, however, ‘associated’ with in-
dividual objects in the real world.

Each common noun denotes the set of entities that
may be described by the noun. Adjectives likewise denote
those sets of entities that possess the properties the
adjectives express, and intransitive verbs are represented
by the set of entities for which the verb holds.

Determiners denote boolean valued functions that
take two sets as argument. The actual function depends
on the determiner. For example, in the phrase ‘““a planet
spins” both “planet” and ‘“spins” denote sets. The
function corresponding to “a” calculates whether the
two sets have a non-empty intersection or not. If the
intersection is empty the statement is false, as there is not
a planet that spins. Conversely, if the intersection is non-
empty there is a planet that spins, so the statement is
true. A useful way to view determiners is as ‘curried’
functions.* That is, if one argument is supplied, the result
is a function of the other argument. This approach is
useful because it gives meaning to expressions such as “a
man”. This translates to a function that takes a set-

* Named after Haskell Curry, a logician. If f: 4 x B -> C is a function
defined on pairs, then the function curry(f): 4 (B > C) is equivalent
except that it receives its arguments one at a time.

THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989 111

CONSTRUCTING INTERPRETERS IN A LAZY FUNCTIONAL LANGUAGE

valued argument, and returns a boolean to indicate
whether the intersection of the set argument with the set
of men is non-empty. Thus the meaning of the word
“anything” can be defined to be the same as the meaning
of the phrase “a thing”. We will come across this
“currying” or partial application of functions again
later.

According to Montague, proper nouns such as “mars”’
do not denote entities. In fact no expression of English
denotes an entity directly. Each proper noun denotes a
function that takes some sort of ‘property’ as an
argument and tests whether the property holds for the
entity with which the proper noun is “associated’. This
accords with the view that a name such as “mars’’ does
not represent the entity itself, but rather all of the
properties that are true of it. It is a view based on
analyses of the way in which proper nouns are used.

Similarly, transitive verbs do not denote relations
directly, though each is associated to one particular
relation. A transitive verb is seen as a function, whose
argument is a predicate on sets. When the function is
applied to a particular predicate, it returns a set of
entities as a result. An entity is in the result set, if the
predicate is true of the entity’s image under the associated
relation.

Relative pronouns and conjunctions such as “and”
and “or” are translated to various functions depending
on the syntactic category of usage. For example, the
word “and” when used to join two verb phrases is
translated to set intersection. The variety of definitions is
a cost associated with the set-based approach. In
Montague’s method conjunctions are translated to
polymorphic functions whose definitions are independent
of the syntactic category.

entityset = [1 .. 70]

commonnoun_sun = [8]

commonnoun_planet = [9 .. 17]
commonnoun_moon = [18 .. 53]
commonnoun_man = [64 .. 70]

commonnoun_woman = []

commonnoun_thing = [8 .. 70]

intransverb_exist = entityset

intransverb_spin = [8 .. 53]

Note

++ is list concatenation

-- is list difference

adjective_red = [12, 13, 14, 22]
adjective_blue = [11, 14, 15, 16]
adjective_ringed = [13, 14, 15, 16]
adjective_gaseous = [13, 14, 16, 16]
adjective_solid = (commonnoun_planet ++ commonnoun_moon)

~-- adjective_gaseous
adjective_atmospheric = [10, 11, 12, 22, 42]
adjective_vacuumous = (commonnoun_planet ++ commonnoun_moon)

-- adjective_atmospheric

Figure 4. Sets of entities.

112 THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989

R.FROST ANDJ.LAUNCHBURY

union as bs = as ++ (bs -- as)
intersect as bs = as -- (as -- bs)
includes as bs = (as -- bs) == []

relpronoun_that xs ys = intersect xs ys
termphrase_and pqx =p x & q x

termphrase or pq x =px \/ qx

verbphrase_and xs8 ys = intersect xs ys
verbphrase_or xs ys = union xs ys
noun_and xs ys = intersect xs ys
noun_or xs ys = union xs8 ys

determiner_every xs ys = includes xs ys

determiner_a xs ys

determiner_one xs ys

test_property_wrt e ps = member ps e

Note

is list length

& is conjunction

\/ is disjunction

== i3 the equality test

/= is the inequality test

= #(intersect xs ys) /= 0
determiner_none xs ys = #(intersect xs ys) == 0
= #(intersect xs ys) == 1

determiner_two xs ys = #(intersect xs ys) == 2

Figure 5. Implementing sets.

