
Concurrent Orchestration in Haskell

John Launchbury Trevor Elliott
Galois, Inc.

{john,trevor} at galois.com

Abstract
We present a concurrent scripting language embedded in Haskell,
emulating the functionality of the Orc orchestration language by
providing many-valued (real) non-determinism in the context of
concurrent effects. We provide many examples of its use, as well
as a brief description of how we use the embedded Orc DSL in
practice. We describe the abstraction layers of the implementation,
and use the fact that we have a layered approach to demonstrate
algebraic properties satisfied by the combinators.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords Concurrency, Haskell, Orc

1. Introduction
Concurrent programming continues to grow in importance, both
because of the prevalence of multicore processors, and because of
the distributed nature of internet and enterprise systems. Because
different concerns dominate in the different settings, there will
never be one single way to program these concurrent systems, just
as sequential programming continues to benefit from a multiplicity
of distinct approaches. Furthermore, because concurrent program-
ming is far less mature than sequential programming, the area is
still ripe for exploring new paradigms, identifying their strengths
and weaknesses in different settings.

This exploration proceeds par excellence in the context of
Haskell. Haskell (and, in particular, the premier Haskell compiler
GHC) provides a very powerful and effective set of concurrency
primitives together with relevant support in the run-time system.
For many purposes, the level of abstraction of these primitives
is appropriate but, as their designers state, while these primitives
“are expressive ... we do not advocate programming with them di-
rectly; instead we hope to build a library of robust abstractions, lay-
ered on top of the primitives, that express common programming
paradigms.” [MPMR01]. True to that aim, the Haskell commu-
nity now has higher level libraries, including software transactional
memory (STM) [HMPH05] which provides one approach to the
holy grail of composable concurrency (though STM also required
additional support in the run-time system).

The mechanisms and libraries provided by GHC are now quite
mature, and at Galois we have used concurrent Haskell to write
many systems, including a webDAV server, network stacks, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’10, September 30, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-4503-0252-4/10/09. . . $10.00

a library of virtual machine infrastructure. Our experience is that
Haskell is very effective for these purposes, allowing us to write in-
tricately concurrent programs with surprising ease, and have them
highly performant at run-time. Having said that, we still need to
care about many details to get these concurrent programs right.

There are many concurrent applications where we would want
to work at a yet higher level, not having to worry about forks,
thread identifiers, or race conditions, etc. Concurrent scripting or
orchestration is an example, by which we mean any situation where
we wish to orchestrate multiple external (possibly remote) actions
whose timing and interleaving is unpredictable, i.e. to accomplish
scripting in a setting where concurrency is prevalent, and indeed
dominant. Having a robust and composable approach is highly de-
sirable. For this we turned to the Orc domain-specific language for
our inspiration [MC07, KQCM09]. Orc was introduced to address
the challenges of highly concurrent scripting, with particular refer-
ence to internet programming. To echo an example from the Orc
literature, we might wish to contact two airlines simultaneously
seeking price quotes. If either quote comes back below a threshold
price, say $300, then let’s buy a ticket immediately. On the other
hand if both quotes exceed the threshold, then buy the cheapest
ticket. Additionally, buy a ticket if the other airline does not give a
timely quote, or notify the user if neither airline provides a timely
quote.

The original version of Orc is a stand-alone domain-specific lan-
guage (DSL), with mechanisms enabling any Java class instance to
be called. As with any DSL, there are advantages and disadvan-
tages to providing it as a stand-alone language. On the one hand,
syntax can be specialized to the task at hand, the error messages
may be specifically designed, additional analysis tools can be pro-
vided, and new users are not challenged with learning more than the
DSL itself. On the other hand, different benefits accrue from em-
bedding the DSL in a host language (i.e. an EDSL). These benefits
include the ability to mix and match the EDSL programs with other
tasks, and a shorter learning curve as much is inherited from the
host language. As the ideas of concurrent orchestration are largely
non-specific to any particular language, we wanted to take the Orc
ideas and adapt them to fit naturally within the Haskell setting.

Hence this paper! We describe an adaptation of Orc as an EDSL
in Haskell. Many aspects of the embedding were so straightforward
and natural that they would be scarcely worth writing about—in
fact we have heard of a number of people who have each embedded
portions of Orc into Haskell. But a few aspects turn out to be subtle
and tricky, meriting a more careful examination, and these form the
main contributions of the paper.

• The first concerns control of concurrency. In an Orc-like setting
it is easy to generate abundant concurrency; what is more tricky
is trimming and controlling the concurrency when it is no longer
needed.

• A second aspect concerns laziness. The original Orc language
uses concurrent laziness to manage synchronization. It is ap-

pealing to duplicate this in Haskell, but we have concluded that
a different approach fits more properly in the context of Haskell.
We relegate the lazy version as a design alternative.

• Third, Orc comes with a number of algebraic laws as part of
its specification. We have made significant progress in proving
that our implementation of the Orc EDSL satisfies these laws,
including identifying the requirements we need to establish
from the underlying concurrent Haskell foundation.

• Finally, the Haskell setting has provided a fertile ground for
us to explore different choices of combinators, leading us to
propose an alternative primitive from that chosen in the original
Orc DSL.

This paper contains quite a bit of code. We have been careful to
show the code that is useful in explaining the ideas, and elide
any that is simply boilerplate. All the code has been released as
a Hackage library, and may be installed using cabal.

A note about naming. We use the name Orc to refer to both the
original stand-alone DSL, and also to our embedding of the ideas
in Haskell. Mostly the context makes clear which we mean, but we
try to be explicit whenever there may be confusion.

2. The Orc Language
Orc is the combination of three things: many-valued concurrency,
external actions (effects), and managed resources, all packaged in
a high-level set of abstractions that feel more like scripting rather
than programming.

Unsurprisingly, like most EDSLs, Orc is a monad. We introduce
a type constructor Orc to represent Orc computations. An expres-
sion p::Orc A may perform many actions, and may produce many
results of type A. Orc terms are constructed using the following
primitive operators:

return :: a -> Orc a
(>>=) :: Orc a -> (a -> Orc b) -> Orc b
stop :: Orc a
(<|>) :: Orc a -> Orc a -> Orc a
(<+>) :: Orc a -> Orc a -> Orc a
eagerly :: Orc a -> Orc (Orc a)
liftIO :: IO a -> Orc a
runOrc :: Orc a -> IO ()

As usual, the monad operators return and bind (>>=) allow us to
use the do-notation to build Orc terms. Monads are often thought
as sequential, but it will soon be clear that this is not the case here.
A better intuition for the Orc monadic bind will be nested iteration,
rather like in the list monad. Thus an expression like

do x <- p
y <- q x
h y x

is best read as a sequence of “for each” statements. In particular,
“for each x drawn from the execution of p, and then for each y
drawn from the execution of (q x), produce all the values created
in the execution of (h x y).” Thus the Orc monad sets up a kind
of nested loop structure, except that the various “loops” are all run
concurrently.

The stop operation finishes a local thread of operations; any-
thing that was sequenced after a stop will not get executed, and
no value will be returned from this particular computation. So, for
example,

do x <- p
y <- stop
h y x

is just the same as

do x <- p
stop

Formally, stop is a left-zero of bind (but not a right-zero, as we
shall see later).

Now we come to the parallel operators. Orc provides three dif-
ferent kinds of parallelism. First, there is a parallel choice opera-
tor <|> (pronounced par), which has no intrinsic left-right bias—
unlike the list monad. Rather, (p <|> q) will perform all the ac-
tions of (and return all the results of) both p and q, whenever they
become available. This is true non-determinism in that the seman-
tics of Orc does not specify any ordering between p and q.

