
SECURE V2V COMMUNICATION

!
A Technique for Secure  

Vehicle-to-Vehicle Communication

John Launchbury, Dylan McNamee, Lee Pike 
Galois, Inc.

!
Introduction

The recent proposals for Vehicle-to-Vehicle (V2V) communications enable compelling new

functionality, but if improperly specified, designed, or implemented, V2V networks could put our nation’s

vehicles at risk at a massive scale. In a nightmare scenario, unscrupulous actors could disable selected

vehicles at selected times, gridlock metropolitan areas at will, or intentionally cause traffic accidents,

putting many lives at risk.

News stories are emerging about the vulnerabilities that have been exposed by connecting legacy

SCADA systems to the Internet —systems such as dams or even temperature controllers in schools. 1

Similarly, real-world cyber vulnerabilities in modern automotive systems have been demonstrated,

including infection through wireless automotive interfaces . 23

When semi-autonomous entities with a common vulnerability are interconnected, they are

vulnerable to rapid and widespread outbreak of infection. Like a contagious disease, the Morris Internet

Worm and Conficker spread through Internet-connected computers that were vulnerable to particular

types of attack. Similarly, If V2V systems are widely deployed with cyber vulnerabilities, an attacker may

be able to create something like an Internet worm that spreads and replicates through the V2V protocols.

The currently known suite of automotive attacks are not self-replicating, in part because the vulnerable

cars lack V2V communication capability. But a widely deployed unprotected V2V system could change

the landscape and enable attacks with exponential growth phase and widespread effect.

Fortunately, we are still at the design stage of V2V communication. As a nation we do not have to

deal with legacy issues of retaining backward compatibility. Rather we have the opportunity to design and build

"1MAR 9, 2014

" See http://www.zdnet.com/blog/security/shodan-search-exposes-insecure-scada-systems/7611 and  1

http://www.infosecurity-magazine.com/view/37005/scariest-search-engine-on-the-internet-just-got-scarier/

" Koscher et al., Experimental Security Analysis of a Modern Automobile, IEEE Symposium on Security and Privacy, 2010.2

" http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-3

the-wheel-video/

http://www.zdnet.com/blog/security/shodan-search-exposes-insecure-scada-systems/7611
http://www.infosecurity-magazine.com/view/37005/scariest-search-engine-on-the-internet-just-got-scarier/
http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/

SECURE V2V COMMUNICATION

V2V communication with security in mind from the outset so we can dramatically reduce the chance of worm-like infections

spreading on the V2V network. This paper briefly describes a technique for designing and implementing the

interfaces to vehicles that will automatically rule out a whole class of security vulnerabilities. The

technology is known, the cost is small.

A Case Study
We start with a recent example. As part of the High Assurance Cyber Military Systems (HACMS)

program, DARPA is developing new unpiloted air vehicle (UAV) software. To create a security baseline,

the HACMS red team analyzed both open-source and military systems, and found serious security

vulnerabilities at the interfaces. The open-source systems had no encryption and no authentication, and

perversely, neither did the military vehicles when the mission-profile did not permit the use of their Type I

systems, so the red team was able to masquerade as a legitimate base station. They were then able to

exploit the permissiveness of the message formats, which allowed messages to be transmitted and received

inappropriately—including messages to reboot the system while in flight! They were also able to exploit

flaws in the software that processed the input, triggering buffer overflows and gaining deeper control of

the system.

That was the baseline assessment. One year later, the same red team attempted to break into the

first iteration of the HACMS UAV software. They were unable to do so.

The approach taken in the HACMS UAV software was simple but effective. First, lightweight

cryptography was added, ensuring all packets are encrypted and authenticated (providing secrecy, and

prevented spoofing, respectively). Second, message formats for flight-specific behaviors were specified

precisely, and the software code for input and output of these messages (called parsers and serializers) were

machine-generated directly from the specifications. This ensured that the code on the ground stations and the

UAVs were consistent with each other. Moreover, once the code-generator was analyzed for correctness,

the security of the parser and serializer was automatically assured . 4

With these simple approaches consistently applied, the HACMS UAV software raised the bar on

security, leading another DARPA program manager to assess that already the HACMS UAV is likely the

“most secure UAV in the world.”

"2MAR 9, 2014

" http://smaccmpilot.org4

SECURE V2V COMMUNICATION

Interfaces Introduce Vulnerabilities
Why does protecting interfaces have such a profound effect on security? It turns out that almost all

insecurity in computing systems is manifested as (1) the ability to carry out unexpected computation on a

target platform by (2) carefully crafted inputs that violate the input assumptions of the design.

Some of the assumptions are visible in the source code. SQL injection attacks are an example of

this. Incautious web implementors would ask the user for input such as a name or address, and—making

the assumption that the user is only providing a name or address—would paste the input directly into an

SQL code template, which they proceed to execute. So long as the user supplies just a name or address,

everything is fine. But if a user supplies a piece of active SQL code instead of a name, the web site still

pastes it into the code template, and now starts executing the supplied code however damaging it may be.