3.1 Implementing the semantics

Figs 4, 5 and 6 give the definitions of the functions used
to implement the semantics.

We represent entities by integers. In our example we
use the integers 1-70 for the various entities. Sets of
entities are implemented using lists of integers. Thus the
noun “man’ can describe any of the entities from 54 to
70. As it happens, our system doesn’t know about any
women, so the list of entities that may be described by the
word “women” is empty.

As properties are implemented as lists of entities, so
proper nouns are translated to functions over lists of
entities. In order to test whether a particular property is
true of an entity we need only test list membership.

Relations are implemented as lists of pairs. These
relations are used directly in the interpretation of
transitive verbs. Passive verbs are in some sense the
inverse of active verbs. Compare “Hall discovered
phobos™ with “phobos was discovered by Hall”. The
order of items related by the passive “was dis-
covered” (using “by” as a placeholder) is the reverse of
the order needed for the active ““discovered”. Passive
verbs are implemented exactly as their active counterparts
except that they use the inverse of the relation. We obtain
this by using the function invert.

The sorts of meanings assigned to words in different
syntactic categories vary greatly. Some words are seen as
representing sets of entities, others as functions, and so
on. These meanings are values, and so each meaning has

THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989 113

CONSTRUCTING INTERPRETERS IN A LAZY FUNCTIONAL LANGUAGE

rel_orbit

]

]

collect [1 =11

invert = map swap
where

swap (x,y) = (y,x)

Note

= [(9, 8, (10, 8), (11, 8), (12, 8),

@13, 8), (14, 8), (15, 8), (16, 8),

rel_discover = [(b4, 19), (b4, 20), (55, 21), (56, 22), (56, 23),

(68, 24), (66, 25), (57, 28), (57, 34), (58, 27),

trans_verb rel p = [x | (x, image_x) <- collect rel; p image_x]

passtr_verb rel = trans_verb (invert rel)

collect ((x,y):t) = (x, y:[e2 | (el,e2) <- t; el = x])

collect [(e1, e2) | (e1, e2) <- t; el /= x]

The functions trans_verb and collect are defined by list comprehensions. These are related
to the set comprehensions found in set theory. Replacing the square brackets with curly braces,

and the ‘drawn from’ symbol (<-) with set membership gives a comparable set comprehension.

Figure 6. Implementing relations.

a type. The type of the meaning of a word in a particular
syntactic category depends only on that category, and not
on the word itself. We can, therefore, give a table of the
types associated with the various syntactic categories. In
the table, ¢ represents the set of entities, and Bool the
truth values. Also, if 4 and B are types then {4} is the
set of objects of type 4, and 4 — B are functions from
A to B.

common noun 2 {g

proper noun 1 {&} > Bool
relative pronoun :: {e} > ({&} - Bool)
indefinite pronoun 2 {g

adjective 21 {g

transitive verb 22 ({e} > Bool) - {&}
intransitive verb 2 {g

passive transitive verb :: ({¢} > Bool) > {&}
determiner :: {e} > ({&} -~ Bool)

This completes our description of the implementation
of individual words. We will study how phrases are
handled in the next section.

4. CONSTRUCTING INTERPRETERS

The functions that we shall construct are syntax-directed
evaluators. They have a lot in common with parsers, but
whereas parsers construct parse trees, we choose to
implement evaluation directly. We call these functions
‘interpretation functions’.