Secondly, there is a biased-choice operator <+> (pronounced
and then). In contrast to <|>, an expression of the form (p <+> q)
will perform all the actions of (and return all the results of) p, and
only when p is completely done will it then go on to perform all the
actions of (and return all the results of) q. It may be a misnomer to
list <+> as a parallel operator. We do so because its form is almost
identical to <|>, overlooking the fact that it imposes an ordering on
its arguments.

In both of these operators, p and q are independent of each other.
Unless they share a common state element, they will not affect or
communicate with each other. The third form of parallelism pro-
vides explicitly for communication. The Orc term (eagerly p)
will fire up p in a parallel thread, and immediately return a handle
for accessing the first result that p produces. The handle is itself an
Orc term, so can be used anywhere an Orc term (of the appropriate
type) would be used.

The final two operators relate the Orc monad and the IO monad.
Any IO operation can be lifted into the Orc monad using liftIO,
and it will behave just like it does in IO, returning the single result
that it would as an IO operation. The liftIO function is actually
the overloaded method of the MonadIO class, making Orc an in-
stance of MonadIO, and thus providing access to any functions de-
fined over that class. In particular, by replacing the standard module
Control.Concurrent with the overloaded replacement module
Control.Concurrent.MonadIO we can use MVars and the like
directly in Orc, as the module gives these accessor functions the
following overloaded types:

newEmptyMVar :: MonadIO io => io (MVar a)
takeMVar :: MonadIO io => MVar a -> io a
putMVar :: MonadIO io => MVar a -> a -> io ()

Some later examples will take advantage of this.
The runOrc function works in the other direction to liftIO,

allowing an Orc computation to be executed within the IO monad.
Note that there is no canonical way to reduce the many results of
an Orc computation into the single result that would be required of
an IO computation. Discarding the results is canonical, however, so
this is what the primitive does. We will later be able to produce a
result of (IO [a]) built in terms of this.

We often use a version of runOrc called printOrc that prints
each output on a separate line. In can be defined in Orc as follows.

printOrc :: Show a => Orc a -> IO ()
printOrc p = runOrc $ do

x <- p
liftIO $ putStrLn ("Ans = " ++ show x)

That is, for each value x obtained from the Orc computation p, print
a line displaying the answer. Note that the order that the results are
printed is dependent on the order that they are produced; the results
do not print in a reliable order.

2.1 Examples
To give a flavor of the Orc monad in practice, we’ll walk though a
series of examples. First, a trivial one. If we define,

fplang = do
w <- return "Haskell" <|> return "ML"

<|> return "Scheme"
return (w ++ " is great!")

then executing it (in the interactive Haskell environment GHCi)
proceeds as follows:

*Main> printOrc fplang
Ans = "Haskell is great!"
Ans = "Scheme is great!"
Ans = "ML is great!"

where the order of the answers is somewhat indeterminate. Now
consider a slightly richer example.

metronome = return () <|> (delay 2 >> metronome)

In parallel, metronome both returns a value (), and starts to wait
2 seconds before doing the whole thing all over again. The delay
function is obtained just by lifting the IO threadDelay operation
into the Orc monad (and we choose to use fractional seconds rather
than microseconds as our unit of time).

delay :: (RealFrac a) => a -> Orc ()
delay w = liftIO $ threadDelay (round (w * 1000000))

Here’s what we get when we print the result:

*Main> printOrc metronome
Ans = ()
Ans = ()
Ans = ()
^CInterrupted.

where each line was produced a couple of seconds after the previ-
ous one. Note that the <|> operator is actually an overloaded op-
erator from the standard Alternative class, of which Orc is an
instance. Additionally, Orc can be made instances of other stan-
dard classes, including the MonadPlus and Applicative classes,
which provides some useful standard combinators for free, such as:

guard :: Bool -> Orc ()
pure :: a -> Orc a
<*> :: Orc (a->b) -> Orc a -> Orc b
<$> :: (a->b) -> Orc a -> Orc b

Depending on its boolean argument, the guard function acts either
as stop or (return ()). The <*> operator provides function
application between Orc valued computations. The pure function
lifts values (and hence functions) into the Orc monad, and <$> acts
like application ($) lifted into the monad. These latter two are each
(sometimes helpful) renaming of return and map respectively.

We will see guard in use in this classic example: 8 Queens.

queens = extend []
<|> return ("Computing 8-queens...")

extend :: [Int] -> Orc String
extend xs =

if length xs == 8
then return (show xs)
else do
j <- liftList [1..8]
guard $ not (conflict xs j)
extend (j:xs)

liftList :: [a] -> Orc a
liftList = foldr (<|>) stop . map return

The argument to extend function represents a partial solution to
the problem by recording the row positions of the queens in some

initial number of columns. Then, for each value of j from 1 to 8
(explored in some indeterminate order), we consider whether the
position j will conflict with the previous partial solution. We omit
the code for the conflict testing function as it is a standard boolean
test and not Orc-specific.

Note that the body of extend is very similar to what one would
write within the list monad to solve the same problem. That is
no coincidence, as Orc may be seen as the merger of the list
monad with the IO monad (except that the order of results is
indeterminate).

In the case of 8 Queens, the output produced is:

*Main> printOrc queens
Ans = "Computing 8-queens..."
Ans = "[5,7,1,3,8,6,4,2]"
Ans = "[6,4,2,8,5,7,1,3]"
Ans = "[5,3,8,4,7,1,6,2]"
Ans = "[4,2,7,3,6,8,5,1]"
Ans = "[2,7,3,6,8,5,1,4]"
:

We immediately ran it again and got the following:

*Main> printOrc queens
Ans = "Computing 8-queens..."
Ans = "[4,2,7,3,6,8,5,1]"
Ans = "[3,6,8,1,4,7,5,2]"
Ans = "[3,6,4,2,8,5,7,1]"
Ans = "[2,7,3,6,8,5,1,4]"
Ans = "[5,7,1,3,8,6,4,2]"
:

Note that the order of the results is different because there is
genuine non-determinism going on here. Note also that in each case
the first answer given happens to be “Computing 8-queens”. There
is nothing in the semantics that says it will be the first answer, but
operationally it is likely to be the first answer because it can be
produced so quickly. If we wanted to ensure the ordering, we could
have written:

queens = return ("Computing 8-queens...")
<+> extend []

using the sequentializing operator <+>.
Our next examples demonstrate the interplay of effects and

concurrency. First, scan. On lists, a scan function passes over a
list calculating and returning all the partial foldl or foldr results
(depending which scan function we define). The corresponding
function in Orc will accumulate the partial fold results in whatever
order the values become available. We use a TVar within Orc to
store the ongoing accumulator, having written an atomic modify
operation in STM to increment it1. The code is as follows:

scan :: (a -> s -> s) -> s -> Orc a -> Orc s
scan f s p = do
accum <- newTVar s
x <- p
(w,w’) <- modifyTVar accum (f x)
return w’

where the type of modifyTVar is

modifyTVar :: MonadIO io =>
TVar a -> (a -> a) -> io (a,a)

1 Just like MVars, overloaded versions of TVar accessor func-
tions are available on Hackage, in this case in the module Con-
trol.Concurrent.STM.MonadIO. This allows us to have direct access
to TVars from Orc and IO (and from any other monad in the MonadIO
class).

Note that at first blush scan looks like linear sequential code. But
recall that we need to read the monadic <- as for each. As most
of these lines are simply liftings from IO, they will produce just
a single answer anyway, but the line x <- p could produce zero,
one, or many answers. So the code reads as follows: create an
accumulator containing the initial value s, and then for each value x
produced from p atomically modify the accumulator by combining
its value with x (through a partial application of f), and then return
the new accumulated value.