SQL injection attacks are prevented by carefully specifying the set of legal inputs, and then checking that

the input strictly conforms to the legal set. Only then is the data used in a query.

In contrast, some assumption are not visible in the source code, but arise from details of how the

implementation language executes its programs. Buffer overflow is a classic example of this: the

implementation is expecting an input of a certain size, but when the user provides a much bigger input the

system naively places the extra input right on top of where is was storing information of what code to

execute next! Consequently, carefully crafted overflowing input can allow an attacker to run whatever code

they want, right at the heart of the system.

Sometimes the assumptions are in library code. For example, the specific character sequences that

are normally used to indicate string endings can cause different systems to behave differently. Such “null

terminators” in the middle of a name in an X.509 security certificate can cause some systems to see

different names than others . If the input certificate had the name “bank.com[NULL].badguy.com”, 5

some systems would see this as a “badguy.com” address, but Internet Explorer and Firefox will see just

“bank.com”. If one system validates the certificate and then passes it to another who trusts the validation,

then a major security vulnerability is opened up.

In order to find and exploit these vulnerabilities, penetration testers (and attackers) use fuzz testing . 6

In fuzz testing, the system under test is inundated with random inputs in order to observe any anomalous

behavior, like crashing or overuse of memory. Any such behavior is a chink in the armor. The penetrator

will then look for ways to turn the crash into an exploitable error, allowing the execution of code well

outside the original design parameters. As Matthew Squair puts it:

"3MAR 9, 2014

" Dan Kaminsky, Len Sassaman, and Meredith Patterson, “PKI Layer Cake: New Collision Attacks against the 5

Global X .509 Infrastructure,” Black Hat USA, August 2009

" http://en.wikipedia.org/wiki/Fuzz_testing6

SECURE V2V COMMUNICATION

So as the law of unintended consequences dictates we’ve ended up with … hard-to-parse protocols requiring complex

and bug prone parsers, that in turn can become weird machines for carefully crafted input exploits. Further such parsing

is mostly ad-hoc and distributed throughout the code making the problem of formally verifying its security almost

intractable. The net result of this is that we’ve ended up in the second great crisis of computing, that of security. 7

Secure Parser Generators
Unchecked (or insufficiently checked) input is arguably the main vector for cyber attack. Conversely,

no matter if the internals of a system have potential vulnerabilities, if attackers can't get unexpected data

through, they won’t be able to compromise it.

So how can we ensure that all inputs are sufficiently checked?

One of the foundational results of computer science was the development of input grammars,

whose properties say precisely how hard it will be to ensure that the input is valid. For the last 40-50 years,

programming-language designers have used context-free grammars for their input languages, and automated

parser generators to automatically generate the programming code for that grammar. The code will both act

as a recognizer (checking any input and rejecting anything that is invalid), and also turn it into a data

structure that the rest of the program can use (a parser).

Sadly, this standard technique has largely gone unused outside the compiler community, and at

great cost to security. Experience has taught us that it is much easier to introduce security errors in

handwritten code than in machine-generated code. Even the security protocols in the operating systems of

many machines are built on handwritten recognizers. These can lead to direct flaws such as buffer

overflow, or indirect flaws such as accepting a larger set of inputs than the protocol specifies. This can set

up a difference between sender and receiver that an attacker could exploit, or it could have the pernicious

effect of forcing other implementations to have to consciously diverge from the standard in order to

interoperate with a popular—but flawed—device.

In contrast, machine generated parsers and serializers can guarantee consistency between sender

and receiver. They can also ensure fully sanitized inputs: no values out-of-range, no values of the wrong

type, only legal messages, sane routing numbers, etc. This creates a valuable separation of concerns: when the

system starts to act on the data it has received, it no longer has to worry about sanitization issues. In

contrast, with ad hoc approaches the system is continually having to perform some sanitization in the

midst of its computations, since there are no guarantees the data was already correctly sanitized.

"4MAR 9, 2014

" http://criticaluncertainties.com/2014/02/18/starving-the-turing-beast/7

SECURE V2V COMMUNICATION

Proposal for V2V Interfaces
This leads to the following recommendation for V2V interfaces:

1. All legal inputs shall be specified precisely using a grammar. Inputs shall only represent data, not

computation, and all data types shall be unambiguous (i.e., not machine-dependent). Maximum sizes

shall be specified to help reduce denial-of-service and overflow attacks.

2. Every input shall be checked to confirm that it conforms to the input specification. Interface

messages shall be traceable to mission-critical functionality. Non-required messages should be rejected.

3. Parsers and serializers shall be generated, not hand-written, to ensure they do not themselves

introduce any security vulnerabilities. Evidence should be provided that

	 	 parse(serialize(m)) = m, for all messages m, and

	 	 parse(i) = REJECT, for all non-valid inputs i.