The method we use has been known to functional
programmers for some time. We have tailored the
operators for handling natural language — some changes
of emphasis would be in order for parsing computer
languages. The parsers/interpreters that we construct are
equivalent to recursive descent parsers with full back-
tracking. Ref. 5 contains a detailed discussion of how

114 THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989

R.FROST ANDJ. LAUNCHBURY

succeed v inp = [(v,inp)]
fail inp =[]

(p | @ inp = p inp ++ q inp

(p> fn) inp = [(fn v,

the_value [(v,inp)] = v

Note

We will assume that the operators

! (prefix)

--- (infix, right associative)

>> (infix, left assoiative)

I (infix, right associative)

are listed in descending binding power

(p1 --- p2) inp = [((v1,v2), inp2) | (v1,inpl) <- p1 inp;
(v2,inp2) <- p2 inpi]

inp’) | (v,inp’) <- p inp]

item (word,val) 1 = fail []
item (word,val) (wd:wds) = succeed val wds if wd == word
= fail wds otherwise
(| = fail
'(p:ps) = itemp | !ps
qmark = item ("?","?7")
dot = item (".",".")
meaning_of interp = the_value . (interp --- dot >> fst) . words

Figure 7. Interpretation primitives.

this is achieved through lazy evaluation. One implication
of this is that left-recursive grammars may not be used
directly. In this paper we will present the method in a
conceptually simple framework without discussing the
details of evaluation.

An interpreter is a function: given some input it
returns some sort of value as its result. The value is
paired with the tail of the input stream so that subsequent
interpretation functions can be applied at the point that
the first left off. If the grammar is ambiguous more than
one value may need to be returned, and there must be a
mechanism for returning no value if the input does not
match the grammar. We can satisfy these requirements in
a uniform way. An interpretation function returns a list
of results. The list may be empty (indicating failure), or
may contain an arbitrary number of successful inter-
pretations. Each result in the list is a pair consisting of
a value and the tail of the input stream.

The most basic interpretation functions are succeed
and fail. These play a role analogous to the role 1 and 0
play in natural numbers. From the definitions of the
interpretation-function primitives in Fig. 7, we see that
the (function-valued) expression (succeed 5) is an
interpretation function that will succeed with value 5
whatever the input is. Conversely, fail is an interpretation
function that will fail whatever the input is. Even though
succeed was defined with two arguments, we can use it
with only one. This gives us a function of the remaining

argument. This is another occurrence of currying. Uses
like this occur many times when constructing inte-
rpretation functions.

4.1 Combining interpretation functions

We use four operators to combine interpretation func-
tions, defined in Fig. 7. They are designed to model the
form of BNF so that the parser/interpreter explicitly
expresses the grammar interpreted. These operators take
interpretation functions as arguments, and return an
interpretation function as a result. They are therefore
higher-order functions. The fact that they are expressed
as operators rather than functions is a syntactic feature
only. In many functional languages, the user may define
prefix and infix operators and give precedence and
associativity declarations.

One means of combining items of a BNF grammar is
through alternation. Thus, when we want to combine
two interpretation functions as alternatives we use an
operator |, chosen to mimic the BNF symbol. The result
of combining two interpretation functions p and q using
| is an interpretation function whose results are all the
results that either p or q would return. The function fail
is a left and right identity for |, that is, fail|p =p = p|
fail.

The other major means of combining items of a BNF
grammar is through sequencing. In BNF this is written

THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989 115

CONSTRUCTING INTERPRETERS IN A LAZY FUNCTIONAL LANGUAGE

as juxtaposition. Here we use an operator ---. When
p1---p2 is applied to some input, p1 is applied and
returns a list of results. Each of these results contains a
tail of the input stream. p2 is applied to each of these
tails, and for each one also produces a list of results. The
result of p1 - - - p2 is a list of pairs. The first component
of each pair is itself a pair of values, the first coming from
p1 and the second from p2. The second component of
each pair is the tail of the input after p2 has finished with
1t.