In a similar style, but this time using the bias of the <+> operator,
we can write a function which counts how many results another Orc
program produces.

count :: Orc a -> Orc (Either a Int)
count p = do

accum <- newTVar 0
(do x <- p

modifyTVar accum (+1)
return $ Left x)

<+>
(do c <- readTVar accum

return $ Right c)

For each value x produced by p, we increment the accumulator, and
then return a tagged version of the value x. Once everything in the
inner do is completed, we will read the accumulator, and return that
value too (appropriately tagged).

Here’s another variant: this collects the values produced by an
Orc computation, and delivers them as a list when all are com-
pleted.

collect :: Orc a -> Orc [a]
collect p = do

accum <- newTVar []
(do x <- p

modifyTVar accum (x:)
stop)

<+>
readTVar accum

Note that (collect p) will only return a result if p itself has only
finitely many results, and also completes all its execution in a finite
time. Similarly, count will return a Right value—the count—only
when and if its argument completes.

We can also program a variant of <+>, which we write as <?>
(pronounced or else). An expression of the form (p<?>q) will
perform all the actions of (and return all the results of) p, and only if
p produced no answers will it then go on to perform all the actions
of (and return all the results of) q.

(<?>) :: Orc a -> Orc a -> Orc a
p <?> q = do

tripwire <- newEmptyMVar
do x <- p

tryPutMVar tripwire ()
return x

<+>
do triggered <- tryTakeMVar tripwire

case triggered of
Nothing -> q
Just _ -> stop

For any value x produced by p, we set the tripwire variable. Once
p has completely finished, we then try to read the tripwire variable
to see if it was triggered. If not, we execute q, otherwise we simply
stop this alternative action.

The <?> operator is provided as a primitive in the standalone
Orc DSL. We choose to provide <+> instead as it is quite compli-

cated to define <+> in terms of <?>, whereas it is pretty straightfor-
ward the other way around.

3. Managed Concurrency
With <|> and <+>, we have a non-deterministic multi-valued
monad that includes IO actions. These parallel operations are su-
perb at generating concurrency, but not so good at limiting it when
it is no longer required. This is where eagerly comes into its own.
The purpose of the eagerly combinator is twofold: it sparks off
computations early, and it cuts down the set of results to a single
result (the first one that happens to be produced).

Many times we only care about the latter capability. For this we
can use eagerly to define a cut combinator, which returns just the
first answer its Orc argument produced.

cut:: Orc a -> Orc a
cut = join . eagerly

or for those less comfortable with monad magic,

cut p = do
ox <- eagerly p
ox

i.e. fire up the Orc expression p to get a handle to the trimmed
single result, and then immediately wait for that handle to deliver.
Only one value result will be produced.

Using cut, we can specify a simple timeout combinator, as
follows:

butAfter :: Orc a -> (Float, Orc a) -> Orc a
p ‘butAfter‘ (t,def) = cut (p <|> (delay t >> def))

The butAfter combinator sets up a race. If the Orc expression
p returns a result before the time t is expired, then it will be
the first result, and so the only one allowed through the cut. Any
other computations initiated in p will be terminated, along with the
delay and the default computation. On the other hand, if the delay
turns out to conclude sooner than the Orc expression, and if def
then produces a value first, it will be the sole value returned. Note
that if ever p terminates without producing any results, the default
computation def will execute (after the delay has completed).

To see the other role of eagerly (that of sparking a parallel
computation), consider parallel or—if either argument is true, we
want to return true even if the other argument has not declared a
result. Parallel or is not definable in the sequential lambda calculus,
but in Orc we define it as follows:

parallelOr :: Orc Bool -> Orc Bool -> Orc Bool
parallelOr p q = do
ox <- eagerly p
oy <- eagerly q
cut ((ox >>= guard >> return True)

<|> (oy >>= guard >> return True)
<|> (pure (||) <*> ox <*> oy))

Both p and q are sparked as computations, and ox and oy are bound
to Orc valued computations that will return the first values p and q
produce. Within the cut, we attempt three different computations
in parallel, corresponding to the three cases of parallel or. The first
two wait on the results of p and q respectively, and if True, return
True immediately. The third case applies the standard or function
(||) to the results of both p and q, which covers the case when both
are False. Whichever of these computations is the first to succeed
becomes the single result of the whole parallelOr function.

The sync combinator shows a more general use of eagerly. It
captures the idea of fork-join. The function sync launches two Orc
computations in parallel, and then waits for a result to come back

from both before continuing. In this case we have parameterized
over what function to use to combine the results.

sync :: (a->b->c) -> Orc a -> Orc b -> Orc c
sync f p q = do

po <- eagerly p
qo <- eagerly q
pure f <*> po <*> qo

Just as in parallelOr, (pure f) lifts the function f into the Orc
monad, whereupon <*> applies it to each argument as their values
become available. Here’s an easy use of sync:

notBefore:: Orc a -> Float -> Orc a
p ‘notBefore‘ w = sync const p (delay w)

Unlike delay which delays the start of a computation, notBefore
delays the result of the computation (though like delay it also
returns just a single value).

We now have enough machinery to do the example described in
the introduction. Assume that we have functions

getQuote :: Query -> Orc Quote
price :: Quote -> Int

which, respectively, attempt to obtain each individual quote (with
an HTTP query, for example), and to extract the price of the quote.
Then we can code up the logic of the query simply as follows.

quotes :: Query -> Query -> Orc Quote
quotes srcA srcB = do

quoteA <- eagerly $ getQuote srcA
quoteB <- eagerly $ getQuote srcB
cut ((pure least <*> quoteA <*> quoteB)

<|> (quoteA >>= threshold)
<|> (quoteB >>= threshold)
<|> (delay 25 >> quoteA <|> quoteB)
<|> (delay 30 >> return noQuote))

least x y = if price x < price y then x else y
threshold x = guard (price x < 300) >> return x

The two quotes are launched eagerly, and then whichever of the
various clauses in the cut is completed first, that’s what the result
will be.

4. Semantics
With any DSL, it is useful to provide laws to help the user under-
stand the behavior without having to think operationally. Providing
laws also helps ensure that the design is clean. Unsurprisingly given
its origin as a process calculus, the Orc language stipulates a set of
laws.

A number of the Orc laws are just the monad laws (which
incidentally provides yet more evidence that a monadic formulation
of Orc is very natural):

LAW 1 (Monad Laws). For all x, k, p, and h,
Left-Return: (return x >>= k) = k x
Right-Return: (p >>= return) = p
Bind-Associativity: ((p >>= k) >>= h) = (p >>= (k >=> h))

Note that the >=> operator is monadic (Kleisli) composition. That
is, k >=> h = \x -> k x >>= h. In writing laws such as these,
we assume the variables to act as if they were let-bound variables
in Haskell (so we don’t have to worry about variable capture), and
of the appropriate type.

The main value of the monad laws is that they allow flexible use
of the do-notation. We can abstract a sub-portion of a sequence of
Orc operations, and understand them in isolation from the rest of
the context.

The combinators stop and <|> satisfy laws as follows:

LAW 2 (Par Laws). For all k, p, q, and r,
Left-Zero: (stop >>= k) = stop
Stop-Identity: p <|> stop = p
Par-Commutativity: p <|> q = q <|> p
Par-Associativity: p <|> (q <|> r) = (p <|> q) <|> r
Par-Bind: ((p <|> q) >>= k) = ((p >>= k) <|> (q >>= k))

Note that these are not the same as the laws typically suggested for
the MonadPlus class. In particular, Orc calls for the parallel com-
binator to be commutative, a property violated in many instances of
the MonadPlus class, including the classic instance, List, in which
<|> is ++ (list append).