4. Fuzz testing shall be used to demonstrate that implementations are resilient to malicious inputs.

5. A standardized crypto solution such as AES-GCM shall be used to ensure confidentiality,

integrity, and the impossibility of reply attacks.

Appendix: Further Exploration

Sassaman et al 8

This very readable paper starts “computer insecurity has only gotten worse, even after many years

of concerted effort. We must be missing some fundamental yet easily applicable insights into why some

designs cannot be secured, how to avoid investing in them and re-creating them, and why some result in

less insecurity than others. We posit that by treating valid or expected inputs to programs and network

protocol stacks as input languages that must be simple to parse we can immensely improve security. We posit that

the opposite is also true: a system whose valid or expected inputs cannot be simply parsed cannot in practice be made

secure.” The paper goes on to provide many accessible examples of security failures and shows that

automatically generated recognizers would have prevented the vulnerabilities.

Complementary to Current V2V Efforts
The approach we advocate in this paper complements current V2V security efforts, which are

focused on protocols and cryptographic techniques for securing the wireless traffic between vehicles. If the

protocol-handling code has flaws, they could be exploited to bypass or weaken the V2V encryption. The

recent “goto fail” vulnerability in MacOS provides an example of this category of weaknesses. An error in

"5MAR 9, 2014

" http://www.cs.dartmouth.edu/~sergey/langsec/papers/Sassaman.pdf8

SECURE V2V COMMUNICATION

one line of code that selects the cryptographic protocol for a session resulted in a vulnerability that could

allow a “man in the middle” attack on web sessions labeled as secure by the browser.

Saltzer and Schroeder
In 1975, Saltzer and Schroeder offered design principles for security conscious systems. These

principles were formulated in a very different world, but they have stood the test of time. Over the last 40

years, these principles have been ignored to the detriment of security, and “rediscovered” time and time

again as people have become more serious about keeping illegitimate users out.

• Economy of mechanism: Make any design as simple and small as possible. Security holes

multiply whenever a system becomes larger or more intricate.

• Fail-safe defaults: Require positive permission to access features rather than trying to exclude

those that should not have access.

• Complete mediation: Check that every access to a feature is authorized. Checking only once

and providing complete freedom of movement once inside opens up many vulnerabilities.

• Open design: Security through obscurity doesn’t work because secrets leak out eventually.

Security-critical code benefits from as many people looking at it as possible, both at its design and

implementation.

• Separation of privilege: Require more than one check before granting access to a feature. A

single check may fail, or be subverted. The more checks, the harder this should be.

• Least privilege: Whenever a component has more authority than it needs to get its job done,

there is a security vulnerability.

• Least common mechanism: Minimize the subsystems that are directly shared between multiple

components. Especially be careful with shared code or shared variables.

• Psychological acceptability: Security that’s hard to use will get circumvented. Make sure users

buy into the security model.

Robustness principle
(Postel’s) robustness principle is a popular design guideline for software: “Be conservative in what

you do, be liberal in what you accept from others.” It says that code that sends commands or data to

others should conform completely to the specifications, but code that receives input should accept non-

conforming input as long as the meaning is clear. However, Postel’s principle should be used with care to

avoid introducing security vulnerabilities. RFC 1122 (1989) expanded on the principle by recommending

that programmers “assume that the network is filled with malevolent entities that will send in packets

"6MAR 9, 2014

SECURE V2V COMMUNICATION

designed to have the worst possible effect”. RFC 3117 characterized several deployment problems when

applying Postel's principle in the design of a new application protocol, and recommended that

programmers provide “explicit consistency checks in a protocol ... even if they impose implementation

overhead.”

Beyond Context-Free Languages
Sometimes it becomes important to allow interfaces to have dependencies from one part to
another, and these can move the grammar out of the context-free class. Attribute grammars provide
an effective mechanism here. For example, Davidson et al:

Protocol parsing is an essential step in several networking-related tasks. For instance, parsing

network traffic is an essential step for Intrusion Prevention Systems (IPSs). The task of developing

parsers for protocols is challenging because network protocols often have features that cannot be

expressed in a context-free grammar. We address the problem of parsing protocols by using

attribute grammars (AGs), which allow us to factor features that are not context-free and treat them

as attributes. We investigate this approach in the context of protocol normalization, which is an

essential task in IPSs. Normalizers generated using systematic techniques, such as ours, are more

robust and resilient to attacks. Our experience is that such normalizers incur an acceptable level of

overhead (approximately 15% in the worst case) and are straightforward to implement. 9

!
Acknowledgements

We would like to thank Pat Lincoln from SRI who provided insightful comments on an earlier
draft of this white paper.

"7MAR 9, 2014

" Drew Davidson, Randy Smith, Nic Doyle, and Somesh Jha, Protocol Normalization Using Attribute Grammars, M. Backes 9

and P. Ning (Eds.): ESORICS 2009, LNCS 5789