The other two operators have no counterpart in BNF.
The first allows the values returned by the interpretation
functions to be manipulated. We give > an interpretation
function on the left, and an arbitrary function on the
right. Then in the expression p > fn the function fn is
applied to each of the values returned when p is applied
to the input. This is particularly useful for combining

pair is required. For example, in the grammar we have a
clause:

sentence = jointermphrase - - -
joinverbphrase > apply2

where
apply2 (f,x) =fx

Suppose that we apply the function sentence to some
input value. The interpretation function jointermphrase
returns a function as its value, and joinverbphrase a
value suitable for that function. So jointermphrase - - -
joinverbphase returns a pair containing both of these.
The operator > applies the function apply2 to each of
the result pairs. apply2 takes the function component of
its pair and applies it to the value component. The value
that sentence returns is the result of the function

values obtained using - - - when something other than a application.
simplenounclause
= !commonnoun
| adjectives --- !commonnoun >> intersct
relnounclause = simplenounclause --- !relpronoun --- joinvbphrase >> reorder
| simplenounclause
adjectives = tadjective --- adjectives >> intersct
| tadjective
nounclause = relnounclause --- !nounjoin --- nounclause >> reorder
| relnounclause
transvbphrase = !transverb --- jointermphrase >> apply2
| 'linkingverb --- !passtrvb
--- ipreposition --- jointermphrase >> drop3rd
detphrase = tindefinitepronoun
| !determiner --- nounclause >> apply2
termphrase = !propernoun
| detphrase
verbphrase = transvbphrase
| tintransverb
| 'linkingverb --- !determiner --- nounclause >> drop2nd
jointermphrase= termphrase --- !termphrasejoin --- jointermphrase >> reorder
| termphrase
joinvbphrase = verbphrase --- !verbphrasejoin --- joinvbphrase >> reorder
| verbphrase
sentence = jointermphrase --- joinvbphrase >> apply2
apply2 (x.y) =xy
apply3 (x,(y.z)) =xyz
reorder (x,(y,z)) =yxz
drop2nd (x,(y,z)) =x z
drop3rd (w,(x,(y,z))) = w x z
intersct (x,y) = intersect x y

Figure 8. The grammar of the interpreter.

116 THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989

R.FROST AND J. LAUNCHBURY

The final operator we use introduces terminals. The
operator ! is a prefix, and binds more tightly than the
others. Its argument is a dictionary (a list of word/
meaning pairs). If the next word in the input is in its
dictionary argument, it succeeds and returns the meaning
of that word as its value. ! is defined in terms of a
function called item that turns a single dictionary item
into an interpretation function. If the first word in the
input is the word in the pair, item succeeds and returns
the value associated with the word. If not, item fails.

Then, given a dictionary, ! turns it into an interpreter
for the words contained in the dictionary. If the dictionary
is empty, the interpreter will fail when applied to input
(return the empty list), otherwise it will try the first word
in the dictionary, and then go on and try the rest.

Also in Fig. 7 is the definition of the function
meaning_of referred to earlier. The function takes an
interpretation function as an argument. The result of this
application is another function — one requiring a string
input. The string is split up into a list of words, and the
interpreter argument is applied to this list. Once the
interpreter has finished we look for a fullstop. This
forces the interpreter to parse the whole phrase, and not
just some initial portion. The function fst then discards
the value associated with the full stop. We will only use
the function meaning_of on phrases with only one
meaning — it would be undesirable to define a word in
terms of a meaningless or ambiguous phrase! The
function the _value looks for, and returns, the value part
of this single result.

4.2 The grammar of the interpreter

The complete grammar that we use is given in Fig. 8.
Once again we stress that it is a simple grammar,
intended only as an example.

Many of the values returned by the interpretation
functions are themselves functions. Typically, the mean-
ing of a clause is obtained from the meanings of its parts
by function application. Thus most of the combining
functions are just variations of a standard apply function.
This exhibits the usefulness of a functional language for
this area. If we go to a semantic theory even closer to
Montague’s, this is even clearer. Montague represented
the meaning of many classes of words as lambda terms,
and gave rules of combination through application
and beta-reduction. To implement this in a functional
language is very straightforward. This contrasts with
Prolog, where everything must be represented using
first-order objects.