On the other hand, a commonly suggested law for the MonadPlus
class is missing from the list here, namely the Right-Zero law:

p >> stop = stop {- Not true -}

We do not want this law to hold in Orc, as we want the effects of
p to occur, even though it produces no value results. A key point
here is that Orc is not only a multiple-value monad, but is equally
a concurrent-effect monad. Here’s an example where we might use
the (p >> stop) paradigm.

hassle = (metronome >> email("Simon","Hey!") >> stop)
‘butAfter‘ (60, return ())

Over the course of a minute, this will send Simon an irritating
email every 2 seconds. Note that we pipe the result of the email
operator into stop in order to ensure that the butAfter combinator
continues to wait until the timeout is achieved. We saw a similar use
of stop in the collect example earlier.

The Par-Bind law also deserves a mention. By extrapolation,
this law tells us that code which follows a bind (k, here) gets re-
executed for each value that is produced by the left hand argument.
That is, all its effects are re-performed, and all its results are re-
returned. But what about the dual law? That is, are

1. p >>= (\x -> h x <|> k x)

2. (p >>= h) <|> (p >>= k)

equal? The answer is a resounding No. In general these two ex-
pressions are quite different. In the first term, the effects of p are
performed one, whereas they may be performed twice (or more) in
the second term.

The laws for <+> are similar: <+> is associative, and has stop
as a left and right identity. However, it is not commutative, and
neither does it satisfy a corresponding version of the Par-Bind law
(as the continuation may re-arrange the order in which the results
are produced).

4.1 Eagerly Laws
For the pruning operator eagerly we have again taken the cor-
responding laws from Orc, and translated them into our monadic
Haskell setting.

The first we consider is called Distributivity over >>. Translating
into our setting, we would express this property as follows: for all
(let-bound variables) q, k, and h,

eagerly q >>= (k >=> h)
= (eagerly q >>= k) >>= h

Now we can see that this law is just an instance of bind associativ-
ity, where (eagerly q) substitutes for p in the expression of the
law. It is this property that demonstrates that eagerly can be just
a combinator, and does not need to have its own binding construct
(as it does in the original Orc DSL).

The next law about eagerly is a weak dual to the Par-Bind law
we saw earlier.

LAW 3 (Par-Eagerly). For all p, k, and h,

eagerly p >>= (\x -> k x <|> h)
= (eagerly p >>= k) <|> h

Extrapolating from this law, we learn that later computations (h
in this case) do not wait for an Orc term guarded by eagerly to
produce a result before being fired up themselves. That is, the ex-
pression (eagerly p) places p outside of a sequential flow of con-
trol, to be performed concurrently according to some undetermined
schedule. The next law says something similar:

LAW 4 (Eagerly-Swap). For all p, q, and k,

do y <- eagerly p
x <- eagerly q
k x y

= do x <- eagerly q
y <- eagerly p
k x y

It doesn’t matter in what order the eager computations are launched:
the effects and the result will be the same. Of course, what actu-
ally gets produced in each case on any given run will depend on
undetermined scheduling choices.

Finally, in the original Orc setting, there is a law called Elimi-
nation of Where. In our setting, this corresponds to lifting IO oper-
ations into the Orc monad using liftIO, so the law becomes:

LAW 5 (Eagerly-IO). For all p, m,

eagerly (liftIO m) >> p = (liftIO m >> stop) <|> p

Like Par-Eagerly, this law translates a sequential use of eagerly
into a parallel usage, demonstrating the non-blocking concurrent
nature of eagerly. Again, just because we pipe any value result
into stop (the Orc equivalent of /dev/null) doesn’t mean that we
want to lose the effects of m. A stronger law, in which liftIO m is
replaced by an arbitrary Orc term q seems plausible at first, i.e. that

(eagerly q >> p) = ((q >> stop) <|> p)

Unfortunately, this is false. It expresses well that q is done concur-
rently, but misses the fact that eagerly also trims its argument
to produce a single result only, and kills any remaining effects.
No such trimming is done with (q >> stop). To capture this we
would need the law to have the form

(eagerly q >> p) = ((cut q >> stop) <|> p)

but then we haven’t fully eliminated eagerly from the right hand
side.

5. Example
Let’s work a slightly larger example to see Orc blended with other
parts of Haskell. Imagine that we are holding an auction. We start
by selecting an item and determining a good opening price for it,
assemble a group of bidders who are interested in competing to
purchase this item. We start the auction by asking the group for
something above the initial asking price. After someone makes a
bid, we give everyone the opportunity to raise the price, accepting
a higher bid if it arrives within a time limit. Once no additional bids
are received, we stop the bidding, awarding the item to the bidder
with the highest bid.

The code for this is in Figure 1. The main function is auction.
We start the auction by giving all of the members of the auction
opportunity to place an initial bid via the seekBid function. We
apply cut in order to take only the quickest response. Next, the
auction enters a phase of repeated bidding, requesting that members
of the auction make bids, and timing out after 5 seconds if no
bid is received. This timeout is accomplished with the use of the

import Orc
import System.Random

data Bidder = Bidder
{ name :: String
, logic :: Item -> Price -> Orc Price }
type Item = String
type Price = Int

auction :: Item -> Price -> [Bidder] -> Orc ()
auction item price members = do
(bid,bidder) <- cut (seekBid item price members)
continue item bid bidder members

continue :: Item -> Price -> Bidder -> [Bidder] ->
Orc ()

continue item price bidder members = do
liftIO $ putStrLn (name bidder++

" bids $"++show price)
mb <- (Just <$> seekBid item price members)

‘butAfter‘ (5, return Nothing)
case mb of

Nothing -> purchase item price bidder
Just (bid’,bidder’) ->
continue item bid’ bidder’ members

seekBid :: Item -> Price -> [Bidder] ->
Orc (Price, Bidder)

seekBid item price members
= foldr (<|>) stop

[consider item price m | m <- members]

consider :: Item -> Price -> Bidder ->
Orc (Price, Bidder)

consider item price member = do
bid <- logic member item price
guard (bid > price)
return (bid,member)

purchase :: Item -> Price -> Bidder -> Orc ()
purchase item price bidder = do
liftIO $ putStrLn (name bidder++" wins "

++item++" for $"++show price)

Figure 1. The “Orction”

butAfter combinator, allowing a Nothing to be put in place of
the bid if none of the bidders decide to act in time. If there is no
response to the latest bid, the current highest bidder will be awarded
the item, and the computation terminates. If there was a new bid,
the auction will continue with the whole bidding process repeating
again. Note that the getBid function is lifted into the Orc monad
using liftIO. The idea here is that it could be doing an arbitrary
amount of work in order to retrieve the bid from a bidder.

5.1 Orc in Practice
One of the interesting aspects of the auction is that there the el-
ements of concurrency are all very short-lived. There is very lit-
tle deeply concurrent backtracking-style computation of the form
found in 8-queens, for example. In our experience, different appli-
cations call for quite different blends of deep and shallow concur-
rency, along with other kinds of effects.

The original motivating application for Orc at Galois was writ-
ing concurrent tests for virtual machines running in the Xen hyper-

visor. These machines need to be prompted to talk to each other,
and their communications had to be monitored to see if they were
correct. At any time there is the possibility that one of these ma-
chines will die, or fail to start up in the first instance. Again, many
of the test scripts show quite shallow parallelism, but having it
available and well integrated with IO actions was very important.

Our first implementation of Orc had some subtle concurrency
bugs which meant that the test harness would sometimes hang,
maybe after running all the tests, or maybe not. Of course, we know
now that it was a bug in the Orc implementation; at the time it was
very difficult to find out what was wrong. Fixing the test framework
was what prompted this more rigorous examination of Orc.