To give a flavour of the grammar we will consider an
example interpretation. Consider the sentence “ phobos
orbits mars”’. In interpreting this:

e sentence looks for a jointermphrase followed by a
joinverbphrase.

e “phobos” is a jointermphrase (because it is a
termphrase through being in the propernoun dic-
tionary).

e ‘‘orbits mars” is a joinverbphrase (via transvbphrase
etc.).

e ‘“‘phobos” is translated to test_property_wrt 19.

session inp = introduction

++ conclusion

lines [] =[]
lines (c:cs) = []:lines cs
= (c:1n):1ns
where

unlines 0 = "\n"

conclusion = "\n\nGoodbye...\n\n"

++ unlines (map interpret (lines inp))

if c==’\n’

otherwise

(1n:1ns) = lines cs

unlines (1n:1ns) = 1ln ++ "\n" ++ unlines lns

introduction = "Hello. I can answer some questions posed in a limited\n\
\subset of English. My knowledge covers the planets, their\n\
\moons and discoverers. Please end all questions with a\n\

\question mark. Use <control-D> to finish.\n\n"

Figure 9. Session.

THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989 117

CONSTRUCTING INTERPRETERS IN A LAZY FUNCTIONAL LANGUAGE

e “orbits” is translated to trans_verb rel_orbit.
“mars” is translated to test_property_wrt 12.
e trans_verb rel_orbit is applied to test_property_wrt
12. The result is the list [19, 20].
e test_property_wrt 19 (“phobos”) is applied to [19,
20] (the translation of ““orbits mars”).
e The result is True.
It is worth noting the direct relationship that the
grammar has to its BNF description, and so is both easy
to read and to modify. This encourages experimentation.

5. THE INTERACTIVE SESSION

We will model the interactive session as a stream function
mapping the input stream to the output stream. This is a
very common technique in lazy languages, and works
well for many purposes. The value of the input stream
becomes available as the user types on the keyboard, and
as the output is evaluated it is printed on the screen. The
function that maps the input to the output is called
session.

The interpretation function is designed to take
individual questions and to answer them. Therefore a
convenient way to view the input is as a list of lines. We
apply the interpret function to each line, and get a line as

a result. We need two functions: one to split up the input
at the newline characters to give a list of lines; and
another to concatenate a list of lines inserting newline
characters at the join. We can achieve this by using two
fairly standard functions: lines and unlines. The function
lines takes a list of characters and divides it at each
newline character; unlines does the reverse.

The function session returns the string introduction
(which will be printed on the screen), and applies the
interpretation function interpret to each line of input.
The evaluator pauses at this point as the value of the next
line is required. Once it has been entered the evaluator
can continue. interpret produces a line in response to
each line of input, and unlines turns these lines into a
single list of characters. When the user signals ‘end of
text’ by typing control-D, the string conclusion is
printed.

How does interpret handle each question? From the
definition in Fig. 10 we see that interpret has been
written as the composition of other functions. To trace
their effect on the input we work from right to left. The
line is first split up into a list of words. This list of words
is handed to an interpretation function, which looks for
a question followed by a question mark. The question
mark is discarded by the function fst. What remains is a

disambiguate [ans] = ans

else

where

newans a = "\n

words [] = [
words (c:cs) = []:words cs
= [1:[c]:words cs
= (c:1n):1lns
where

(1n:1ns) = words cs

unwords [x] = x 4+ "M
unwords [x,y] = x 44 ", and " ++ y ++

else

interpret = disambiguate . map fst . (question --- gmark >> fst) . words

disambiguate [] = "I do not understand"

disambiguate answers = "The question is ambiguous. The possible answers are"

++ concat (map newans answers)

unwords (x:xs) = x ++ ", " ++ unwords xs

* " 44 a

if c==’°
if c=='." \/ c==’7"

otherwise

Figure 10. Handling a single question.

118 THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989

R.FROST ANDJ.LAUNCHBURY

question = sentence >> truefalse

Il 'doesq --- sentence >> apply2

Il !questl --- joinvbphrase >> apply2

Il 'quest2 --- nounclause --- joinvbphrase >> apply3

Il howmany --- nounclause --- joinvbphrase >> apply3
howmany = thowq --- !manyq >> Ist
truefalse b = "true." if b

= "false." otherwise

Figure 11. Grammar for questions.

doesq = [("does", yesno), ("do", yesno), ("did", yesno)]
questl = [("who", function_whoq), ("what", function_whatq)]
quest2 = [("which", function_whichq)]

howq = [("how", function_howmanyq)]

manyq = [("many", id)]

function_whoq xs = check "nobody" [name_of e | e <- xs;

menber (union commonnoun_man commonnoun_woman) e]
function_whatq xs = check "nothing" [name_of e | e <- xs]
function_whichq x8 y8 = check "none" [name_of e | e <- intersect xs ys]

function_howmanyq xs ys = number (# intersect xs ys)

yesno b = "yes." it b
= "no." otherwise
number n = ["none.","one.","two.","three.", . . .] @ n

name_of e = hd [name | (name, f) <- propernoun ; f [e]]

check str wds = str if wds == []

= unwords wds otherwise

Note

@ selects the n*? element of a list

Figure 12. Question words.

THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989 119

CONSTRUCTING INTERPRETERS IN A LAZY FUNCTIONAL LANGUAGE

list (possibly empty) of successful interpretations of (that
is, answers to) the user’s question, paired with the
remains of the input line. The map fst converts this into
a list of answers only, and disambiguate converts these
answers into a single answer.

All that remains is for us to define the interpretation
function question (Fig. 11). The user may enter a
sentence, to which a true/false response is appropriate —
a sentence evaluates to a boolean. Another possibility is
to precede a sentence with either “does” or “do”. Here
a yes/no answer is appropriate, so the “meaning” of a
“does”’-word in this context is a function that converts
booleans to either “yes” or “no”. This function is
applied to the boolean result of sentence. There are two
other possible forms of question also given in the
program, but there are others that could have been
added. The question form “is...?” is not allowed by the
grammar we have given, but it would be a likely
candidate for inclusion in an extension.

The remaining functions to handle the other question
forms are given. We will not discuss them in detail: the
previous discussion should be enough to allow the
interested reader to sort out the details.

6. EXPERIMENTATION

Many of the shortcomings of the grammar and semantic
theory we have used in the example will be noticed
immediately by a linguist. If the grammar were more
sophisticated, some of these might not be evident even to
an expert reviewing the production and translation
rules.

As an example of a shortcoming, consider the following
question/answer session :
which moons orbit the planet orbited by miranda?

I do not understand.
which moons orbit the planet that is orbited by miranda?
miranda, ariel, umbriel, titania and oberon.

It is clear, by looking at Fig. 8, that the grammar
cannot accommodate relative clauses in which the relative
pronoun and the linking verb have been omitted. It may
also be seen that the grammar requires more than a
simple modification to do this. However, after the
designer of the interpreter has modified the grammar, it
is a simple matter to edit the program accordingly.

Here is another interesting example.
who discovered a moon that orbits mars or Jjupiter?

The question is ambiguous. The answers are

* Hall.

* Hall, Barnard, Galileo, Kowal, Perrine, Nicholson
and Melotte.

who discovered a moon that orbits mars?

Hall.

who discovered jupiter ?

nobody.

who discovered a moon that orbits jupiter ?

Hall, Barnard, Galileo, Kowal, Perrine, Nicholson and
Melotte.

The fact that the interpreter returns two answers to the
first question indicates that the question has been parsed
in two ways. The next three questions indicate that the
first parse was “who discovered (a moon that orbits
mars) or jupiter?” and that the second was ““who
discovered a moon that orbits (mars or jupiter)?”’. Both
parses are acceptable, but the order in which the answers

are presented should perhaps be reversed so that it agrees
with the order that most humans would expect. The
designer can experiment with the interpreter by changing
the order in which alternatives of a production rule are
used. For example, the order of the alternatives in the
jointermphrase interpretation function could be reversed
so that the simpler construct is tried before the more
complex. Doing this would solve the problem above.