6. Implementing the Orc Monad
There are a number of different ways to implement Orc. In earlier
versions we used resumptions over the IO monad, but now have
a much more efficient implementation using continuations over the
IO monad. The result is disarmingly simple, partly because we hide
some of the resource abstraction one level down. We define:

newtype Orc a = Orc {(#) :: (a -> IO ()) -> IO ()}

We will later change the IO monad to an IO monad with an envi-
ronment, but considering it as IO for now will be sufficient.

The functor and monad instance definitions for Orc are just the
standard continuation instances, where the answer type is itself a
monad. We use the record selector # as an infix operator to apply
an Orc term to its continuation. Thus:

instance Functor Orc where
fmap f p = Orc $ \k -> p # (k . f)

instance Monad Orc where
return x = Orc $ \k -> k x
p >>= h = Orc $ \k -> p # (\x -> h x # k)
fail _ = stop

stop :: Orc a
stop = Orc $ _ -> return ()

In the bind (>>=) we execute p with the continuation that will take
its result (x), and pass it to the h function—which is itself handed
the continuation of the the whole expression, namely k. The fail
method says what happens when pattern matching fails in the do-
notation. In this case, we simply finish the thread, discarding any
computations that may have been scheduled in the continuation.

The plan for p<|>q is that both p and q are executed (with any
effects they have), passing any results they produce to the compu-
tations that follow them. We model many values being returned by
calling the continuation repeatedly. Thus,

par :: Orc a -> Orc a -> Orc a
par p q = Orc $ \k -> do

fork (p # k)
fork (q # k)
return ()

instance Alternative Orc where
empty = stop
(<|>) = par

instance MonadIO Orc where
liftIO io = Orc $ \k -> (liftIO io >>= k)

We can optimize the definition of <|> to avoid the second fork,
and instead execute (q#k) in the current thread; but for now we
will work with the symmetric version as it makes the examination
of the laws more straightforward.

Also, as noted earlier, we will be using a monad other than
just IO, so we introduce fork as an overloaded operator, which
is simply forkIO on the IO monad. Similarly, in liftIO, we lift
any IO computation into Orc by executing the computation and
applying the continuation to the result. This >>= is in the IO monad,
or rather in the IO-like monad that we will later use instead of IO
(hence the inner liftIO).

The eagerly combinator launches its Orc argument in a sepa-
rate forked thread, and immediately returns with a single value that
is itself an Orc computation. This result computation, when exe-
cuted, will return just the first result of the original Orc argument.
Here’s a simplified definition:

eagerly :: Orc a -> Orc (Orc a)
eagerly p = Orc $ \k -> do

res <- newEmptyMVar
fork (p ‘saveOnce‘ res)
k (liftIO $ readMVar res)

saveOnce :: Orc a -> MVar a -> IO ()
p ‘saveOnce‘ r = do

ticket <- newMVar ()
p # \x -> (takeMVar ticket >> putMVar r x)

The function eagerly executes p in a forked process with a con-
tinuation that writes p’s result in an MVar. It then invokes its own
continuation on a simple Orc process that reads the result from p
when it becomes available. As we may need to access the result
value many times (recall the ticketing function quotes, for exam-
ple), we use readMVar to allow the result to be read many times,
rather than using takeVar which would block after the first access.
As p may well invoke its continuation many times, we have to make
sure that only the first of the writes succeeds, so we use the MVar
ticket as a gating operation.

7. Thread Leaks
We now turn our attention to the IO substrate on which the Orc
combinators are built. We have plenty of opportunities for creat-
ing work, whether through the parallel construct <|> or with the
eagerly combinator, but we have no particular capability for con-
trolling and shutting down work when it is no longer needed. In
quotes, for example, if the B-source delivers an acceptable quote,
we have no need to continue analyzing the A-source quote, not con-
tinuing with the timeout computations, as their results cannot affect
the outcome of the composite query. In these cases they are simple
computations, so perhaps it’s not a problem, but in general the alter-
native computations could represent an arbitrary amount of work,
creating a multiplicity of threads perhaps, none of which are re-
quired. This is what might be styled a thread-leak: when unneeded
threads are not closed properly, and the number of unused threads
grow with time.

Fortunately, the Orc combinators provide sufficient guidance
about the programmer’s intent to allow us to build in automatic
thread management. The Orc programmer can avoid thinking about
thread management to about the same extent that a functional
programmer can avoid having to think about space management.
That is, for most purposes, the Orc programmer can just assume
that the implementation does The Right Thing. But just as with
space, there are times when the threads themselves become the
critical resource, and then the Orc programmer will need to give
more careful thought as to how many threads are being created
and when they are being retired. This kind of advanced thread
management is the topic of current research, and beyond the scope
of this paper.

About the only change we will make to introduce automatic
thread management is to change the monad underlying Orc.

newtype Orc a = Orc {(#)::(a -> HIO ()) -> HIO ()}

We introduce a hierarchical IO monad, HIO, which is just the
IO monad augmented with an environment that tracks the current
thread group. Whenever a new thread is forked, we will register
its thread identifier with the current thread group, so that when the
computations of a group are no longer needed, they can all be killed
en masse. We will also track how many threads are active within
the group, which will allow us to tell when a group has finished
naturally. We will need this capability to define <+>.

newtype HIO a = HIO {inGroup :: Group -> IO a}

type Group = (TVar Int, TVar Inhabitants)
data Inhabitants = Closed | Open [Entry]
data Entry = Thread ThreadId

| Group Group

newPrimGroup :: IO Group
register :: Entry -> Group -> IO ()
killGroup :: Group -> IO ()

increment, decrement, isZero :: Group -> IO ()

instance MonadIO HIO where
liftIO io = HIO $ _ -> io

As the type declarations indicate, groups contain both thread iden-
tifiers and sub-groups, providing a hierarchical structure to the
groups. They also include a count of the number of active threads
they contain.

With these groups, we can provide higher-level access functions
to the Orc layer. To co-opt the earlier definition of par we make
HIO an instance of the HasFork class, by providing a definition
of fork in which a freshly forked thread will register itself within
the current group, and then go on to execute its body in that same
group.

instance HasFork HIO where
fork hio = HIO $ \g -> block $ do
increment g
fork (block (do tid <- myThreadId

register (Thread tid) g
unblock (hio ‘inGroup‘ g))

‘finally‘
decrement g)

We use some GHC-specific aspects of thread implementation here.
The block function prevents the thread registration code from be-
ing interrupted by an asynchronous exception, but once we enter the
body of the thread (hio executing in group g) we use "unblock"to
reenable exceptions. When the thread terminates (either naturally
by running out of code, or through being killed with an exception),
the decrement code is executed, to record that there is one fewer
thread in the group.

Note that, unlike some approaches, we don’t automatically gen-
erate a new sub-group for each forked thread. We tried that at first,
but our experience was that it is an unhelpful conflation of ideas.
In fact, we concluded that the concept of fork and the concept of
group are quite distinct, and should be handled separately. There
are echoes here with Scheme’s custodians, but we are not nearly so
comprehensive [FFKF99].