6.1 Semantics using characteristic functions

The semantics we use in this paper are essentially set-
based, using some features from Montague’s theory of
semantics. This was done to make the presentation
simpler, and because nested determiners are handled
much more efficiently. However, in doing so we lost some
of the elegance inherent in Montague’s approach. It is an
interesting exercise to take the set-based semantics we
use, and to replace occurrences of sets with corresponding
characteristic functions. The resulting semantics are
much closer in flavour to Montague semantics, and
correspondingly more elegant. For example, the two
semantic versions of the conjunction ‘and’ are then
unified. These new semantics may then be implemented
directly within the framework we have already built. The
definitions of the single words (as given in the dic-
tionaries) will need to be changed, as will the functions
used in the grammar to combine the meanings of the
parts of each clause into the meaning of the whole. The
fact that the semantics are higher-order presents no
difficulty at all. It is worth comparing this situation with
that presented in Ref. 2. Here Janssen studies the issues
involved in implementing Montague semantics in an
imperative language. It is clear that here the translation
is cumbersome and complicated, to say the least.

6.2 Extensions

There are other avenues for experimentation. One
extension might involve translating words to tuples
rather than single functional expressions. The tuples
could contain knowledge such as gender, number, sort
(e.g. animate object, inanimate object...), etc. More
powerful translation rules could then be used to make use
of this knowledge to direct the parser. The translation
rules could also refer to knowledge stored in sort lattices
and knowledge bases. Such an extension would provide
a useful framework within which novel approaches to the
integration of syntax and semantics could be investigated.

Another direction might be to incorporate modal and
intensional constructs, in an attempt to produce more
robust and realistic interfaces. This brings us to a final
point: the real potential for this method seems to be in
providing an interface between a database and the real
world. A purpose-built relational database is optimised
for retrieving information. The role of the interpreter
would be to translate complex queries in English to
queries in the relational language. The queries would be
resolved by the database, and the result passed back to
the interpreter to be converted into English again.

7. CONCLUSION

We have given an example of a general method for
constructing natural-language interpreters in a lazy
functional language. The grammar and semantic theory
that we have used have many shortcomings, but were

120 THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989

R.FROST AND J. LAUNCHBURY

sufficient to give a reasonable example. The basic method
itself has similarities with definite clause grammars in
Prolog. However, unlike definite clause grammars which
are defined as an extension to Prolog, the method can be
defined within the functional language.

Given some (non-left-recursive) grammar and a suit-
able semantic theory to go with it, the construction of an
interpreter for the language they define is straight-
forward. We conclude, therefore, that the method
provides a useful framework within which both grammars
and semantic theories of language may be investigated.

REFERENCES

1. Richard Bird and Philip Wadler, Introduction to Functional
Programming. Prentice-Hall, Englewood Cliffs, NJ
(1988).

2. Theo Janssen, Foundations and Applications of Montague
Grammar, pp. 335-393. Mathematisch Centrum, Amster-
dam (1983).

3. Richard Montague, Formal Philosophy. In Selected
Papers of Richard Montague, edited R. H. Thomason. Yale
University Press, New Haven CT (1974).

Acknowledgements

The authors acknowledge the assistance of the funding
bodies that provide support for their work, and the
university departments to which they belong. Richard
Frost is supported by the N.S.E.R.C. of Canada, and is
a member of the School of Computer Science at the
University of Windsor. John Launchbury is supported
by the S.E.R.C. of Great Britain, and is a member of the
Department of Computing Science at Glasgow Uni-
versity.

4. F. Pereira and D. H. D. Warren, Definite Clause Grammars
compared with Augmented Transition Networks. Technical
Report, Department of Artificial Intelligence, University
of Edinburgh (1978).

5. Philip Wadler, How to replace failure by a list of successes.
In Functional Programming Languages and Computer
Architectures, edited J.-P. Jouannaud. Lecture Notes in
Computer Science 201, p. 113. Springer-Verlag, Heidelberg
(1985).

THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989 121