Keeping the Group type abstract, we can define accessor func-
tions for groups. The newGroup function creates a new sub-group
within the existing group. The associated function local sets the
current group environment within the HIO monad, close shuts
down all the threads in the group (and sub-groups) at the end, and

finished hangs until the group has completed (again, either natu-
rally or through being killed).

newGroup :: HIO Group
newGroup = HIO $ \g -> do

g’ <- newPrimGroup
register (Group g’) g
return g’

local :: Group -> HIO a -> HIO a
local g p = liftIO (p ‘inGroup‘ g)

close :: Group -> HIO ()
close g = liftIO $ killGroup g

finished :: Group -> HIO ()
finished g = liftIO $ isZero g

These functions provide the capability we require for removing
thread leaks from eagerly, which we now redefine as follows:

eagerly :: Orc a -> Orc (Orc a)
eagerly p = Orc $ \k -> do

res <- newEmptyMVar
g <- newGroup
local g $ fork (p ‘saveOnce‘ (res,g))
k (liftIO $ readMVar res)

saveOnce :: Orc a -> (MVar a,Group) -> HIO ()
p ‘saveOnce‘ (r,g) = do

ticket <- newMVar ()
p # \x -> (takeMVar ticket >> putMVar r x

>> close g)

The execution of p takes place within a fresh sub-group w. The
first time p returns a result (i.e. invokes its continuation), the group
is closed down, and all ongoing work is terminated. The group
infrastructure is sufficient for us to now define <+>, as follows:

(<+>) :: Orc a -> Orc a -> Orc a
p <+> q = Orc $ \k -> do

g <- newGroup
local g $ fork (p # k)
finished g
q # k

Here, the new group w is not used to prematurely shut the work
down, but rather to scope what work is active and when it all
completes.

To blend well with this framework, users of liftIO should take
into account the possibility that their IO operations will be sum-
marily killed off, and include appropriate bracketing or finalizers
to close down any resources they control [MPMR01].

8. Demonstrating the Orc Laws
We wanted to explore to what extent our implementation satis-
fied the laws provided earlier. Unfortunately, we cannot do formal
proofs as the foundation of concurrent Haskell has not stabilized
sufficiently: the published transition semantics for concurrency and
asynchronous exceptions [MPMR01] are not what GHC currently
implements. We have a draft semantics for Orc in the same style,
but until the underlying semantics stabilizes, it is hard to say what
the Orc extensions would mean.

What we have done instead, is reduce the laws on Orc to laws
that we expect the underlying monad to satisfy (whether IO or
HIO). We currently have justifications for almost all the monad and
Orc laws, but had to assume certain properties from the underlying
concurrency layer to do so.

In the case of IO, it will be hit and miss whether they will be
satisfied. In the case of HIO, we have an opportunity to build the
monad so that it can satisfy the appropriate laws, perhaps with proof
obligations to the user when additional IO actions are lifted into
Orc. We will look at a couple of examples.

First, the monad laws themselves may be shown by simple equa-
tional reasoning. For example, the associative monadic law goes as
follows (we have dropped the Orc constructor, and # deconstructor
for to make the presentation simpler):

(p >>= g) >>= h
= \k -> (\k’ -> p (\y -> g y k’)) (\x -> h x k)
= \k -> p (\y -> g y (\x -> h x k))
= \k -> p (\y -> (g y >>= h) k)
= \k -> p (\y -> (g >=> h) y k)
p >>= (g >=> h)

This same reasoning works for any continuation monad—there is
nothing Orc-specific here.

For the Par-Commutativity law (p <|> q = q <|> p), sim-
ple equational reasoning again shows us exactly what we need to
know—in this case, what key property we need of the underlying
system (again we drop the Orc constructor):

p <|> q
= \k -> do

fork (p k)
fork (q k)
return ()

= {Fork-Swap}
\k -> do
fork (q k)
fork (p k)
return ()

= q <|> p

The key step requires the following equivalence

LAW 6 (Fork-Swap). For all ioA and ioB of type HIO (),

fork ioA >> fork ioB = fork ioB >> fork ioA

At one level, it is hard to imagine any true concurrent system violat-
ing this law. Indeed, speaking loosely for a moment, this law might
be able to be taken as the definition of real (rather than simulated)
concurrency. By real concurrency we intuit it to be where the con-
current operations are acting in distinct and unsynchronized clock
or time domains. On the other hand, the law will only be true sub-
ject to some appropriate equivalence where the underlying thread
machinery is guaranteed not to be visible.

The Par-Associativity law shows a similar pattern:

(p <|> q) <|> r
= \k -> do

fork ((p <|> q) k)
fork (r k)
return ()

= \k -> do
fork (fork (p k) >> q k)
fork (r k)
return ()

{Fork-Floating}
= \k -> do

fork (p k)
fork (q k)
fork (r k)
return ()

{Fork-Empty}
= \k -> do

fork (p k)
fork (q k)
fork (r k)
fork (return ())
return ()

{Fork-Floating}
= \k -> do

fork (p k)
fork (do fork (q k)

fork (r k)
return ())

return ()
= \k -> do

fork (p k)
fork ((q <|> r) k)
return ()

= p <|> (q <|> r)

We needed two lemmas for moving code in and out of threads, and
for eliminating null threads.

LAW 7 (Fork-Floating). For all p and q
fork (fork q >>= p) = (fork q >>= (fork . p))

LAW 8 (Fork-Empty). For all p
fork(return()) >> p = p

Assuming these laws about the concurrency layer allows us to to
do most of our reasoning about the Orc combinators at the level
of Haskell code, rather than having to do low-level concurrency
proofs directly. This was very helpful. In fact, moving towards an
algebraic theory of threads seems quite promising as a generally
applicable proof technique.

9. Design Alternatives
9.1 Redoing Eagerly
The original Orc DSL has explicit roles for both laziness and strict-
ness. The primitive value-operators are all strict in their arguments,
but just about everything else is non-strict. In particular, the prun-
ing relies explicitly on laziness: the single value result of the eager
computation is bound lazily, and the subsequent Orc computation
will pause only at a point that the value of the previous computation
is actually required (e.g. by a strict primitive function).

Given Haskell’s laziness, it was very appealing to build a corre-
sponding design in Haskell. We defined a combinator

val :: Orc a -> Orc a

that executes its Orc argument, returning immediately with a
pointer to a lazy thunk that contains the single (trimmed) result
of the computation.

val :: Orc a -> Orc a
val p = Orc $ \k -> do

res <- newEmptyMVar
w <- newGroup
local w $ fork (p ‘saveOnce‘ (res,w))
k (unsafePerformIO $ readMVar res)

The definition is identical to the definition of eagerly, except that
we replace the liftIO with unsafePerformIO. Despite being
“unsafe”, this is a very mild use of unsafePerformIO, akin to its
use within the GHC function unsafeInterleaveIO.

Here’s the parallel-or example redone using val

parallelOr p q = do
x <- val p
y <- val q

cut ((guard x >> return True)
<|> (guard y >> return True)
<|> publish (x || y))

In this formulation, x and y are bound to lazy thunks that will
evaluate to the boolean values themselves, rather than the Orc
computations we had in the previous version. So we can apply
guard and || directly to these values, and not have to do the
application within the Orc monad.

However, for this to work, we need to introduce a new function
publish,

publish :: NFData a => a -> Orc a
publish x = deepseq x $ return x

The publish function is a hyperstrict form of return, hence
the use of deepseq from the NFData class. A result is returned
only once its argument is completely evaluated. Had we used
return in the parallelOr example instead, then the expression
return (x||y) would have immediately succeeded, despite the
values of x and y not being available, and the parallel nature of the
computation would be lost.

Similarly, consider redoing the quotes function from earlier:

quotes :: Query -> Query -> Orc Quote
quotes srcA srcB = do

resultA <- val $ getQuote srcA
resultB <- val $ getQuote srcB
cut (publish (least resultA resultB)

<|> (threshold resultA)
<|> (threshold resultB)
<|> (delay 25 >>

publish resultA <|> publish resultB)
<|> (delay 30 >> return noQuote))

Again, we have to be quite careful about when we have to force
evaluation and when we don’t need to.

Stepping back, it is certainly pleasant to be able to use a function
like least directly, and not have to lift it into the monad in order
to extract the results from the pruned computation. The solution is
cute, but also ultimately unpredictable as it relies on knowing when
expressions are evaluated. In the design we adopted, we have all the
same capabilities and with more control and predictability, at the
cost of a slightly more explicit stepping between the two worlds.

9.2 Other Combinators
As we program with the Orc combinators, we find that various pat-
terns of use crop up repeatedly. For example, we may want to ex-
ecute an Orc expression, allowing it to perform its effects contin-
ually, until some termination condition arises, such as a response
from a remote request. We can capture this pattern as follows:

onlyUntil :: Orc a -> Orc b -> Orc b
p ‘onlyUntil‘ done = cut (silent p <|> done)

silent :: Orc a -> Orc b
silent p = p >> stop

That we don’t care about the value results of p is shown by the
use of silent, where the results are fed into stop. On the other
hand, as soon as done returns any result, the cut will shut down
the expression, including any subtasks of p.

Figure 2 shows a use of onlyUntil, this in the context of a
fairly intricate Orc combinator. The combinator takeOrc is rather
like the list function take: it returns the first n results its argument
produces, and then terminates the computation. Two MVars are
used to communicate between two parallel Orc operations, one
of which is running the Orc argument p, the other of which is
counting and transmitting the results. The same technique applies

takeOrc :: Int -> Orc a -> Orc a
takeOrc n p = do

vals <- newEmptyMVar
end <- newEmptyMVar
echo n vals end <|> silent (sandbox p vals end)

dropOrc :: Int -> Orc a -> Orc a
dropOrc n p = do

countdown <- newTVar n
x <- p
join $ atomically $ do
w <- readTVarSTM countdown
if w==0 then return $ return x

else do
writeTVarSTM countdown (w-1)
return stop

zipOrc :: Orc a -> Orc b -> Orc (a,b)
zipOrc p q = do

pvals <- newEmptyMVar
qvals <- newEmptyMVar
end <- newEmptyMVar
zipp pvals qvals end
<|> silent (sandbox p pvals end)
<|> silent (sandbox q qvals end)

-- Auxilliary definitions

sandbox :: Orc a -> MVar (Maybe a) ->
MVar () -> Orc ()

sandbox p vals end
= ((p >>= (putMVar vals . Just))

<+> putMVar vals Nothing)
‘onlyUntil‘ takeMVar end

echo :: Int -> MVar (Maybe a) -> MVar () -> Orc a
echo 0 _ end = silent (putMVar end ())
echo j vals end = do

mx <- takeMVar vals
case mx of

Nothing -> silent (putMVar end ())
Just x -> return x <|> echo (j-1) vals end

zipp :: MVar (Maybe a) -> MVar (Maybe b) ->
MVar () -> Orc (a,b)

zipp pvals qvals end = do
mx <- takeMVar pvals
my <- takeMVar qvals
case mx of

Nothing -> silent (putMVar end ()
>> putMVar end ())

Just x -> case my of
Nothing -> silent (putMVar end ()

>> putMVar end ())
Just y -> return (x,y)

<|> zipp pvals qvals end

Figure 2. List-like combinators defined within Orc

within the definition of zipOrc, we just have to double up the
communications.

The dropOrc function is able to use a simpler technique, be-
cause it has no need to prematurely terminate the Orc computation
that is producing the results. Note the use of readTVarSTM, which
is our name for the TVar read operation within the STM monad
itself (we reserve the less explicit readTVar for reading TVars in
any MonadIO instance.

We shall close this section by noting a couple of neat relation-
ships. The cut combinator uses the trimming power of eagerly
but not the concurrency. That trimming power is also provided by
takeOrc. Therefore we have that

cut = takeOrc 1

Similarly, the synchronization function uses both the trimming and
the parallel execution provided by eagerly, with a synchroniza-
tion on the timing of the results. Thus,

sync (,) p q = cut (zipOrc p q)

10. Related Work
10.1 The Orc DSL
The original Orc DSL is a concurrent, impure, functional language
[K08]. It started life as a process calculus, but has evolved to
become a fully fledged scripting language, designed to interact
closely with Java.

The primitives in Orc are called sites. These are (effectful) func-
tions that are typically defined outside of Orc. Examples include
Email(addr,mess) or Prompt("Name:") etc. In addition, basic
arithmetic functions are also considered sites.

There were originally three main combinators in Orc: sequential
composition, parallel composition, and pruning. The fourth combi-
nator, for biased choice, has recently been added.

Sequential composition is written with an >> operator. If the
result of a previous expression needs to be named, the programmer
may place an identifier or pattern in the midst of the operator.

A(b,c) >x> C(x)

This syntax strongly echoes the two variations on the monadic bind
operator in Haskell, either discarding or naming the result in a
sequence of operations.

Parallel composition is written with a bar operator (|). It causes
the two expressions to be executed in parallel. Thus, the expression
1 | 2 will cause execution to branch, with any successive opera-
tions being done twice—once for the value 1 and once for the value
2.

To take a simple example, finding all the combinations of num-
bers from 1 to 10 that add up to 11 is written in Orc as follows

def Iterate(l) = l >h:t> (h | Iterate(t))
val ls = [1,2,3,4,5,6,7,8,9,10]
Iterate(ls) >x> Iterate(ls) >y>

if(x+y = 10) >> (x,y)

Note the use of pattern matching in the midst of the sequential
combinator to separate the head and tail of the list.

The prune combinator (called Where in early versions of Orc) is
written <<. This operator behaves syntactically like the sequential
composition operator, but operationally has some key differences.
First, in the expression F << G, both arguments execute in parallel
and, second, only the first successful result from G is passed to F,
and other results are discarded. This is useful when dealing with
functions that could potentially produce infinite data, or for timing
out long-running computation.

As the Iterate example showed above, Orc programs are built
by writing functions, using recursion in order to provide loop-like

behavior. Whereas sites are all strict, functions (and combinators)
are not. The non-strictness allows control structures to be coded up
as functions. For example, the function:

def Timeout(n,default,m)
= v <v< ((Rtimer(n) >> default) | m)

makes it possible to stop long-running jobs, and provide a default
value back in the event of timeout. It’s worth noting that if the
default value never produces a value itself, then the long-running
job will continue to run, even after the timeout has occurred.

Bringing these concepts together, here is an example from the
Orc distribution.

def isPrime(n) =
def primeat(i) =
val b = i * i <= n

if(b) >> (n % i /= 0) && primeat(i+1)
| if(~b) >> true

primeat(2)

def Metronome(i) = i | Rtimer(500) >> Metronome(i+1)

Metronome(2) >n> if(isPrime(n)) >> n

This example uses a user-defined recursive function Metronome
to generate a sequence of increasing values starting at 2. Each of
these values (n) are checked for primality, and if so are returned
as the result of the computation. As the Metronome function uses
the bar operator, each prime candidate will be checked in parallel,
with a 500ms delay introduced by the call to Rtimer having been
provided to pace the output to a human scale.

As for the laws, in the original Orc the distributivity law is
expressed as follows: if H is x-free, then

((K >> H) <x< Q)=(K <x< Q) >> H

Here K, H, and Q range over Orc syntactic terms (hence the need to
discuss freeness of variables). Similarly, the law called Elimination
of Where states that if Q is x-free, for site M

(Q <x< M) = Q |(M >> stop)

By reimplementing the Orc process calculus in Haskell, we pro-
vide Haskell programmers with the flexibility of the Orc calculus
directly. But the Haskell embedding introduces new dimensions
too. First of all, this is the first strongly typed implementation of
Orc, with all the usual benefits a type system provides. Moreover,
the Haskell distinction between value and computation makes it
much easier for a user to write new combinators than when the two
worlds are merged. Also, building on the monadic framework pro-
vides access to existing libraries of monad abstractions which can
be re-used in Orc directly.

10.2 Other Related Work
There have been a number of previous partial implementations of
Orc in Haskell. One recent effort [CB09] was the result of a senior
undergraduate project. Like in this paper, the implementation used
a monad to structure the sequential binding operation. Unlike here,
though, the implementation had significant communication over-
head between threads and, more significantly, did not provide an
implementation of the critical Orc pruning construct Where, which
we modeled in two ways with "eagerly"and val.

The instances of MonadPlus that are most similar to the Orc im-
plementation here are those given in the LogicT library [KSFS05].
The presentation is different, and the underlying structure for the
top level monad is more like resumptions than continuations. More
significantly, the LogicT work places particular emphasis on the
backtracking aspect of the monad. In particular, the various imple-

mentations substituted alternative backtracking strategies, particu-
larly as a mechanism for search. One way to view this paper is an
exploration of what happens to the ideas of LogicT when the un-
derlying monad is deliberately concurrent and effectful, and how
those effects are managed in the presence of pruning.

Another relevant approach is the MonadLib library of monad
transformers that allow complex monads to be constructed from
relatively simple layers [D08]. The ChoiceT transformer resembles
the Orc monad in that it allows for choice points to be introduced,
though the evaluation of these choices is left-biased.

Functional reactive programming (FRP) is an arrows-based
paradigm for reactive programming that has been used in a va-
riety of settings, including animated graphics and robotics [EH97].
In contrast to the explicit concurrency of Orc, input is viewed as a
time-varying stream of events and/or values. It is not yet clear what
the expressive tradeoff is between FRP and Orc, but they seem to
be contrasting approaches to similar kinds of domains.

The mechanism we used for managing and controlling the fork-
ing of concurrent processes was a simple version of Scheme custo-
dians [FFKF99]. A custodian is responsible for managing threads,
ports, sockets, and so on, and whenever a thread or port is created,
it is handed to the current custodian for management. Our notion
of current group in HIO is similar, though all we manage are the
threads. When a custodian is shut down, it closes all the resources it
manages, and terminates its threads. Moreover, a closed custodian
cannot manage any new objects, and similarly any attempt to reg-
ister a thread with a closed locale will cause the thread to die. The
success of custodians suggests we ought to consider going further
with our locales, so that they too can manage objects other than
threads, for example by registering finalizers when liftIO is used
to lift more primitive IO operations into Orc.

11. Conclusion
In our experience with practical examples, the concurrency portions
of Orc form a small part of the overall programs we write, and we
need a rich language to do the other parts. The original Orc effort
seems to have observed the same phenomenon, as it now comes
with a large expression language to complement the concurrency
parts. This experience suggests that Orc really should be thought of
as a calculus that exists within the context of other languages, rather
than a language in its own right. It is very naturally an embedded
DSL.

Here we have embedded Orc in Haskell, but in principle it could
be embedded in other languages too. The main elements of Haskell
we exploited were monads (to be able to work with effectful terms
as first-class objects), definitional laziness (to write control struc-
tures, including recursive control structures), higher-orderness (to
provide continuations), and concurrency (to be concurrent (!)).
Languages lacking any of these elements may be able to simulate
them sufficiently to provide something comparable; macros, for ex-
ample, go a long way in replacing laziness as a way to write control
structures.

One place we did not use laziness was the very place where the
original Orc DSL did—in the Where pruning construct. Instead we
opted for the eagerly combinator, rather than val (which does
echo the original Orc choice directly). The reason we chose this
design is that Haskell works hard to make the order of evaluation
something that the programmer doesn’t need to think about, except
when working on performance improvements. In fact, the major
driver for monads was a desire to ensure that the choice and order
of computational effects did not depend on the particular order of
evaluation chosen by the compiler. For Orc to use an explicit con-
trol of laziness (using publish) to control which concurrent com-
putations will continue performing their effects would be somewhat
contrary to this deep design philosophy. So we went with eagerly

which is more honest with respect to the monad structure, and with
relatively little syntactic overhead. In other languages it may be ap-
propriate to make the other choice.

Orc is a concurrency EDSL, but so is STM. Both are mini-
languages that are sprinkled around mostly-IO code, and both try
to remove some of the complexity that is present in a fully-fledged
concurrent setting. This is an ongoing and major challenge, and
there is much still to be understood here. For us, limiting the
complexity of the underlying thread infrastructure was a critical
step to undertake the task of establishing the laws.

There will be other concurrency EDSLs over time as new needs
emerge, and they too will be built on top of IO one way or an-
other. We now advocate overloading IO operations on MVars etc.
to make for a smoother integration (using the MonadIO class). In
our experience, MVars are best used for unidirectional communi-
cation between threads whereas TVars shine when used as shared
state elements with atomic operations—in our preliminary perfor-
mance measurements MVars degrade dramatically when in high
contention, especially over multiple cores, whereas TVars are ro-
bust across many different configurations.

As regards the Orc calculus itself, we are left wondering
whether eagerly can be factored into two separate components:
the cut (which limits work but is not parallel); and an eager memo
operator (which sparks the work, and returns a reusable handle to
all the results). The purpose of this factorization would be to enable
more laws, perhaps even a complete axiomatization of Orc.

Acknowledgments
Many people have helped us in this endeavor, and we offer them
our sincere thanks. Notable among them are Andy Adams-Moran,
Magnus Carlsson, William Cook, Iavor Diatchki, Kathleen Fisher,
Simon Marlow, Eric Mertens, and Don Stewart. We are particularly
indebted to Simon Peyton Jones for suggesting using explicit con-
tinuations as a way to simplify the implementation.

References
[CB09] M. D. Campos, and L. S. Barbosa, Implementation of an

Orchestration Language as a Haskell Domain Specific Language.
Electronic Notes in Theoretical Computer Science, Volume 255, Nov
2009

[D08] I. Diatchki. MonadLib http://www.purely-functional.net/monadLib
[EH97] C. Elliott and P. Hudak, Functional Reactive Animation. ACM

Conference on International Conference on Functional Programming
(ICFP), 1997.

[FFKF99] M. Flatt, R. Findler, S. Krishnamurthi, and M. Felleisen
Programming Languages as Operating Systems (or, Revenge of the
Son of the Lisp Machine). In: ACM SIGPLAN International Conference
on Functional Programming, ICFP 1999

[HMPH05] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy.
Composable Memory Transactions. ACM Conference on Principles
and Practice of Parallel Programming (PPoPP), 2005.

[K08] D. Kitchin, A User’s Guide To Orc.
http://orc.csres.utexas.edu/userguide.pdf

[KQCM09] D. Kitchin, A. Quark, W. Cook and J. Misra. The Orc
Programming Language. Proceedings of FMOODS/FORTE, Springer
Verlag, LNCS 5522, 2009.

[KSFS05] O. Kiselyov, C. Shan, D. Friedman, and A. Sabry. Backtracking,
interleaving, and terminating monad transformers. In: ACM SIGPLAN
international conference on Functional programming (ICFP), 2005.

[MC07] J. Misra and W. Cook. Computation Orchestration: A Basis for
Wide-Area Computing. Journal of Software and Systems Modeling,
March 2007

[MPMR01] S. Marlow, S. Peyton Jones, A. Moran, and J. Reppy. Asyn-
chronous Exceptions in Haskell. In ACM Conference on Programming
Languages Design and Implementation, PLDI 2001.

